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Erratum

HEAT ENERGY CONSUMPTIONIN HEATING AND

HOT TAP WATER SYSTEMS IN APARTMENT

BUILDINGS

Teet-Andrus KÕIV

The publishers regret that beginning of the p. 228 of the above article was

printed incorrectly. It should be as follows:

to 0.2. According to the measurements, the air change rate of the investigated old

design five-storeyed buildings was 0.3-0.4. The approximate k-values (u-values)
of the envelope elements of the building were, W/(m* K):

The Estonian Academy Publishers apologize to the author and our readers for

this error.
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