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ABSTRACT

In this article, the importance of interdisciplinary ideas for modelling and understanding signal
propagation in nerve fibres is described as a fascinating problem of biophysics. A math-
ematical model involves the physical laws, assumptions, hypotheses, and finally, the governing
equations. The analysis of this complex process is at the interface of physics, chemistry, and
mathematics, together with experimental studies in electrophysiology. It is stressed that the
mindsets of different communities may hinder cooperation.

1. Introduction

This article reflects the thoughts during the publication process of a research paper
on mathematical modelling of signals in nerves, which is a fascinating biophysical
process. A manuscript submitted to a journal with an excellent reputation had a usual
length, but one of the reviews was twice the length of the submitted paper. This review
resembled a research paper itself, criticising many aspects of the approach described
in the manuscript, including the idea of mathematical modelling as a method. The
reviewer’s questions about the possible influence of many structural details of nerves
were certainly justified and welcome. However, the reviewer stated: ‘This reviewer
is not a mathematician. Therefore, reference to classes of mathematical formulae, and
many aspects of the derivation of the formulae presented are often obscure to me’.
As far as the submitted manuscript has analysed the process of trying to use
knowledge not only from experimental electrophysiology but also from basic physics
and mathematics, the review raises questions about the usage of mathematical models
in biology and the importance of underlying physics. Although much has been written
about the benefits of interdisciplinarity, it seems that there are still barriers between
the research communities that accept only the ideas known in their close field of
interest. The Nobelist John Hopfield describes the different communities of physicists
and biologists and the differences in biology and physics paradigms [25]. He
recommends: ‘Stick to the physics paradigm, for it brings refreshing attitudes and a
different choice of problems to the interface’. In what follows, general thoughts are
presented describing the ideas of the interdisciplinary approach in biological
modelling.

2. Mathematical modelling

We know the saying of Galileo Galilei that the book of nature is written in the
language of mathematics. Contemporary understanding keeps this idea but says that
mathematical modelling means casting a real-world problem (a phenomenon) into a
mathematical representation. A mathematical model is an abstraction of a real
process/phenomenon presented in the language of mathematics. It means that the
variables are quantified, and they are described by equations or functions. In general,
a model includes the governing equations, initial and boundary conditions, and
usually also certain constraints, all based on a specific set of assumptions. An input
generates a certain output, and implicitly it means causality. It is clear that math-
ematical modelling must be based on definite rules but, on the other hand, be flexible
enough to grasp possible modifications if required.

In the mathematical modelling of biological processes, attention must be paid
to descriptive, integrative, and explanatory levels [37], summed up in integrative
biological modelling [32]. Such an approach is actually based on the interface of
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biology on one side and physics, chemistry, and mathematics
on the other side. Examples described by Gavaghan et al.
[21], Bialek [4], and others demonstrate vividly how fruitful
such an approach is. However, this is not always a
straightforward way. Cartwright [8] mentions that ‘To explain
a phenomenon is to find a model that fits it into the basic
framework of the theory and that thus allows us to derive
analogues for the messy and complicated phenomenological
laws which are true of it. The models serve a variety of pur-
poses, and individual models are to be judged according to
how well they serve the purpose at hand.’

However, mathematical modelling cannot solve the
problem on its own. Kohl et al. [28] have said: ‘Mathematical
models, however, need to be used with care. They are aids to
thought, not a replacement for it. The only serious difference
between a biologist who uses mathematical modelling and
one who does not is that the former explores the conse-
quences of his ideas quantitatively, including the imple-
mentation of computational experiments to assess the plausi-
bility of those ideas. The potential benefits of doing so are
obvious because quantitatively plausible predictions improve
subsequent hypothesis-driven experimental research.’

Indeed, there are many fruitful aspects of modelling.
A report from the US National Research Council [35] in-
cludes a special chapter ‘Computational modeling and simu-
lation as enablers for biological discovery’ where the features
of modelling were discussed. The list of properties and possi-
bilities of models is worth repeating here:

‘models provide a coherent framework for interpreting data;
models highlight basic concepts of wide applicability;
models uncover new phenomena or concepts to explore;
models identify key factors or components of a system,;
models can link levels of detail;

models enable the formalization of intuitive understandings;
models can be used as a tool for helping to screen unprom-
ising hypotheses;

models inform experimental design;

models can predict variables inaccessible to measurement;
models can link what is known to what is yet unknown;
models can be used to generate accurate quantitative pre-
dictions;

models expand the range of questions that can be meaning-
fully asked’.

In addition, as a summary, it is concluded: ‘Models are
useful for formalizing intuitive understandings, even if those
understandings are partial and incomplete. What appears to
be a solid verbal argument about cause and effect can be
clarified and put to a rigorous test as soon as an attempt is
made to formulate the verbal arguments into a mathematical
model. This process forces a clarity of expression and con-
sistency (of units, dimensions, force balance, or other guiding
principles) that is not available in natural language. As im-
portantly, it can generate predictions against which intuition
can be tested.” A process can be described at various levels of
abstraction. In this context, Carillo and Martinez [7] argued
that ... different paths of abstraction can lead to a worthwhile
diversity of models — even though at some point these models
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may be interpreted as excluding alternatives, at a later time
they can be appreciated as advancing our understanding.’
Besides practical applications, the idea that one could under-
stand the unknown from the analysis of models (see the list
above) follows Albert Einstein’s thoughts that *...
ematical construction enables us to discover the concepts and
the laws connecting them...” [13].

math-

3. Nerve signals: a way to model

The propagation of signals in nerves is an extremely im-
portant chapter of biology. This complex problem is inten-
sively studied not only because of its possible pathological
effects but also because of its role in cognitive processes and
the processing of information. In what follows, attention is
paid to the fundamental behaviour of signal propagation in
healthy nerves under normal conditions, focusing on physical
phenomena. Numerous theoretical and experimental studies
over the last two centuries have cast light on many details of
this process. The Hodgkin—Huxley (HH) model, based on the
ingenious description of ion currents and numerous experi-
ments, is nowadays considered a cornerstone for describing
the propagation of an action potential (AP) in axons [23].
However, Hodgkin [24] mentioned: ‘In thinking about physi-
cal basis of action potential perhaps the most important thing
to do at the present moment is to consider whether there are
any unexplained observations which have been neglected in
an attempt to make experiments fit into a tidy pattern.’ Indeed,
as demonstrated in experiments, the propagation of an AP as
the main carrier of information is accompanied by mechanical
and thermal effects. In addition to earlier experiments (see,
for example, [44,45]), recent studies have also reported the
mechanical response of mammalian neurons recorded by a
label-free optical imaging method [6] and high-speed inter-
ferometric imaging [30]. In general, in addition to the AP, the
accompanying effects include the longitudinal wave (LW) in
the biomembrane and the corresponding transverse wave (TW),
the pressure wave (PW) in the axoplasm, and temperature
change (®) accompanied by some biochemical changes. This
means that there is an ensemble of waves, and besides electro-
physiology, attention must be paid to the complexity of the
process involving physics, chemistry, and thermodynamics.
In this context, mathematical modelling plays an important
role because, besides the experiments, describing the physical
mechanisms in nerves in mathematical terms helps to under-
stand the causality and the coupling of effects. That is why
studies of nerve propagation are at the interface of physics
and mathematics. Extensive experimental studies have re-
vealed many details of this process, but not all the mech-
anisms of interaction between the various effects are de-
scribed with the required accuracy. That is why all the at-
tempts to reach a better understanding should be welcomed.
Mathematical modelling is one of the possibilities to improve
our understanding [16].

Hereafter, we present our ideas about the steps of the
modelling (and understanding) of the signals in nerves. The
full process of modelling starts from philosophical principles,
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although usually these are not formulated but taken as

unwritten rules. For the full picture, we present these prin-

ciples following DeLanda [12]:

1. General principles:

— complex processes are characterised by multiplicity,
which is the activator of changes in the system;

— multiplicity is characterised by differences that are pro-
ductive and cause interactions;

— the changes (gradients) are characterised by velocities;

— the causality for processes is related to multiplicities;

— emergence means a process where novel properties or
capacities emerge from causal interactions.

2. For dynamical systems:

— one should distinguish between intensive and extensive
properties of systems: intensive properties such as pres-
sure, temperature, density, etc. cannot be divided; exten-
sive properties such as length, area, volume, and amount
of energy can be divided into parts; intensive properties
have critical thresholds, and differences (gradients) in in-
tensity store potential energy;

— one should distinguish between intrinsic (belonging to the
system) and extrinsic (originating from outside) condi-
tions for a system;

— one should understand the inertiality of a system and the
role of thresholds and triggers in dynamical processes;

— every physical process also means the transfer of
information.

3. Finally:

— for understanding complex processes, interdisciplinarity
is required.

Next, modelling starts with setting up the set of assump-
tions:

e clectrical signals are the carriers of information and
trigger all the other processes [23];

e the axoplasm can be modelled as a fluid where a pressure
wave is generated due to the electrical signal [45];

e the biomembrane can deform (stretch, bend) under the
mechanical impact [17,22];

e the ion channels in biomembranes can be opened and
closed under the influence of electrical signals as well as
mechanical input [33].

This means that we follow the HH paradigm. To explain
the accompanying effects, the existence of interaction forces
between the components of the signal coupled into a whole
is required. The physical mechanisms responsible for coup-
ling and generating an ensemble of waves are:

e clectric-biomembrane interaction resulting in mechanical
waves (LW and TW) in the biomembrane;

e clectric-fluid (axoplasm) interaction resulting in a mech-
anical wave in the axoplasm (PW);

e clectric-fluid (axoplasm), electric-biomembrane, and mech-
anical-biomembrane interaction resulting in a thermal
response (O) in the fibre.

The following hypotheses are made [15,16]:

e cvery field variable (a component of a signal) is in-
fluenced by changes in other field variables;

e the interactions are modelled by the coupling forces
between the components of a signal;

e all mechanical waves in the axoplasm and the surrounding
biomembrane, together with the heat production, are
generated due to changes in electrical signals (AP or ion
currents) that dictate the functional shape of coupling
forces; in mathematical terms, changes are described by
derivatives of field variables;

e the formalism of internal variables can be used for de-
scribing the exo- and endothermic processes of heat pro-
duction;

e not only the influence of an AP on other effects but also
possible feedback is considered.

Based on these assumptions and hypotheses, the govern-
ing equations are derived following the physical laws:

1. The AP is modelled either by the simplified FitzHugh—
Nagumo (FHN) model [34], the HH model [23], or the
Lieberstein [29] model. The FHN model includes only
one ion current and is capable of modelling the main prop-
erties of the AP.

2. The PW in the axoplasm is modelled by a wave equation
with viscous and coupling terms. The coupling terms
model the electric-fluid interaction. Depending on the
parameters of the coupling force, the PW might also have
a bipolar shape as demonstrated by Terakawa [45].

3. The LW in the biomembrane is modelled by the improved
Heimburg—Jackson (HJ) model [17,22] with coupling
terms. The improved HJ model accounts for the elasticity
and inertia of the embedded lipid structure of the bio-
membrane. The coupling terms model the electric bio-
membrane interaction and a possible interaction with
the PW.

4. The TW is calculated from the LW, taking it proportional
to the gradient of U, as in the theory of rods [39]. The TW
typically has a bipolar shape.

5. The thermal response @ is governed by the classical heat
equation with coupling terms. Coupling terms arise from
the Joule heating, dissipation from the mechanical waves,
and possible exo- and endothermic effects. The formalism
of internal variables [14,31] is used for modelling the exo-
and endothermic effects.

To sum up, the model describing a wave ensemble in
axons includes principles, assumptions, hypotheses, and last
but not least, governing equations with their initial and
boundary conditions. The verification of a model is achieved
through experiments. The physical and geometrical structure
of nerve fibres must be taken into account as accurately as
possible. However, there is still much to be understood in
neuroscience about what can be described by a mathematical
model and what cannot. Every model is an abstraction of
reality and can describe the process within the framework of
assumptions and hypotheses made [27]. The modelling de-
scribed above is similar to the ideas of Bialek [4]: the mod-
elling starts with identifying principles, followed by the
expression of principles in mathematical terms.

4. Interdisciplinarity and complexity

Even a brief summary of modelling the propagation of signals
in nerves demonstrates that functional integration of many



disciplines is required for a proper understanding of the
complex processes in nerves. Modelling involves not only
biology or more definitely electrophysiology, but it also
involves physics, including thermodynamics and the theory
of continua, chemistry, mathematics, and even philosophy
for proper theoretical considerations.

Consequently, one must deal with interdisciplinary studies.
Briefly, interdisciplinarity analyses, synthesises and harmo-
nises links between disciplines into a coordinated and coherent
whole [2]. More specifically: ‘Interdisciplinary research is a
mode of research by teams and individuals that integrates
information, data, techniques, tools, perspectives, concepts,
and/or theories from two or more disciplines or bodies of
specialized knowledge to advance fundamental understanding
or to solve problems whose solutions are beyond the scope
of a single discipline or area of research practice’ [20].

Undoubtedly, experimental studies in electrophysiology,
starting from Luigi Galvani in the 18th century, have paved
the way for contemporary understanding of processes in
nerves. However, there is a need ‘... to frame a theory that
incorporates all observed phenomena in one coherent and
predictive theory of nerve signal propagation’ [3]. Indeed,
modelling of biological complexity is a challenge not only
for predictions but also for understanding the processes [11].

All dynamic processes in nature are governed by the laws
of physics. This concerns all the electrical, mechanical, and
thermal components of the wave ensemble in nerves. Elec-
trical processes are governed by Maxwell equations, involv-
ing also the conservation laws for charges and fluxes and
constitutive laws (Ohm’s law, etc.). The HH model [23] and
the Lieberstein model [29] are derived from Maxwell equa-
tions using assumptions based on experiments. The governing
equations for mechanical waves (LW, PW, TW) are derived
within the framework of continuum mechanics, where all the
processes are described by conservation laws. Understanding
thermal effects relies on the fact that heat is related to the
electric current by Joule’s law and heat flux is related to the
temperature gradient by Fourier’s law. The single effects are
coupled to each other, and again, according to continuum
physics, the concept of forces helps to understand the coup-
ling mechanisms of fields. In physical terms, one should use
Euler’s first law: ‘The time rate of change of momentum of a
body is equal to the sum of the forces acting on the body’ [43].
The importance of biophysical forces in neuronal signalling
is demonstrated in an overview by Mueller and Tyler [33].
The coupling forces reflect the physical mechanisms of
interactions between the components of the wave ensemble.

Mathematical modelling means that the physical pro-
cesses are described using the language (equations, functions)
of mathematics. Concerning the propagation of signals in
nerves, mathematical analysis is presented in many studies
(see, for example, [16,19,36]). First, the governing equations
are derived from physical laws, taking into account experi-
ments in electrophysiology. Second, in modelling the inter-
actions between the various effects, one should consider that
the changes in one field will affect the other fields. In math-
ematical terms, it means that the changes are reflected by
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derivatives of variables with respect to time or space co-
ordinates. Consequently, the coupling forces must include
derivatives of variables that help to clarify the possible
physical mechanisms of coupling. Third, it is well known in
continuum mechanics [39] that transverse displacement of a
slender tube is proportional to longitudinal deformation. This
means that if longitudinal displacement is unipolar, then
transverse displacement, as the derivative of it, must be bi-
polar. The experiments have demonstrated the correctness of
this rule [44,45]. Finally, the full system of coupled equations
involving the AP and accompanying effects is a system of
nonlinear and linear partial differential equations (PDEs).
It involves hyperbolic (for wave-type) phenomena and para-
bolic (for heat-type) phenomena, and solving this system
needs numerical methods of high accuracy. McCulloch and
Huber [32] call such an analysis ‘integrative biological mod-
elling in silico’. Numerical calculations may also clarify the
accuracy of the hypothesis. For example, the formation of a
possible soliton from an arbitrary input according to the HJ
model of a bi-layer will take much more time than the pro-
pagation time of a signal along an average axon. This is a good
example that demonstrates the effectiveness of the in silico
analysis. We can recall here Cohen [9] who says: ‘... math-
ematics is biology’s next microscope.’

Neurochemistry is related to the biochemistry of the brain
and nerves, studying the structure and functions of the ner-
vous system at a molecular level. Very generally speaking,
the physical parameters of intra- and extracellular fluids and
biomembranes depend on their chemical compounds. Con-
cerning the propagation of signals, the processes in synapses
that generate the signals in nerves are characterised by
chemical reactions. In addition, during the propagation, exo-
thermic and endothermic chemical reactions may influence
the heat production in nerves [1].

Interdisciplinary studies based on physics, mathematics,
and chemistry make the modelling of nerve signals a fasci-
nating chapter of electrophysiology. The main carrier of in-
formation is the AP, but there are several accompanying ef-
fects, and a signal must be treated as a wave ensemble. In other
words, the pieces are collected into a whole, and interactions
between the pieces are important. This is a clear sign of
complexity. An intriguing question is whether the interactions
are fully understood and modelled with the required accuracy.
Already Hodgkin and Huxley faced this problem when they
proposed the ion mechanism by introducing three phenom-
enological variables that characterised the sodium and po-
tassium ion currents [23]. They also constructed evolution
equations with definite rate constants based on the careful
analysis of experimental results. The idea of using phenom-
enology means that the mechanism of a process is not fully
understood and described with the required accuracy, but the
initial and final stages are known (measured). Such an idea
was proposed by Heisenberg about 100 years ago for
describing the behaviour of electrons. His idea of matrix
mechanics was seminal for quantum mechanics (see a beauti-
ful description of his ideas in a book by Rovelli [40]). In con-
tinuum mechanics, the concept of internal variables is
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used [31]. According to this concept, similarly to what
Hodgkin and Huxley [23] did, the initial and final stages
together with a time scale (fast or slow) permit the con-
struction of an evolution equation that governs the process.
The general ideas of phenomenological modelling are
analysed by Engelbrecht et al. [18] in more detail.

A central point in the analysis of complex systems is the
modelling of interactions between its components. The
mathematical model described in Section 3 describes the
interactions between the components of the wave ensemble
by coupling forces, as is done in continuum physics.

5. Some remarks on misunderstandings

As mentioned in Introduction (Section 1), this overview of
the interdisciplinarity of biophysics was initially written as a
reaction to a review that overlooked the variety of notions
used in different fields of research. Hereafter, some misunder-
standings are described that should be avoided when dealing
with the analysis of such a complicated process.

For example, one might ask whether to use in the math-
ematical description of the process the notion of ‘models’ or
just ‘equations’. In the context of mathematical modelling,
the concept of models is widely used because it is more gen-
eral (see Section 2) than just an equation, as a model includes
more than just a mathematical representation (i.e. equations)
of'a process. That is why we have used in describing the nerve
pulse propagation the notion of ‘HH model’ and not just ‘HH
equation’ [5,10,19,26,38,46].

Furthermore, undoubtedly, the principles of physics in
describing the mathematical models of dynamical processes
must be followed. In continuum mechanics, for example, the
conservation laws are always stressed as cornerstones in the
analysis. Stressing the principles of physics is not inherently
offensive but required to understand possible additional as-
sumptions or hypotheses. Shrivastava and Schneider [42]
point out, for example, that many ‘textbook models of bio-
logical communication ... violate momentum conservation...”.

One could ask whether to prefer conceptual modelling
(words, diagrams) or mathematical modelling (resulting in
equations derived using certain assumptions and simulations),
as detailed by Torres et al. [46]. Both approaches must be
developed in order to find the best explanation for complex
processes. Unfortunately, this requirement is sometimes over-
looked, whatever the reasons are. Interdisciplinarity, as it is
understood, is used for analysing and synthesising lines be-
tween scientific disciplines into a coordinated and coherent
whole [2]. One should value the knowledge obtained in dif-
ferent fields and learn to understand various ways of analysis
for enhancing general knowledge. After all, whatever the
particular methods, science, in principle, aims to describe and,
most importantly, understand the causality of reality.

6. Conclusion

Biology is a very complicated field, and many studies try to
reveal the secrets of life. This is a challenge, and all the
attempts, experimental and theoretical, should be welcome.

The idea that living systems should be approached from
physical principles is not original but supported by many
studies [13,16,25,42].

Mathematical modelling [37] helps not only to predict the
processes in biological systems but serves also to understand
them [35]. We have recently formulated a set of guidelines
for building a solid basis for mathematical models [18].
Bearing in mind the processes in nerves, these are:
Guideline 1: Physics rules electrical, mechanical, and thermal
biological processes.

Guideline 2: Changes in one variable (field) will cause changes
in other variables (fields).

Guideline 3: Modelling of electrophysiological processes
requires interdisciplinary studies.

Guideline 4: Phenomenology considerably helps to under-
stand measurements.

Guideline 5: The experiments in electrophysiology serve as
a basis for theoretical models. Citations in the above text
demonstrate that we have tried to generalise the ideas of many
researchers who are interested in interdisciplinary studies.

The interdisciplinary approach will certainly be helpful in
modifying mathematical models that describe the processes
in nerves. Although much is understood (see, for example,
monographs [5,16,24,33,41]), further studies are required to
understand the influence of structural elements of nerve fibres
in the generation and propagation of signals in nerves. The
existence of myelin sheaths, proteins in the axoplasm, the
structure of the axon hilloc, and the possible effects of in-
ductivity or other physical phenomena, usually assumed
negligible, may play a certain role in understanding neural
function.
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Interdistsiplinaarsus bioflitisikaliste protsesside modelleerimisel

Jiiri Engelbrecht, Kert Tamm ja Tanel Peets

Signaalide levi narvikius (aksonis) on aarmiselt huvitav bioflitisikaline protsess, mille modelleerimisel tuleb
tugineda interdistsiplinaarsele Idhenemisele. Vastav matemaatiline mudel pdhineb fllsikaseadustel, millest
tuletatakse rea hlipoteeside ja oletuste pdhjal protsessi kirjeldavad vorrandid. Sellise keeruka protsessi kir-
jeldus nduab interdistsiplinaarseid teadmisi flilisikast, keemiast ja matemaatikast ning elektrofiisioloogia kat-
seid, mis tuleb siduda terviklikuks mudeliks. Interdistsiplinaarsete pdhimdtete rakendamist vdivad aga ras-
kendada erinevused teadusvaldkondade mdttelaadis.




