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U. ENNUSTE

ON THE PRINCIPLE OF THE ECONOMIC EFFECTIVENESS
OF A PLANNING SYSTEM

A system planning economy or production can be regarded as an object of study
by economic science. On the one hand, planning involves considerable costs. On the other,
it may lead to a decrease of losses and expenditure, and give additional incomes. Here
we are faced with an intricate problem of economic effectiveness of a planning system,
its optimum characteristics, excessive or inadequate planning, etc.

In the following some problems of the optimization of the structures of planning
systems are formulated, proceeding from the criterion of economic effectiveness. Such
concepts as entropy of data and plan, informational costs and incomes and characteristic
of planning system are used. Such problems as optimum informational state of data,
optimum fullness of planning model, intricacy of relalionships and others are discussed.

The treatment is of a qualitative character, and for illustration, extremely simplified
examples are given. For quantitative application, further studies are required, especially
in information economics and similitude theory of planning models. In this article, an
attempt is made at strengthening intuition for a better choice of the characteristics of
planning systems.

1. Concepts and principles

Let us define the most general necessary concepts and the principle of the effect-
iveness of a planning system.

1.1. Entropy and information for a planning system

Set of data A={A;}, i€ M=(1,..., m), used in planning economic or production
units in general, consists of random variables. Essentially these data are statistical or
expectable values of the parameters of the planned system or unit. Only in special casés
they are extremes of a random variable, i.e. determined variables.

A random variable is completely described by its probability distribution function
Pi(a:;) =P (A:<a:) or density function p;(a:)= % Pi(a;i), where a; is some value of

variable A;.
In this article, for describing a random variable, also the concept of entropy is

used [']:
Ci
Rt j pi(ai) log pi(as) da, (1)
b;

where (b:, ¢i) is the interval of all possible values of random variable A; (variation inter-
val). The entropy of a determinate variable in expression (1) is zero, and that of an
uncertain variable in general may approach infinity.
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Assume that the entropy of a random variable A; depends on the planner’s informa-
tional state (volume of available information) with regard to the parameter i. Suppose that
by gaining supplementary information it is possible for the planner to decrease entropy

and this information is measured with the difference of entropies i;=h{ (4:) — A% (A:),

where h{ (A:) and k¥ (A;) are entropies respectively before (a priori) and after (a poste.
riori) gaining a new piece of information.

Suppose that supplementary information is objective. By objectivity we understand
the fact that with increasing information the entropy h;(A:) of parameter i for planner

approaches the objective entropy h? (Ai), and the distribution function for planner P;(a;:)

approaches the objective one P?(a.-). In this case objectivity is a relative term alluding to
causes of randomness which drop out of the area under study (entropy of environ-
ment [2]). <

1.2. Entropy of plan

Let us define the planning system S as a system collecting data (information) and
processing them to a plan, which we denote by X. The plan for a definite period comprises
a set of indices X=(X;), j € N=(1, ..., n). The plan determines the valucs of controlled
indices of an economic unit which, in a definite sense, are expected to be the best ones
for the planned period and provide a basis for the choice of the best activity at a given
moment (direct management, control).

Suppose that the planning system S is described by the following set of characteristics
S={m, n, & @}, where p characterizes the model (fullness of indices, intricacy of rela-
tionships between indices, number of intervals of the planned period, length of interval,
etc.); m characterizes the informational state H= (h;), i €M, of data A used in the model;
& characterizes the algorithm used for the solution of the model (accuracy of calculations,
length of calculations, number of operations, etc.) ¢ indicates the starting point of plan,
its length of elaboration, etc. Thus, in each characteristic we distinguish some subcharac-
teristics.

It can be said that initial data used by a real planning system S comprise entropy
(2 hi(a;)>0) that the models employed do not describe the planned objects in a homo-
morphous way, and that the accuracy of solution methods is limited. It follows from the
above-said that the plan X is also a random variable, i. e. its coordinates X;, jEN, are
random variables. To simplify matters suppose that Xj, j€ N are independent random
variables. Let x; be the realization of coordinate X;, and pj(x;) density of its probability.
Probability densities for the whole plan are described by the vector function p(x) = (p;(x;)).
J€N. Thus we can speak of the entropy structure H(X)=(h;(X;)), jEN of plan X and

o

the information structure ix=he(X)—h?(X). The superscripts denote: “a” — before, and
“p” — after specification.

Now it can be asserted that the total entropy of the plan hx=ZX h;(X;) depends on
the planning system S:

hx=hx(S), (2)

where hx(S) is an operator and S belongs to a set of possible planning systems SES.
The properties of operator A.(S) and the set S will be discussed later. Depending on the
total entropy of the plan, we may also speak of a planning system with a greater or
smaller entropy.

1.3. Incomes and costs of information, value of information
and the optimum planning system

Planning means determination of iuture values of major variables of an economic
unit so that timely preparations could be started to better utilize the conditions expected
in the planued period. Unutilized possibilities [®] can be regarded as expectable losses.
To illustrate the above, we bring the following example.
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Example 1. Let the expectable needed capacity X be a random variable in the inter-

val x € [b, c] with even probability density p(x) =1/(c—b) and mean value X= (b+c)/2.
Entropy of the planned index is

<
hmp—;ﬁbqﬁﬂjﬂ=m%.
b

where g=(c—b)/2 is called arm. It can be seen that entropy is increasing function of the
arm g. Thus, the informational state of index X can be characterized by the arm g.

Suppose that for planned capacity is taken mean value ;=b+g of X. If the actually
needed capacity (realization) x turns out to be smaller than we have constructed, i. e.

x<x, there is an overdrait on investments, a loss, which can be indicated by the expres-
sion k(x-—x). If the needed capacity x is greater than the constructed one x>x, there
will be losses (replacement with a more expensive production). For the sake of
simplicity we denote it also k(x—;). Considering that density function equals p(x)=1/2 g,
the mean value of loss can be calculated as follows:

Ko

g
P
- —x)dx=kg/2.
g_(g x)dx=kg/

0

In the above example function shapes were simplified. Nevertheless, in principle it
describes correctly the relationship between expectable loss (mean value of loss) and
informational state of plan.

For a general case we can state that mean value of loss depends on informational
state of plan or on planning system

K=Ku (h:) =K. (S). (3)

On the other hand, informational state of plan and respective characteristic of
planning system involve certain costs. Provided that planning systems are rational
these costs increase with the improvement of informational state of plan and the
decrease of entropy of planning system. A decrease in plan entropy makes it necessary
to specify initial data more exactly or detail the model, improve the accuracy of
computations, etc. More expenditure is required to conduct additional research and
experiments, to specify initial data, to acquire a computer of a greater capacity, etc.

It can be asserted that a certain amount of resources or costs W corresponds to
each planning system S:

W=5(S), (4)

which are related to the determination of plan X.

Thus, planning costs depend on the characteristic S of the planning system. By
means of these costs, attempts are made to gain additional incomes (as compensation
for loss). It is easy to understand that the ratio of these costs and incomes should
ensure maximum effectiveness in the utilization of the resources employed for planning
and production.

To estimate effectiveness, the expectable incomes and concrete expenditure should
be made economically comparable. First of all, we have to consider the differences
between incomes and expenditure in time, problems involving risks and problems linked
with the weight of the given plan in decision-making.

To eliminate differences in time, temporal discounting is used, for instance, incomes
obtained in the planned period are discounted to the moment of planning (i. e. the time
when planning costs become necessary). The incomes calculated represent mathematical
expectations, the mean value of incomes. Depending on risk, these incomes can be given
different weights in comparison with real planning costs. Finally, there is the possibility
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that plan X elaborated by planning system S wiil be corrected when the final decision
is taken, i.e. the plan will be given a certain weight. In other words, the final decision
can be taken in co-operation (as a compromise) of several planning systems. Formally,
the final decision can be looked upon as a weighted average of a number of plans,
while weights are determined by the final decision-taker.

In sum, the expectable possible loss comparable with planning costs is

R=R(S), )

where operator R permits the loss to be economically compared with planning costs.
Proceeding from the maximum economic effectiveness for the planning system, the
optimum characteristic of the planning system can be found from the condition

min_(R(S) +W(S)). ' (6)
SES
Provided that S° €S, we find

dW(S%) _  dR(SY)

dS g

i.e. in case of the optimum planning system, marginal information costs are equal io
marginal information incomes (decrease of loss).

It is practical to formulate the modification of the problem (6). Firstly, at fixed
planning costs C it is advisable to determine the planning system S i such a way
that the expectable loss of possibilities R is at a minimum. :

minR(S)}W(S) =C. )

After forming the Lagrange function
R(S) +A (W (S) —C)—>min,
we find that at an oplimum sclution

_dR(SY) _, dW(SY)
- AT

where A is the effectiveness of additional planning costs of the optimum planning system.

2. Effective characteristics of a planning system

It is difficult to set up complex hypotheses concerning operators R(S) and W(S)
after all arguments p, n, €& and ¢. To simplify, we decompose them in the plane of
isolated arguments. The values of remaining arguments are considered constant. Solutions
of optimum problems formulated in such a way are effective points in the sense of
mathematical optimization.

2.1. Optimum entropy of initial data

Suppose that the characteristics of a planning system are fixed, except the entropy
of initial data. Let us determine the optimum entropy of initial data for this case.

Denote vector of initial data by A= (A:), i € M. To this vector corresponds vector
of entropy H=(h;), where h; is entropy of coordinate (parameter) i €M. Assume that
the entropy of plan is Hx=(h;), j € N, where h; is the entropy of plan coordinate (index)
J €N, depending on the entropy of initial data Hx=Hxa (H). Let possible lpss due to
plan entropy be r=rx(Hx). Thvs, the possible loss can be expressed as a function of
the entropy of initial data.

r=ra(H). 2.1.1)
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Now consider the following hypothesis. Coordinates h;, i €M of vector H can have
values in the non-negative half-space, h; > 0, only. An increase in entropy of coordinate
i leads to increase of loss dr/dh;>0, and this increase has a growing tendency
d%r|dh;?>0.

Suppose that the dependence of a planning system’s costs on the entropy of initial
data is described by the function

w=wa(H), (2.1.2)

provided that with the growth of entropy costs decrease dw/dh;<0 and this relation
continues diminishing d?w/dh?>0.

With the help oi functions ra and wa, a number of oplimum problems can be
Jormulated.

First of all, let us consider a case where information costs w are not limited. The
-optimum entropy of initial data is to be determined

Up=r,+was—>min, (2[3)

Example 2 (to problem 2.1.3). Let the expectable capacity needed to turn out
product [ be X=AY, where Y is a given constant and A is the expectable input coefficient.
The latter is a random variable with an even probability density in the interval (b, ¢);
.p(a)—1/(c—b). The entropy of parameter A is characterized by the arm g=(c—b)/2.

Y and A are initial data. Because A is a random variable, the plan X is also a
random variable in the interval (bY; cY) with an even probability density p(X)=
=1/(c—b)Y=1/2 gY. Its arm is gx=(c—b)Y/2=gY.

Denote information costs by w=a/g, where a is given and information loss at
irealization x € X= (bY; cY) is r= (rx—xl)g, where @ is given and x=bY+gx=(b+9)Y,
i.e. the mean value of X.

The expectable loss is

gy

— 1 ogY
R=2j (x—x)o mdx: = .
0
Now we can formulate the problem as follows
[ ogY :
U=W+HT= — 4+ =——— min .
B 2 g
Thus
du a oY
el 0 S

-and optimum value g=V2a/qY.

It can be seen that the greater the fine @ for inaccuracy and the greater the volume Y,
the more precisely initial data and variation interval should be determined. An increase
in information cost a would require greater aporoximateness of initial data.

If the information costs w are bounded by above, we can construct a problem how
the given information costs can be best distributed between initial data, in other words,
how, to find a state of entropy h; best suited for application of the parameter i in
;planning. Thus, the solution represents the optimum entropy structure of initial data. The
problem can be stated as

"I‘iin uA=rA+wA}wA<w,.. (2‘4)
Provided that wa= Yw;(h;), the Lagrange function of the problem (2.1.3) is
4 (H) =M(w 4~ Zw; (hi))—>min,

:at optimum entropy structure
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dua dw;
T, +A Ty =0,

where A is the constant characterizing the effectiveness of additional information costs.
If the total entropy state of data is bounded Xhi>h, we face a problem: similar to
(2.1.4), where information is to be distributed between parameters in such a way that
the values of additional information units for all parameters are equal.

In constructing models of planning systems with limited resources, it is sometimes
advisable to consider the upper boundaries for every group of resources separately. For
instance, bounded by above are volume of human labour, computational capacity, etc.
According to this formulation, the optimum entropy structure of initial data is determined.

Example 3 (to Problem 2.1.4). Suppose the necessary production capacity is
X=A,Y,+A,Y,, where Y, and Y, are given constants, expectable coefficients A, and As
are random variables with even distribution densities and arms g; and g,. Thus, X is
a random variable with arm gx=g,Y,+g.Y.. For the sake of simplicity, suppose that
Y,;=Y,=Y. Then gx=(gi+g:)Y. 1If x — the mean value of X is selected as the capacity

to be constructed, then information loss at realization x is r= (Jx—x|)o, where g is given.
Expectable loss (see Example 1) is: R=0,50(gi+g:)Y. Information costs, respectively,

are w=a,/g,+ay/g, €W, where w is given. Now we have an optimum problem

min u=R+w}w<E
g1, 8220
The Lagrangian function is

L=u—\(w—w)—>min.

Solution can be found from conditions — =-— = @ =0, where A is the effect-

iveness of additional information costs (marginal effectiveness). If the amount of infor-
mation gained by additional cost is known (measured with differerice between arms),
the additional effectiveness or value of information can be computed.

At this point, attention should be directed to a possibility of cptimum utilizatior
of information. In practice, the expectable necessary capacity X is a random variable
with a known distribution density p(x). Generally, the capacity to be constructed is

selected as the mean value x of X. But this solution is optimum only in a special
case. To clarify the general case, let us define the loss as dependent of the choice of
the capacity to be constructed v:

i {r,(u—x), XL,

ra(x—v), x>wv.

The necessity to distinguish between function r, and rp; is apparent. r; describes loss at
functioning below capacity, and r, describes loss when there is a deficit of capacity. It
is clear that these functions are essentially different. The expectable loss R is a function
of v. Consequently, we have to find such a v that

4

v
R= j. ri(v—x)p(x)dx+ j‘rg(x—v)p(x)dx—>min. (2.1.5)
0

v
v

The difficulty of solving the problem (2.1.5) lies in its mathematical complexity,
especially when the functions ry, r, and p(x) are intricate.

For instance, in typical cases ry=(v—x)g, and ro=(x—v)2?0,. At normal distribution
we face a rather difficult problem.

Example 4 (to Problem 2.1.5). Suppose that the necessary expectable capacity
is a random variable X with even probility density p(x)=1/(c—b) in the interval [b, c].
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Denote the capacity to be constructed by v € [, ¢]. Suppose the loss according to reali-
zation x of X is

i { rn=(v—x)Qi, ¥,
ro=(x—v) g2, X>v.

Provided that =0, expectable loss can be expressed as a function of v

v 4
1
R= J' (v—x)gl-%- dx+ j (x—0v)Q2 3 dx= 2lc [0102+02(c—1)2].
0 v

The optimum v can be found from the condition

dR 1 e
e -c—[Q,v—Q,(c—v) 1=0.
Hence
- 026
Qi+02

If g1=1, 02=0,5, c=1, then v=0,33 and expectant loss R=0,16. If v=x=0,5, then
R=0,19.

Finally, such technique enables us to establish the set of number signs which cam
be used in planning calculations. The problem is as follows. The reduction of the number-
of signs, i.e. rounding off the numbers would cut time and effort, or in other words,
expenditure associated with the calculations. Let us denote expenditure dependent of
the number of signs n, by the function w(n).

On the other hand, greater approximateness of planning indices causes higher
expectable losses. Let us denote losses by r(n). It will be understood that the best choice-
of the number of signs is

w(n)+r(n)—> min . (2.1.6)
n

Expenditure @ depends on the character of operations and it is empirically possible-
to explore the shape and parameters of w(n). To estimate the value of expectable losses
assume that, if the planning indices contain a sufficient number of signs no, then, in terms-
of the number of signs (or the accuracy of scale) the expectable loss is practically zero:
r(ng) =0. Switching over to a scale with a ten times greater unit (i.e. if in the decimal
system the number of signs is reduced by one: n;=ng—1), the expectable error would be:

5

1
Ejpll g =2j (5—x) 75 dx=254,
0
where A is the length of the division of zero scale.

2.2 Dimensions and aggregation of a planning model. Complexity of relationships

The dimensions v of a planning model determine the necessary number of data and’
expenditure spent to obtain them (the informational state of data is given). On the other
hand, greater dimensions mean a more detailed plan and reduction of expectable losses.
It can be seen that this is an optimum problem: increase in dimensions would require-
much information and expenditure, reduction of dimensions would lead to a decrease
in plan information and informational incomes.

In a planning problem, there often arises a need of aggregation, reduction of the-
problem’s dimensions. A quality criterion of aggregation is that the results which are-
obtained by the use of a non-aggregated model and those that will be aggregated later-
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should possibly be in accordance (least-square method) with the calculations of the
aggregated model [* ®].

Proceeding from the concepts of informational incomes and costs, we come to a
principally new criterion which enables us to estimate the quality of aggregation: infor-
mational loss at aggregation should be of minimum value. Indeed, deviation of some
planning indices does not lead to essential losses (capacities can be employed in other
branches, production can be replaced, advantageously exported or imported, etc.). However,
increase in the approximateness of some indices may cause major informational losses.
This line of reasoning gives us additional weights for the choice of aggregation. If the
weights of all plan indices were equal, the new result would line up with the result
obtained by the above-mentioned commonly used criterion.

Suppose the plan found with the help of a non-aggregate model is X=(X;),j €N,
and its informational state is Hx=(h;). Expected informational loss associated with
this plan is r=r(Hx). Employ the aggregating operator G and obtain the model in

aggregated form. The respective plan is X= (5{.), s€ N, with an entropy structure Hx= (hs).
The respective expectable loss can be determined from the expression F(H x). Assume that
#(Hx) = 3r,(h,), where set N depends on the choice of aggregating operator G, N=G(N),

seN
in sum, we have the problem

min 37 (hs). (2.2.1)
G seG(N)

Quantitative analysis of this expression is rather difficult, but qualitative analysis
allows to deduct some rules to improve aggregation. This, however, would be a study
by itself.

A problem by itself is the formulation of every planning problem because plan indices
represent aggregates. Which detailed indices existing in reality should be aggregated
to one index is a question that should be solved on the principle of the least informational
losses.

In working out the plan model, the question arises how to select the mathermatical
form of the balance relationships in the model, or the shape of production and consumption
functions. A more simple form of these functions requires a lesser number of parameters.
Thus, the informational costs are small. However, in this case entropy of the plan obviously
is greater than that of more intricate functions. But the latter require that a greater
Aumber of parameters be determined.

Expression of plan entropy depending on the choice of relationships in planning
model is an item of the theory of similitude. In the domain of economico-mathematical
modelling, this theory has not yet been notably applied.

2.3. Choice of planning and re-planning period. Horizon of planning period

Considering planning in time, we can observe, as follows. Optimum planning of
economics as a dynamic and stochastic process, according to R. Bellmann’s method of
dynamic planning [f], is to be carried out continuously. With the passage of time, the
system’s (economic’s) coordinates become more precise at the close of the time unit.
New factors will be revealed that affect the parameters oi the process and its course.
With this in view, it would be possible to determine the optimum development plan of the
system more precisely at the close of every time unit. It should be noted that in case of a
stochastic process the system’s optimum development plan is not intended for realization,
but it provides a certain foundation to such an activity which ensures that the future
expectable informational losses will be at a minimum (on the basis of the existing
informational state).

Let us consider planning in discreet time, where Q={1,... , ®} is set of time units
in the planning period, Tt — time (moment) of planning and & — time in future 9>,
€ Q.
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Now make the following assumptions ‘about informational losses in the interval .
They depend on entropies of plans for subsequent intervals t+1,..., ¥, ..., o, and
temporal distance of these plans x=0-—1 The same assumptions are made about
informational costs. Considering influence of these factors in isolation, we can distinguish
three types of problems.

Firstly, let us consider a case where the interval to be planned and entropy of plan
in this interval are fixed. Denote the plan for interval & by Xg=(X;3) and its entropy
by Hxg=(hjg). Informational loss in interval v depends on the entropy of the plan
for interval & as follows

r9=rp(Hxy).

Informational costs w4 in interval v, depending on entropy of plan Xj, can also
be expressed as the function

W =W,y (Hx 3).
Consequently, we come to the problem

r.y+w_g—>min. (2.3.1)
Hxp

The solution of this problem indicates suitable entropy structure of plans which
in interval t are worked out for interval 0. Under the assumption that at fixed A5 the
value of function w_g infinitely increases due to the increase of x=%—v, and value of

function r_g decreases at tiie growth of %, it can be seen that for certain % planning

of index j turns out to be inefficacious. Obviously,? will have greater values for indices
with greater inertia which take more time to be realized. Index % is called planning

distance and maximum effective distance % is the horizon of a planning period.

In a similar manner, it is possible to consider the influence of planning distance %
on the fulness of plan Xj. The fulness of plan Xy is characterized by dimensions of
vector Xg=(Xjy), j € Ny, where Ny indicates fulness of plan in interval 9. It is
intuitively clear that, with the increase of distance, the influence of detailed indices
decreases and only aggregated indices retain their importance. Apparently, in case of
fixed distance and aggregation, it is advisable to determine aggregated indices wilh
smaller entropy because they have greater stability than the detailed ones.

Two closely interrelated questions arise: after what time interval should plans be
corrected and at what speed should it be done. Correction of plans worked out in interval
T for interval ¥ which is carried out in the interval n, (v<n<®) allows to cut informational
losses for interval m, since with the passage of time m—t data can be specified more
exactly, and informational incomes may top respective costs and also costs related to
recalculation of plan.

If precise recalculation of plan takes up a considerable amount of time and such
delay causes vital losses, an approximate correction of plan may be eifected. Then the
plan is specified approximately, in the first place, in the part where informational losses
reach their maximum.

Analysis of effective correction problems reveals that those planning indices which
are more aggregated and stabler in time are less frequently corrected. Detailed indices
should be corrected more frequently. Most detailed indices are to be planned continuously
or immediately before the realization of the respective plan.

In sum, if respective data are available, optimum aggregation of plan indices can
be determined in consideration of the planning distance and the horizon of the planning
period. Then the irequency of re-planning can be established. Detailed indices are re-
planned more frequently than bigger aggregates.
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3. Applications

For some time past, management and planning of national economy has been
metaphorically termed “management industry”. In connection with computerization,
indeed, there will be more and more resemblance between this kind of social activity
whose task is information processing and a technological branch of national economy.
Support costs of this branch are ever growing, which urges the need to get them down
to a reasonable level.

Like in every other industry, we should start from the study of “production costs”,
i.¢. expanditure on information processing. It seems that at least in some aspects
immediate practical results can be achieved. Most promising could be measurement of
the informational state of planning data and respective costs, also estimation of the:
relationship between initial data and informational states of a plan, comparison of this
relationship to informational losses.

There exist many ways to cut the entropy of initial data. Most relevant is an
economico-technical survey. More detailed studies will contain less entropy, but involve
higher costs. Experience gained so far already allows the latter to be prognosticated.
Informational state of research depending on its fulness can also be predicted.

It appears that with more complex problems there arise mathematical difficulties
in estimating the relationship between entropies of plan and initial data. A practical way
out is the use of numerical methods which can be easily realized on a computer.
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U. ENNUSTE

PLANEERIMISSUSTEEMI MAJANDUSLIKU EFEKTIIVSUSE POHIMOTTEST
Resiimee

Artiklis kisitatakse majandust voi tootmist planeerivat siisteemi majandusteaduse
uurimisobjektina, sest iihelt poolt on tdpsem planeerimine, eriti tidpsemate algandmete
tagamine, seotud oluliste kuludega, teiselt poolt voimaldab tipsem plaan vahendada
mitmesuguseid voimalikke kaotusi ja seega anda tdiendavat tulu. Siit kerkibki keerukas
planeerimissiisteemi karakterislikute optimaalsete vaartuste maaramise probleem.

Majandusliku efektiivsuse kriteeriumist ldhtudes piistitatakse artiklis planeerimissiis-
tecemi, Gieti plaanikarakteristikute optimaalse médiramise iilesandeid, kusjuures kasutatakse
moisteid andmete ning plaani entroopia, mudeli optimaalne detailsus jne.

Kogu kisitlus on kvalitatiivne ning illustreerimiseks esitatakse darmiselt lihtsustatud
niditeid. Artikkel aitab seega ainult «tugevdada intuitsiooni» planeerimissiisteemide karak-
teristikute praktilisel méaaramisel.

Eesti NSV Teaduste Akadeemia Saabus toimetusse
Majanduse Instituut 4. VII 1969
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0. 9HHYCTE

O MPUHUHUNE 3KOHOMHUYECKOH 3®PEKTUBHOCTH
CUCTEMbI NJIAHHUPOBAHHUS

Pesrome

‘B crathbe paccMaTpHBAlOTCS BOMPOCH ONPEAE/IeHHS] SKOHOMHUECKH ONTHMAJbHBIX [OKa-
3aresiedl CHCTeMbl NJaHUpOBaHHA. [IPHMEHAIOTCS TaKHe TEPMHHBI, KaK IHTPONHSI AAHHBIX H
TJaHa, AETaJbHOCTb MJaHa M T. I

Ananu3 NMOMHATHIX B CTaThe BONMPOCOB HMEET KaueCTBEHHBIHl XapakTep M NMPeaycMOTpeH
TOJBKO 1Vl (DOPMYJHPOBKH NpOGJeM H «yCHJICHHS HHTYHLHH» NPH NPAKTHYECKOM OIlpeje-
JIEEWH XapaKTePUCTHK Mojeneii nuanupoBanusi, [lpuBe/ieniibie NPHMePb JaHBl JHIb Kak
uamoctpauud. [las npoBeleHHs] MPaKTHYECKHX PacyeToB HeOOGXOAMMBI [ajbHeifllne HeLie

JOBaHHSA.

Hucruryr sxkonomuku
Axkademuu nayx 3crouckoi CCP

JUUBILARE =+ HOBHWIEMH

IMocrynuaa B peaakuuio
4/VII 1969

Akadeemik Joosep Saat 70-aastane

Eesti NSV Teaduste Akadeemia akadee-
mik Joosep Maksimi p. S aat siindis 30. juu-
lil 1900 Muhu saarel Kapi, praeguses Tupe-
nurme kiilas ehitust6dlise perekonnas.

1916. aastal, kui raske majanduslik olu-
kord oli teda sundinud loobuma siidame-
lahedase eriala Gppimisest kunsttoostuskoo-
lis, alustas J. Saat veel samal aastal oma
téomeheteed Nommkiila vallakooli oOpeta-
jana. Jirgmisel aastal Oppis J. Saat tele-
grafistide kursusel Kuressaares ning lope-
tas need sama aasta siigisel. Siigavasti mo-
jutasid tema edasist elu revolutsioonilise
1917. aasta siindmused. Noore kooliopeta-
jana vottis ta osa kohaliku madruste klubi
t6ost, tutvus ldhemalt tookordsete poliiti-
liste vooludega ning temast sai veendunud
bolSevik.

1917. aasta siigisel, kui Saksa vied tun-
gisid Laidne-Eesti saartele, siirdus J. Saat
mandrile ning asus tdéle posti-telegraafi-
ning raudteeametnikuna. Suure Sotsialist-
liku Oktoobrirevolutsiooni pievil liilitus
J. Saat aktiivselt revolutsioonilisse vdit-
lusse, tegutsedes raudteelaste ametiiihingus
ning tehes kaastéod toolisajalehtedele,

Kgodan]iku diktatuuri aastail oli J. Saat
sihiteadlik revolutsiooniline voitleja. 1921,
aastal voeti ta Eestimaa Kommunistliku
Partei liikkmeks ning valiti partei Jirvamaa
komitee koosseisu. 1922. aastal asus ta par-
tei iilesandel t6ole Tallinna téélisajalehtede
toimetusse.

1924. aasta jaanuaris J. Saat arreteeriti
ja moisteti sama aasta siigisel «149 prot-
sessis» iihe kaebealusena eluks ajaks sunni-
toole. Enam kui 14 vangla-aastat aga ei

murdnud mehist voitlejat. Nagu teisedki
poliitvangid, kasutas J. Saat vahimaidki voi-
malusi teadmiste omandamiseks ja kirjutas
artikleid poliitvangide kisikirjalisele hiile-
kandjale «Punane Viisnurk».

Vabanenud vanglast iildise amnestia alu-
sel 1938. aastal, tootas J. Saat ehitustdoli-
sena ning arveametnikuna tooliskooperatii-
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