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This article reflects the thoughts during the publication process of a research paper 
on mathematical modelling of signals in nerves, which is a fascinating biophysical 
process. A manuscript submitted to a journal with an excellent reputation had a usual 
length, but one of the reviews was twice the length of the submitted paper. This review 
resembled a research paper itself, criticising many aspects of the approach described 
in the manuscript, including the idea of mathematical modelling as a method. The 
reviewer’s questions about the possible influence of many structural details of nerves 
were certainly justified and welcome. However, the reviewer stated: ‘This reviewer 
is not a mathematician. Therefore, reference to classes of mathematical formulae, and 
many aspects of the derivation of the formulae presented are often obscure to me’. 
As far as the submitted manuscript has analysed the process of trying to use 
knowledge not only from experimental electrophysiology but also from basic physics 
and mathematics, the review raises questions about the usage of mathematical models 
in biology and the importance of underlying physics. Although much has been written 
about the benefits of interdisciplinarity, it seems that there are still barriers between 
the research communities that accept only the ideas known in their close field of 
interest. The Nobelist John Hopfield describes the different communities of physicists 
and biologists and the differences in biology and physics paradigms [25]. He 
recommends: ‘Stick to the physics paradigm, for it brings refreshing attitudes and a 
different choice of problems to the interface’. In what follows, general thoughts are 
presented describing the ideas of the interdisciplinary approach in biological 
modelling. 

2. Mathematical modelling 
We know the saying of Galileo Galilei that the book of nature is written in the 
language of mathematics. Contemporary understanding keeps this idea but says that 
mathematical modelling means casting a real­world problem (a phenomenon) into a 
mathematical representation. A mathematical model is an abstraction of a real 
process/phenomenon presented in the language of mathematics. It means that the 
variables are quantified, and they are described by equations or functions. In general, 
a model includes the governing equations, initial and boundary conditions, and 
usually also certain constraints, all based on a specific set of assumptions. An input 
generates a certain output, and implicitly it means causality. It is clear that math ­
ematical modelling must be based on definite rules but, on the other hand, be flexible 
enough to grasp possible modifications if required. 

In the mathematical modelling of biological processes, attention must be paid 
to descriptive, integrative, and explanatory levels [37], summed up in integrative 
biological modelling [32]. Such an approach is actually based on the interface of 
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biology on one side and physics, chemistry, and mathematics 
on the other side. Examples described by Gavaghan et al. 
[21], Bialek [4], and others demonstrate vividly how fruitful 
such an approach is. However, this is not always a 
straightforward way. Cartwright [8] mentions that ‘To ex plain 
a phenomenon is to find a model that fits it into the basic 
framework of the theory and that thus allows us to derive 
analogues for the messy and complicated phenom enological 
laws which are true of it. The models serve a variety of pur ­
poses, and individual models are to be judged according to 
how well they serve the purpose at hand.’ 

However, mathematical modelling cannot solve the 
problem on its own. Kohl et al. [28] have said: ‘Mathematical 
models, however, need to be used with care. They are aids to 
thought, not a replacement for it. The only serious difference 
between a biologist who uses mathematical modelling and 
one who does not is that the former explores the conse ­
quences of his ideas quantitatively, including the imple ­
mentation of computational experiments to assess the plausi ­
bility of those ideas. The potential benefits of doing so are 
obvious because quantitatively plausible predictions improve 
subsequent hypothesis­driven experimental research.’ 

Indeed, there are many fruitful aspects of modelling. 
A report from the US National Research Council [35] in ­
cludes a special chapter ‘Computational modeling and simu ­
lation as enablers for biological discovery’ where the features 
of modelling were discussed. The list of properties and possi ­
bilities of models is worth repeating here: 
‘models provide a coherent framework for interpreting data; 
models highlight basic concepts of wide applicability;  
models uncover new phenomena or concepts to explore; 
models identify key factors or components of a system; 
models can link levels of detail; 
models enable the formalization of intuitive understandings; 
models can be used as a tool for helping to screen un prom ­
ising hypotheses;  
models inform experimental design; 
models can predict variables inaccessible to measurement; 
models can link what is known to what is yet unknown; 
models can be used to generate accurate quantitative pre ­
dictions;  
models expand the range of questions that can be mean ing ­
fully asked’. 

In addition, as a summary, it is concluded: ‘Models are 
useful for formalizing intuitive understandings, even if those 
understandings are partial and incomplete. What appears to 
be a solid verbal argument about cause and effect can be 
clarified and put to a rigorous test as soon as an attempt is 
made to formulate the verbal arguments into a mathematical 
model. This process forces a clarity of expression and con ­
sistency (of units, dimensions, force balance, or other guiding 
principles) that is not available in natural language. As im ­
portantly, it can generate predictions against which intuition 
can be tested.’ A process can be described at various levels of 
abstraction. In this context, Carillo and Martinez [7] argued 
that ‘... different paths of abstraction can lead to a worthwhile 
diversity of models – even though at some point these models 

may be interpreted as excluding alternatives, at a later time 
they can be appreciated as advancing our understanding.’ 
Besides practical applications, the idea that one could under ­
stand the unknown from the analysis of models (see the list 
above) follows Albert Einstein’s thoughts that ‘... math ­
ematical construction enables us to discover the concepts and 
the laws connecting them...’ [13]. 

3. Nerve signals: a way to model 
The propagation of signals in nerves is an extremely im ­
portant chapter of biology. This complex problem is inten ­
sively studied not only because of its possible pathological 
effects but also because of its role in cognitive processes and 
the processing of information. In what follows, attention is 
paid to the fundamental behaviour of signal propagation in 
healthy nerves under normal conditions, focusing on physical 
phenomena. Numerous theoretical and experimental studies 
over the last two centuries have cast light on many details of 
this process. The Hodgkin–Huxley (HH) model, based on the 
ingenious description of ion currents and numerous experi ­
ments, is nowadays considered a cornerstone for describing 
the propagation of an action potential (AP) in axons [23]. 
However, Hodgkin [24] mentioned: ‘In thinking about physi ­
cal basis of action potential perhaps the most important thing 
to do at the present moment is to consider whether there are 
any unexplained observations which have been neglected in 
an attempt to make experiments fit into a tidy pattern.’ Indeed, 
as demonstrated in experiments, the propagation of an AP as 
the main carrier of information is accompanied by mechanical 
and thermal effects. In addition to earlier experiments (see, 
for example, [44,45]), recent studies have also reported the 
mechanical response of mammalian neurons recorded by a 
label­free optical imaging method [6] and high­speed inter ­
ferometric imaging [30]. In general, in addition to the AP, the 
accompanying effects include the longitudinal wave (LW) in 
the biomembrane and the corresponding transverse wave (TW), 
the pressure wave (PW) in the axoplasm, and tem pera ture 
change (Θ) accompanied by some biochemical changes. This 
means that there is an ensemble of waves, and besides electro ­
physiology, attention must be paid to the complexity of the 
process involving physics, chemistry, and thermo dynamics. 
In this context, mathematical modelling plays an important 
role because, besides the experiments, describing the physical 
mechanisms in nerves in mathematical terms helps to under ­
stand the causality and the coupling of effects. That is why 
studies of nerve propagation are at the interface of physics 
and mathematics. Extensive experimental studies have re ­
vealed many details of this process, but not all the mech ­
anisms of interaction between the various effects are de ­
scribed with the required accuracy. That is why all the at ­
tempts to reach a better understanding should be welcomed. 
Math ematical modelling is one of the possibilities to improve 
our understanding [16]. 

Hereafter, we present our ideas about the steps of the 
modelling (and understanding) of the signals in nerves. The 
full process of modelling starts from philosophical principles, 
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although usually these are not formulated but taken as 
unwritten rules. For the full picture, we present these prin ­
ciples following DeLanda [12]: 
1. General principles: 
  – complex processes are characterised by multiplicity, 

which is the activator of changes in the system; 
  – multiplicity is characterised by differences that are pro ­

ductive and cause interactions; 
  – the changes (gradients) are characterised by velocities; 
  – the causality for processes is related to multiplicities; 
  – emergence means a process where novel properties or 

capacities emerge from causal interactions. 
2. For dynamical systems: 
  – one should distinguish between intensive and extensive 

properties of systems: intensive properties such as pres ­
sure, temperature, density, etc. cannot be divided; ex ten ­
sive properties such as length, area, volume, and amount 
of energy can be divided into parts; intensive properties 
have critical thresholds, and differences (gradients) in in ­
tensity store potential energy; 

  – one should distinguish between intrinsic (belonging to the 
system) and extrinsic (originating from outside) con di ­
tions for a system; 

  – one should understand the inertiality of a system and the 
role of thresholds and triggers in dynamical processes; 

  – every physical process also means the transfer of 
information. 

3. Finally: 
  – for understanding complex processes, interdisciplinarity 

is required. 
Next, modelling starts with setting up the set of assump ­

tions: 
● electrical signals are the carriers of information and 

trigger all the other processes [23]; 
● the axoplasm can be modelled as a fluid where a pressure 

wave is generated due to the electrical signal [45]; 
● the biomembrane can deform (stretch, bend) under the 

mechanical impact [17,22]; 
● the ion channels in biomembranes can be opened and 

closed under the influence of electrical signals as well as 
mechanical input [33]. 
This means that we follow the HH paradigm. To explain 

the accompanying effects, the existence of interaction forces 
between the components of the signal coupled into a whole 
is required. The physical mechanisms responsible for coup ­
ling and generating an ensemble of waves are: 
● electric­biomembrane interaction resulting in mechanical 

waves (LW and TW) in the biomembrane; 
● electric­fluid (axoplasm) interaction resulting in a mech ­

anical wave in the axoplasm (PW); 
● electric­fluid (axoplasm), electric­biomembrane, and mech ­

anical­biomembrane interaction resulting in a thermal 
response (Θ) in the fibre. 
The following hypotheses are made [15,16]: 

● every field variable (a component of a signal) is in ­
fluenced by changes in other field variables; 

● the interactions are modelled by the coupling forces 
between the components of a signal; 

● all mechanical waves in the axoplasm and the surrounding 
biomembrane, together with the heat production, are 
generated due to changes in electrical signals (AP or ion 
currents) that dictate the functional shape of coupling 
forces; in mathematical terms, changes are described by 
derivatives of field variables; 

● the formalism of internal variables can be used for de ­
scribing the exo­ and endothermic processes of heat pro ­
duction; 

● not only the influence of an AP on other effects but also 
possible feedback is considered. 
Based on these assumptions and hypotheses, the govern ­

ing equations are derived following the physical laws: 
1. The AP is modelled either by the simplified FitzHugh– 

Nagumo (FHN) model [34], the HH model [23], or the 
Lieberstein [29] model. The FHN model includes only 
one ion current and is capable of modelling the main prop ­
erties of the AP. 

2. The PW in the axoplasm is modelled by a wave equation 
with viscous and coupling terms. The coupling terms 
model the electric­fluid interaction. Depending on the 
parameters of the coupling force, the PW might also have 
a bipolar shape as demonstrated by Terakawa [45]. 

3. The LW in the biomembrane is modelled by the improved 
Heimburg–Jackson (HJ) model [17,22] with coupling 
terms. The improved HJ model accounts for the elasticity 
and inertia of the embedded lipid structure of the bio ­
membrane. The coupling terms model the electric bio ­
membrane interaction and a possible interaction with 
the PW. 

4. The TW is calculated from the LW, taking it proportional 
to the gradient of U, as in the theory of rods [39]. The TW 
typically has a bipolar shape. 

5. The thermal response Θ is governed by the classical heat 
equation with coupling terms. Coupling terms arise from 
the Joule heating, dissipation from the mechanical waves, 
and possible exo­ and endothermic effects. The formalism 
of internal variables [14,31] is used for modelling the exo­ 
and endothermic effects. 
To sum up, the model describing a wave ensemble in 

axons includes principles, assumptions, hypotheses, and last 
but not least, governing equations with their initial and 
bound ary conditions. The verification of a model is achieved 
through experiments. The physical and geometrical structure 
of nerve fibres must be taken into account as accurately as 
possible. However, there is still much to be understood in 
neuroscience about what can be described by a mathematical 
model and what cannot. Every model is an abstraction of 
reality and can describe the process within the framework of 
assumptions and hypotheses made [27]. The modelling de ­
scribed above is similar to the ideas of Bialek [4]: the mod ­
elling starts with identifying principles, followed by the 
expression of principles in mathematical terms. 

4. Interdisciplinarity and complexity 
Even a brief summary of modelling the propagation of signals 
in nerves demonstrates that functional integration of many 
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disciplines is required for a proper understanding of the 
complex processes in nerves. Modelling involves not only 
biology or more definitely electrophysiology, but it also 
involves physics, including thermodynamics and the theory 
of continua, chemistry, mathematics, and even philosophy 
for proper theoretical considerations. 

Consequently, one must deal with interdisciplinary studies. 
Briefly, interdisciplinarity analyses, synthesises and harmo ­
n ises links between disciplines into a coordinated and coherent 
whole [2]. More specifically: ‘Interdisciplinary research is a 
mode of research by teams and individuals that integrates 
information, data, techniques, tools, perspectives, concepts, 
and/or theories from two or more disciplines or bodies of 
specialized knowledge to advance fundamental understanding 
or to solve problems whose solutions are beyond the scope 
of a single discipline or area of research practice’ [20]. 

Undoubtedly, experimental studies in electrophysiology, 
starting from Luigi Galvani in the 18th century, have paved 
the way for contemporary understanding of processes in 
nerves. However, there is a need ‘... to frame a theory that 
incorporates all observed phenomena in one coherent and 
predictive theory of nerve signal propagation’ [3]. Indeed, 
modelling of biological complexity is a challenge not only 
for predictions but also for understanding the processes [11]. 

All dynamic processes in nature are governed by the laws 
of physics. This concerns all the electrical, mechanical, and 
thermal components of the wave ensemble in nerves. Elec ­
trical processes are governed by Maxwell equations, involv ­
ing also the conservation laws for charges and fluxes and 
constitutive laws (Ohm’s law, etc.). The HH model [23] and 
the Lieberstein model [29] are derived from Maxwell equa ­
tions using assumptions based on experiments. The governing 
equations for mechanical waves (LW, PW, TW) are derived 
within the framework of continuum mechanics, where all the 
processes are described by conservation laws. Understanding 
thermal effects relies on the fact that heat is related to the 
electric current by Joule’s law and heat flux is related to the 
temperature gradient by Fourier’s law. The single effects are 
coupled to each other, and again, according to continuum 
physics, the concept of forces helps to understand the coup ­
ling mechanisms of fields. In physical terms, one should use 
Euler’s first law: ‘The time rate of change of momentum of a 
body is equal to the sum of the forces acting on the body’ [43]. 
The importance of biophysical forces in neuronal signalling 
is demonstrated in an overview by Mueller and Tyler [33]. 
The coupling forces reflect the physical mechanisms of 
interactions between the components of the wave ensemble. 

Mathematical modelling means that the physical pro ­
cesses are described using the language (equations, functions) 
of mathematics. Concerning the propagation of signals in 
nerves, mathematical analysis is presented in many studies 
(see, for example, [16,19,36]). First, the governing equations 
are derived from physical laws, taking into account ex peri ­
ments in electrophysiology. Second, in modelling the inter ­
actions between the various effects, one should consider that 
the changes in one field will affect the other fields. In math ­
ematical terms, it means that the changes are reflected by 

derivatives of variables with respect to time or space co ­
ordinates. Consequently, the coupling forces must include 
derivatives of variables that help to clarify the possible 
physical mechanisms of coupling. Third, it is well known in 
continuum mechanics [39] that transverse displacement of a 
slender tube is proportional to longitudinal deformation. This 
means that if longitudinal displacement is unipolar, then  
transverse displacement, as the derivative of it, must be bi ­
polar. The experiments have demonstrated the correctness of 
this rule [44,45]. Finally, the full system of coupled equations 
involving the AP and accompanying effects is a system of 
nonlinear and linear partial differential equations (PDEs). 
It involves hyperbolic (for wave­type) phenomena and para ­
bolic (for heat­type) phenomena, and solving this system 
needs numerical methods of high accuracy. McCulloch and 
Huber [32] call such an analysis ‘integrative biological mod ­
elling in silico’. Numerical calculations may also clarify the 
accuracy of the hypothesis. For example, the formation of a 
possible soliton from an arbitrary input according to the HJ 
model of a bi­layer will take much more time than the pro ­
pagation time of a signal along an average axon. This is a good 
example that demonstrates the effectiveness of the in silico 
analysis. We can recall here Cohen [9] who says: ‘... math ­
ematics is biology’s next microscope.’ 

Neurochemistry is related to the biochemistry of the brain 
and nerves, studying the structure and functions of the ner ­
vous system at a molecular level. Very generally speaking, 
the physical parameters of intra­ and extracellular fluids and 
biomembranes depend on their chemical compounds. Con ­
cern ing the propagation of signals, the processes in synapses 
that generate the signals in nerves are characterised by 
chemical reactions. In addition, during the propagation, exo ­
thermic and endothermic chemical reactions may influence 
the heat production in nerves [1]. 

Interdisciplinary studies based on physics, mathematics, 
and chemistry make the modelling of nerve signals a fasci ­
nating chapter of electrophysiology. The main carrier of in ­
formation is the AP, but there are several accompanying ef ­
fects, and a signal must be treated as a wave ensemble. In other 
words, the pieces are collected into a whole, and inter actions 
between the pieces are important. This is a clear sign of 
complexity. An intriguing question is whether the interactions 
are fully understood and modelled with the required accuracy. 
Already Hodgkin and Huxley faced this problem when they 
proposed the ion mechanism by intro ducing three phenom ­
enological variables that characterised the sodium and po ­
tassium ion currents [23]. They also con structed evolution 
equations with definite rate constants based on the careful 
analysis of experimental results. The idea of using phenom ­
enology means that the mechanism of a process is not fully 
understood and described with the required accuracy, but the 
initial and final stages are known (measured). Such an idea 
was proposed by Heisenberg about 100 years ago for 
describing the behaviour of electrons. His idea of matrix 
mechanics was seminal for quantum mechanics (see a beauti ­
ful description of his ideas in a book by Rovelli [40]). In con ­
tinuum mech anics, the concept of internal variables is 
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used [31]. According to this concept, similarly to what 
Hodgkin and Huxley [23] did, the initial and final stages 
together with a time scale (fast or slow) permit the con ­
struction of an evolution equation that governs the process. 
The general ideas of phenomenological modelling are 
analysed by Engelbrecht et al. [18] in more detail. 

A central point in the analysis of complex systems is the 
modelling of interactions between its components. The 
mathematical model described in Section 3 describes the 
interactions between the components of the wave ensemble 
by coupling forces, as is done in continuum physics. 

5. Some remarks on misunderstandings 
As mentioned in Introduction (Section 1), this overview of 
the interdisciplinarity of biophysics was initially written as a 
reaction to a review that overlooked the variety of notions 
used in different fields of research. Hereafter, some misunder ­
standings are described that should be avoided when dealing 
with the analysis of such a complicated process. 

For example, one might ask whether to use in the math ­
ematical description of the process the notion of ‘models’ or 
just ‘equations’. In the context of mathematical modelling, 
the concept of models is widely used because it is more gen ­
eral (see Section 2) than just an equation, as a model includes 
more than just a mathematical representation (i.e. equations) 
of a process. That is why we have used in describing the nerve 
pulse propagation the notion of ‘HH model’ and not just ‘HH 
equation’ [5,10,19,26,38,46]. 

Furthermore, undoubtedly, the principles of physics in 
describing the mathematical models of dynamical pro cesses 
must be followed. In continuum mechanics, for ex ample, the 
conservation laws are always stressed as corner stones in the 
analysis. Stressing the principles of physics is not inherently 
offensive but required to understand possible additional as ­
sumptions or hypotheses. Shrivastava and Schneider [42] 
point out, for example, that many ‘textbook models of bio ­
logi cal communication ... violate momentum conservation...’. 

One could ask whether to prefer conceptual modelling 
(words, diagrams) or mathematical modelling (resulting in 
equations derived using certain assumptions and simulations), 
as detailed by Torres et al. [46]. Both approaches must be 
developed in order to find the best explanation for complex 
processes. Unfortunately, this requirement is sometimes over ­
looked, whatever the reasons are. Interdisciplinarity, as it is 
understood, is used for analysing and synthesising lines be ­
tween scientific disciplines into a coordinated and coherent 
whole [2]. One should value the knowledge obtained in dif ­
ferent fields and learn to understand various ways of analysis 
for enhancing general knowledge. After all, whatever the 
particular methods, science, in principle, aims to describe and, 
most importantly, understand the causality of reality. 

6. Conclusion 
Biology is a very complicated field, and many studies try to 
reveal the secrets of life. This is a challenge, and all the 
attempts, experimental and theoretical, should be welcome. 

The idea that living systems should be approached from 
physical principles is not original but supported by many 
studies [13,16,25,42]. 

Mathematical modelling [37] helps not only to predict the 
processes in biological systems but serves also to understand 
them [35]. We have recently formulated a set of guidelines 
for building a solid basis for mathematical models [18]. 
Bearing in mind the processes in nerves, these are: 
Guideline 1: Physics rules electrical, mechanical, and thermal 
biological processes. 
Guideline 2: Changes in one variable (field) will cause changes 
in other variables (fields). 
Guideline 3: Modelling of electrophysiological processes 
requires interdisciplinary studies. 
Guideline 4: Phenomenology considerably helps to under ­
stand measurements. 
Guideline 5: The experiments in electrophysiology serve as 
a basis for theoretical models. Citations in the above text 
demonstrate that we have tried to generalise the ideas of many 
researchers who are interested in interdisciplinary studies. 

The interdisciplinary approach will certainly be helpful in 
modifying mathematical models that describe the processes 
in nerves. Although much is understood (see, for example, 
monographs [5,16,24,33,41]), further studies are required to 
understand the influence of structural elements of nerve fibres 
in the generation and propagation of signals in nerves. The 
ex istence of myelin sheaths, proteins in the axoplasm, the 
structure of the axon hilloc, and the possible effects of in ­
ductivity or other physical phenomena, usually assumed 
negligible, may play a certain role in understanding neural 
function. 
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Signaalide levi närvikius (aksonis) on äärmiselt huvitav biofüüsikaline protsess, mille modelleerimisel tuleb 
tugineda interdistsiplinaarsele lähenemisele. Vastav matemaatiline mudel põhineb füüsikaseadustel, millest 
tuletatakse rea hüpoteeside ja oletuste põhjal protsessi kirjeldavad võrrandid. Sellise keeruka protsessi kir-
jeldus nõuab interdistsiplinaarseid teadmisi füüsikast, keemiast ja matemaatikast ning elektrofüsioloogia kat-
seid, mis tuleb siduda terviklikuks mudeliks. Interdistsiplinaarsete põhimõtete rakendamist võivad aga ras-
kendada erinevused teadusvaldkondade mõttelaadis. 

 


