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ABSTRACT

The nonlinear trajectory equation (Binet’s equation) for a particle in a relativistic force field can

only be solved numerically or, alternatively, by using a perturbational solution scheme. The

latter approach was successfully applied by Albert Einstein in 1915 to deduce the celebrated

formula that explains the anomalous precession of the perihelion of Mercury. In this article,

Binet’s equation for Mercury is solved numerically to a high degree of accuracy (16 decimal

digits). This is a necessary comparison basis for the main goal of this work – to deduce

a simple analytic formula that perfectly reproduces the real relativistic trajectory. Several

analytical models are proposed, and the main goal has been indeed achieved. Moreover, the

fitting parameters for model D described in Section 3 can be obtained independently of the

solution of Binet’s equation. Thus, we can say that the highly accurate relativistic trajectory

(the largest discrepancy being about 30 cm) can be obtained without actually solving the

nonlinear differential equation for this trajectory.

1. Introduction

The trajectory of a particle in a central force field can be deduced from
Newton’s second law for the radial motion:

𝑚 ⋅ ( ̈𝑟 − 𝑟 ̇𝜃2) = 𝐹 (𝑟) = −𝜕𝑉 (𝑟)
𝜕𝑟

, (1)

where 𝑉 (𝑟) is the particle’s potential energy. Changing the variable to 𝑢 = 1/𝑟
and using the law of conservation of the angular momentum

𝑚𝑟2 ̇𝜃 = 𝐿, (2)

(1) transforms to
𝑑2𝑢
𝑑𝜃2 + 𝑢 = − 𝐹 𝑚

𝐿2𝑢2 , (3)

which is more convenient for solving and is known as Binet’s equation [1].
In fact, however, it was substantially given already in Newton’s Principia [2]
(Book I, II and III) (see [3], p. 78, for comments).

Newton’s theory of gravitation has been remarkably successful. However,
the pure Newtonian force 𝐹 ∼ 𝑟−2 predicts a spatially fixed and closed ellipti-
cal orbit for a planet, which is not quite correct. Indeed, the very slow but still
measurable precession of the orbits of planets is a well-known phenomenon.
For example, the advance of Mercury’s perihelion (as seen from Earth) has
been determined to be 5600 arc seconds per century. The effect is mainly
caused by gravitational perturbations from all other planets, which can be
counted in terms of Newton’s theory of gravity. This way, one can explain
the shift of 5557′′, but there remains a discrepancy of 43′′ per century that
cannot be accounted for by using Newton’s theory.

The problem has been solved by the general theory of relativity, which
introduces a slight correction to Newton’s theory – a small force component
that varies as 1/𝑟4 (= 𝑢4). In 1915, Albert Einstein derived a formula for the
anomalous perihelion shift for one period [4], p. 839, which was one of the
major triumphs of the general theory of relativity:
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Δ =
24𝜋3𝑎2

𝜀

𝑇 2𝑐2(1 − 𝜀2)
. (4)

Here, 𝑐 = 299792458 m/s is the speed of light in vacuum, 𝑇 = 7.6005 ⋅ 106 s is the orbital period
of Mercury, 𝑎𝜀 = 5.7909 ⋅ 1010 m is the length of Mercury’s semimajor axis, and 𝜀 = 0.2056 is
the orbit’s eccentricity [6]. The predictions of (4) for Mercury are in very good agreement with the
observational data. In fact, however, this is an approximate formula, which can be improved by using
elliptic integrals [5].

In this paper, we are not going to discuss the physical content of Einstein’s celebrated formula
(4), but we will concentrate on the overall relativistic orbit, which can be obtained by solving the
relativistic Binet’s equation [7], p. 196, [8], p. 313, [9]

𝑑2𝑢
𝑑𝜃2 + 𝑢 = 𝐴 + 𝐵𝑢2, 𝐴 ≡ 𝐺𝑀𝑚2

𝐿2 , 𝐵 ≡ 3𝐺𝑀
𝑐2 , (5)

where 𝐺 is the gravitational constant, while 𝑀 and 𝑚 are the solar mass and Mercury’s mass,
respectively. Equation (5) is based on the Schwarzschild solution [10] to Einstein’s field equations.

In principle, the same approach can be applied to any celestial body, but here the focus is put
on the trajectory of Mercury. Our main goal is to find a simple analytic approximation to the real
relativistic trajectory. Obviously, this only makes sense if the following preconditions are fulfilled:

1. The relativistic Binet’s equation is solved very accurately. To be more specific, the accuracy
of at least 16 decimal digits must be guaranteed.

2. The analytic approximation is highly reliable, so that the corresponding trajectory is almost
indistinguishable from the true solution of the relativistic equation.

3. All parameters of the desired analytic formula are uniquely fixed by the basic parameters 𝐴
and 𝐵 of the relativistic equation.

To achieve the main goal, we have to fix the parameters 𝐴 and 𝐵 with the precision that matches
the accuracy of computations. Thus, the following dimensionless values have been fixed and will be
used for these parameters [11]:

𝐴 =
𝐺𝑀𝑚2𝑎𝑝

𝐿2 = 0.8294405557533, (6)

𝐵 = 3𝐺𝑀
𝑎𝑝𝑐2 = 9.6302165378 ⋅ 10−8. (7)

Here, 𝑎𝑝 = 46001136.69 km is the perihelion distance of Mercury [12,13].
Comment. One may suspect that too many digits are given in (6) and (7). Indeed, the parameters 𝐴
and 𝐵 are not known with such accuracy. However, in order to make a reliable comparison between
the highly accurate numerical solution and its analytic approximation, the basic parameters must be
fixed and treated as being exact (see [11] for more details).

The nonlinear equation (5) cannot be solved analytically. However, one can apply the same
perturbational approach that was used to derive (4). The first-order perturbational solution to (5) is
sufficient for our purposes, and it reads [14], p. 101, [7], p. 198:

𝑢(𝜃) = 𝐴0 cos (𝑘𝜃) + 𝐵0, (8)

where the parameters
𝐴0 = 1 − 𝐴, 𝐵0 = 𝐴 (9)

and
𝑘 = 1 − 𝐴𝐵 = 0.999999920123 (10)

are determined by the basic parameters 𝐴 and 𝐵, as needed. On the other hand, 𝐴0 and 𝐵0 can be
related to the perihelion (𝑎) and the aphelion (𝑏) of the trajectory given by (8):

𝐴0 = 𝑏 − 𝑎
2𝑎𝑏

, 𝐵0 = 𝑎 + 𝑏
2𝑎𝑏

. (11)
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An important point is that (8) is, in fact, the exact solution of Binet’s equation for a central potential
of a different (nonrelativistic) type, namely [11]

𝑢′′(𝜃) + 𝑢(𝜃) = 𝑚
𝐿2 (𝑎1 + 2𝑎2𝑢), (12)

where
𝑎1 = 𝐿2

𝑚
⋅ 𝐴 ⋅ (1 − 𝐴𝐵) = 𝐺𝑀𝑚𝑘2 (13)

and
𝑎2 = 𝐿2

2𝑚
⋅ 𝐴𝐵 ⋅ (2 − 𝐴𝐵) = 𝐿2

2𝑚 (1 − 𝑘2).

Thus, as the result of the described perturbational procedure, the relativistic central force 𝐹 ∼ 𝑟−4

is replaced with an effective 𝐹 ∼ 𝑟−3 force. Note that the first term on the right side of (5) is also
slightly modified: 𝐴 transforms to 𝐴𝑘2. It is easy to be convinced that (8) is the solution of equation
(12). Moreover, it also correctly predicts the anomalous shift of Mercury’s perihelion. Indeed, using
(6), (7) and (10), we get

Δ = 2𝜋
1 − 𝐴𝐵

− 2𝜋 = 2𝜋 ⋅ (
1
𝑘

− 1) = 5.01882 ⋅ 10−7 rad/orbit, (14)

Δ𝑐 = 42.9807′′ per century.

The result is in good agreement with Einstein’s formula (4), as well as with the observational data
and the predictions of computer simulations [12]. It is therefore expected that (8) approximates the
overall relativistic trajectory with reasonable accuracy. Indeed, the largest discrepancy, which shows
up at Mercury’s aphelion, is about 14 km [11]. However, formula (8) is only the first step towards
the main goal mentioned above. The next steps will be described in the next sections.

2. Solution of the relativistic Binet’s equation

2.1. Preliminary steps

Equation (5) can be integrated numerically using a high-quality online service [15]. However, to
ensure the utmost accuracy, we prefer to solve the equivalent first-order equation, which reads [11]:

𝑢′2 = (1 − 𝑢) [𝑢 + 1 − 2𝐴 − 2𝐵
3 (𝑢2 + 𝑢 + 1)] →

𝑢′ = −√(1 − 𝑢) [𝑢 + 1 − 2𝐴 − 2𝐵
3 (𝑢2 + 𝑢 + 1)] (15)

and can be transformed to

𝑑𝜃
𝑑𝑢

= − 1

√(1 − 𝑢) [𝑢 + 1 − 2𝐴 − 2𝐵
3 (𝑢2 + 𝑢 + 1)]

, (16)

where we took into account that 𝑢′ < 0. From here on, the perihelion distance is chosen to be the unit
of length, i.e. 𝑎𝑝 = 1. Equations (15) and (16) are related to the perihelion where 𝑢 = 1 and 𝑢′ = 0.
An analoguous pair of equations can be related to the aphelion where also 𝑢′ = 0, but 𝑢 = 𝑢𝜑 ≠ 1.
The aphelion (𝑟𝜑 = 1/𝑢𝜑) corresponds to the apsidal angle

𝜑 = 𝜋/𝑘 = 𝜋 + Δ/2, (17)

and it can be determined from the quadratic equation

𝑢2 + 𝑢 + 1 = 3
2𝐵

(𝑢 + 1 − 2𝐴) →

𝑢2 − ( 3
2𝐵

− 1)𝑢 + 6𝐴 − 3
2𝐵

+ 1 = 0 →

𝑢𝜑 = 0.65888124588, 𝑟𝜑 = 1.5177241821, 𝜑 = 3.14159290453. (18)



528 M. Selg

We therefore get an equation which is equivalent to (16):

𝑑𝜃
𝑑𝑢

= 1

√(𝑢 − 𝑢𝜑) [2𝐴 − 𝑢 − 𝑢𝜑 + 2𝐵
3 (𝑢2 + 𝑢𝑢𝜑 + 𝑢2

𝜑)]

. (19)

Our goal here is to ascertain the function 𝑢(𝜃) in the range 𝜃 ∈ [0, 𝜑]. To this end, we can combine
the first-order differential equations (16) and (19), choosing a suitable intermediate point with polar
coordinates (𝜙, 𝑟𝜙). Thus, integrating (16), we get

𝜃 =

1

∫
𝑢𝜃

𝑑𝑢

√(1 − 𝑢) [𝑢 + 1 − 2𝐴 − 2𝐵
3 (𝑢2 + 𝑢 + 1)]

, 𝑢𝜃 ∈ [𝑢𝜙, 1], (20)

where 𝑢𝜙 = 1/𝑟𝜙. On the other hand, using (19), we can write

𝜑 − 𝜃 =

𝑢𝜃

∫
𝑢𝜑

𝑑𝑢

√(𝑢 − 𝑢𝜑) [2𝐴 − 𝑢 − 𝑢𝜑 + 2𝐵
3 (𝑢2 + 𝑢𝑢𝜑 + 𝑢2

𝜑)]

, 𝑢𝜃 ∈ [𝑢𝜑, 𝑢𝜙]. (21)

Let us fix 𝑟𝜙 by the condition 𝑢′′(𝜙) = 0, which corresponds to the minimum of the effective
potential [14], p. 99

𝑉 ∗ = −𝐿2

𝑚 (𝐴𝑢 − 𝑢2

2
+ 𝐵𝑢3

3 ), (22)

i.e. to the solution of the quadratic equation

𝐵𝑢2 − 𝑢 + 𝐴 = 0 → 𝑢𝜙 = 1
2𝐵

− √
1

4𝐵2 − 𝐴
𝐵

. (23)

As 𝑉 ∗(𝑎) = 𝑉 ∗(𝑏) = 𝐸, it follows from (22) that

𝐴 −
1 + 𝑢𝜑

2
+ 𝐵

3 [(1 + 𝑢𝜑)2 − 𝑢𝜑] = 0. (24)

Suppose
1 + 𝑢𝜑

2
= 𝑢𝜙 + Δ𝑢. (25)

Then, according to (22) and (23),

−Δ𝑢 +
𝑢𝜙 − 𝐴

3
+ 𝐵

3 (8𝑢𝜙Δ𝑢 + 4Δ𝑢2 − 𝑢𝜑) = 0 →

Δ𝑢2 − ( 3
4𝐵

− 2𝑢𝜙)Δ𝑢 +
𝑢𝜙 − 𝐴

4𝐵
−

𝑢𝜑

4
= 0. (26)

Introducing the numerical values (6) and (7) into (23) and (26), we get

𝑢𝜙 = 0.8294406220064744 → 𝜙 = 1.5707964632154577, (27)

Δ𝑢 = 3
8𝐵

− 𝑢𝜙 −
√√
⎷(

3
8𝐵

− 𝑢𝜙)
2

+
𝑢𝜑

4
−

𝑢𝜙 − 𝐴
4𝐵

= 9.3383 ⋅ 10−10. (28)

We see that Δ𝑢 ≠ 0, differently from the pure Newtonian potential and the force field 𝑉 (𝑟) =
−𝑎1/𝑟 − 𝑎2/𝑟2, where 𝑢𝜙 = (1 + 𝑢𝜑) /2 and correspondingly, Δ𝑢 = 0. The polar angle 𝜙 has been
fixed by calculating the integrals (20) and (21) with 𝑢𝜃 = 𝑢𝜙, and taking into account that the two
independent estimations for 𝜙 must coincide to the desired accuracy (16 decimal digits). This is
indeed the case, and the result is given in (27). However, as will be explained in the next subsection,
achieving such a high accuracy is not at all trivial.
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2.2. Evaluating the integrals

As can be seen, the integrands of (20) and (21) have a singularity at 𝑢 = 1 and 𝑢 = 𝑢𝜑, respectively.

A useful device in this situation is integration by parts. For (20) we can take 𝑑𝑣 = 𝑑𝑢
√1 − 𝑢

→ 𝑣 =

−2√1 − 𝑢, so that the integral transforms to

𝜃 =
2 (1 − 𝑢𝜃)

𝑢′
𝜃

+

1

∫
𝑢𝜃

√1 − 𝑢 [
2𝐵
3

(1 + 2𝑢) − 1] 𝑑𝑢

[𝑢 + 1 − 2𝐴 − 2𝐵
3 (𝑢2 + 𝑢 + 1)]

3/2 , (29)

where (15) was used. Analogously, taking 𝑑𝑣 = 𝑑𝑢
√𝑢 − 𝑢𝜑

→ 𝑣 = 2√𝑢 − 𝑢𝜑, (21) transforms to

𝜑 − 𝜃 =
2 (𝑢𝜃 − 𝑢𝜑)

𝑢′
𝜃

+

𝑢𝜃

∫
𝑢𝜑

√𝑢 − 𝑢𝜑 [
2𝐵
3 (𝑢𝜑 + 2𝑢) − 1] 𝑑𝑢

[2𝐴 − 𝑢 − 𝑢𝜑 + 2𝐵
3 (𝑢2 + 𝑢𝑢𝜑 + 𝑢2

𝜑)]
3/2 . (30)

Thus, we got rid of the singularities, but by aiming at the highest accuracy, we can continue
smoothening the integrands. Namely, the integral (29) can be rewritten as follows:

𝜃 =

1

∫
𝑢𝜃

𝐹1(𝑢)𝑑𝑢 +
2 (1 − 𝑢𝜃)

𝑢′
𝜃

+ 𝐼1, 𝜃 ∈ [0, 𝜙] , 𝑢𝜃 ∈ [𝑢𝜙, 1], (31)

where

𝐹1(𝑢) = √1 − 𝑢 [
2𝐵
3

(1 + 2𝑢) − 1]

×
⎡
⎢
⎢
⎢
⎣

1

[𝑢 + 1 − 2𝐴 − 2𝐵
3 (𝑢2 + 𝑢 + 1)]

3/2 − 1
[2(1 − 𝐴 − 𝐵)]3/2

⎤
⎥
⎥
⎥
⎦

(32)

and

𝐼1 ≡ 1
[2(1 − 𝐴 − 𝐵)]3/2

1

∫
𝑢𝜃

√1 − 𝑢 [
2𝐵
3

(1 + 2𝑢) − 1] 𝑑𝑢. (33)

The idea is simple. The second term in the square brackets of (32) is the limit value of the first term,
as 𝑢 → 1. As can be seen, we subtracted 𝐼1 from the initial expression for 𝜙. Of course, as shown
by formula (31), the same quantity (𝐼1) must also be added to (31). A good point is that 𝐼1 can be
evaluated analytically:

𝐼1 = − (1 − 𝑢𝜃)
3/2

3 [2(1 − 𝐴 − 𝐵)]3/2
⎡
⎢
⎣
2 − 4𝐵 +

8𝐵 (1 − 𝑢𝜃)
5

⎤
⎥
⎦

. (34)

Another good point is that 𝐹1(𝑢) is a smooth function, perfectly suitable for numerical integration.
The integrand of (30) can be smoothened in a similar way. The result is as follows:

𝜃 = 𝜑 −
⎡
⎢
⎢
⎣

𝑢𝜃

∫
𝑢𝜑

𝐹2(𝑢)𝑑𝑢 +
2 (𝑢𝜃 − 𝑢𝜑)

𝑢′
𝜃

+ 𝐼2

⎤
⎥
⎥
⎦

, 𝜃 ∈ [𝜙, 𝜑] , 𝑢𝜃 ∈ [𝑢𝜑, 𝑢𝜙], (35)

𝐹2(𝑢) = √𝑢 − 𝑢𝜑 [
2𝐵
3 (𝑢𝜑 + 2𝑢) − 1]

×
⎡
⎢
⎢
⎢
⎣

1

[2𝐴 − 𝑢 − 𝑢𝜑 + 2𝐵
3 (𝑢2 + 𝑢𝑢𝜑 + 𝑢2

𝜑)]
3/2 − 1

[2(𝐴 − 𝑢𝜑 + 𝐵𝑢2
𝜑)]

3/2

⎤
⎥
⎥
⎥
⎦

, (36)
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Fig. 1. Smoothened integrands for the numerically solved Binet’s equation. The functions 𝐹1(𝑢) and 𝐹2(𝑢) are given by (32) and (35),
respectively. The curves look symmetric relative to the bottom point (𝜙, 𝑢𝜙), but this is not quite the case, as Δ𝑢 ≠ 0, according to (28).
The overall result of the numerical integration is shown on the right-side graph.

𝐼2 ≡
(𝑢𝜃 − 𝑢𝜑)

3/2

3 [2(𝐴 − 𝑢𝜑 + 𝐵𝑢2
𝜑)]

3/2
⎡
⎢
⎣

8𝐵 (𝑢𝜃 − 𝑢𝜑)
5

− 2 + 4𝐵𝑢𝜑
⎤
⎥
⎦

. (37)

Both smoothened integrands, 𝐹1(𝑢) and 𝐹2(𝑢), are shown in Fig. 1. Thereafter, these functions
have been integrated numerically by using the adaptive Simpson’s method (see, e.g. [16]). Aiming
at the highest accuracy, all computations have been performed in the high-precision programming
environment UBASIC (see, e.g. [17]).

As the radial coordinate is a periodic function, we only need to calculate the relativistic orbit
for the interval 𝜃 ∈ [0, 𝜑]. This has been done with utmost accuracy, by dividing the full range of
integration 𝑢𝜃 ∈ [𝑢𝜑, 1] into 40 000 subintervals. If the function 𝑟(𝜃) for any 𝜃 ∈ [0, 𝜑] is known,
then the value of this function at an arbitrary polar angle 𝜃 can be determined as follows:

𝜃 = 2𝜑 ⋅ (𝑛 + 𝑥), 𝑛 = [
𝜃

2𝜑], 𝑥 = 𝜃
2𝜑

− [
𝜃

2𝜑] ∈ [0, 1),

where the square brackets denote the integer part of the argument. For any 𝑥 ∈ [0, 1), we can define
another number related to an angle Φ ∈ [0, 1):

𝑦 = {
𝑥, if 𝑥 ≤ 1/2,
1 − 𝑥, if 𝑥 ≥ 1/2 → Φ = 2𝜑 ⋅ 𝑦.

Thus, 𝑟(𝜃) = 𝑟 (Φ).

3. Analytic approximation of Mercury’s relativistic trajectory

As explained in Section 1, the first-order perturbational solution to the relativistic Binet’s equation is
given by (8), where the constants 𝐴0, 𝐵0 and 𝑘 are explicitly determined by the basic parameters 𝐴
and 𝐵. This is the simplest model that approximates the overall trajectory with reasonable accuracy,
the largest discrepancy (at aphelion) being 14.24 km [11]. However, aiming at a much higher accuracy,
we are now going to slightly modify (8), assuming that

𝑢(𝜃) = 𝐴1 cos (𝑘𝜃) + 𝐵1,

where 𝐴1 and 𝐵1 can be treated as variable parameters. Moreover, 𝑘 does not need to be a constant
but may be a slowly varying function 𝑘 (𝜃).
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Let us recall that (8) is the exact solution of Binet’s equation for a central potential of another
type, (12). Hopefully, a better approximation is obtained if we determine the coefficients 𝐴1 and 𝐵1
from the real (relativistic) perihelion and aphelion distances. To this end, we can apply a slightly
modified version of formula (11). Namely,

𝐴1 =
𝑟𝜑 − 𝑎𝑝

2𝑟𝜑 ⋅ 𝑎𝑝
, 𝐵1 =

𝑎𝑝 + 𝑟𝜑

2𝑟𝜑 ⋅ 𝑎𝑝
. (38)

In dimensionless units, the perihelion 𝑎𝑝 = 1, while the aphelion 𝑟𝜑 is given in (18). Thus,

𝐴1 = 0.1705593770597, 𝐵1 = 0.8294406229403, (39)

and we assume that these coefficients are fixed and remain the same for all four models described
in the next subsection. In addition, we assume that the function 𝑢 (𝜃) can be identified with the
numerical solution of (5), which was ascertained in the previous subsection. It means that

𝑘 (𝜃) =
arccos [

𝑢(𝜃) − 𝐵1
𝐴1 ]

𝜃
, (40)

where the right side is a known function. This can be viewed as a kind of inverse problem: our goal
now is to find a simple but reliable analytic expression for the function 𝑘 (𝜃). Aiming at that goal,
we propose several simple models.

3.1. Analytic expressions for the function k (𝜽)
Model A. This is the simplest case when 𝑘 is assumed to be a constant given by (10):

𝑘 = 𝑘0 ≡ 𝜋
𝜑

= 0.999999920123. (41)

Thus, the trajectory can be calculated by the formula

𝑢𝐴 (𝜃) = 𝐴1 cos (𝑘0𝜃) + 𝐵1, (42)

where the subscript refers to the model under study. The result, in comparison with the numerical
solution of equation (5), can be seen in Fig. 2. Quite remarkably for this simple model, the largest
deviation from the relativistic orbit is only 65 m.

Model B. Suppose 𝑘 (𝜃) is a linear function:

𝑘(𝜃) = 𝑘0 + 𝛼0(𝜑 − 𝜃), (43)

where 𝑘0 is the constant given in (41), 𝜑 is the apsidal angle given in (18) and 𝛼0 is a fitting parameter
to be determined. For example, we can fix 𝛼0 by the condition

𝑢𝜙 = 𝐴1 cos{[𝑘0 + 𝛼0(𝜑 − 𝜙)] 𝜙} + 𝐵1, (44)

where 𝜙 and 𝑢𝜙 are given in (27). Thus,

𝛼0 =
arccos(

𝑢𝜙 − 𝐵1

𝐴1 ) − 𝑘0𝜙

𝜙(𝜑 − 𝜙)
= −2.21897771258 ⋅ 10−9, (45)

and the trajectory for this model reads

𝑢𝐵 (𝜃) = 𝐴1 cos{[𝑘0 + 𝛼0(𝜑 − 𝜃)] 𝜃} + 𝐵1. (46)
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Fig. 2. Model A: the difference between the numerical solution of Binet’s equation (5) and the trajectory according to formula (42), with the

parameters given in (39) and (41).

Fig. 3. Model B: the numerical solution of Binet’s equation (5) in comparison with the trajectory according to formula (46).

As can be seen in Fig. 3, (46) gives a much better approximation to the relativistic orbit:
the discrepancy being less than 3 m.
Model C. To get an even better approximation to the real orbit, suppose 𝑘 (𝜃) is a simple rational
function with two fitting parameters, 𝛼 and 𝛽:

𝑘 (𝜃) = 𝑘0 +
𝛼 ⋅ (𝜑 − 𝜃)

𝜑 + 𝛽 ⋅ 𝜃 ⋅ (𝜑 − 𝜃)
. (47)

Thus,

𝑢𝐶 (𝜃) = 𝐴1 cos{[𝑘0 +
𝛼 ⋅ (𝜑 − 𝜃)

𝜑 + 𝛽 ⋅ 𝜃 ⋅ (𝜑 − 𝜃)] ⋅ 𝜃} + 𝐵1, (48)

where 𝐴1, 𝐵1 and 𝑘0 are the constants given in (39) and (41). We see that 𝑢𝐶 (0) = 1 and 𝑢𝐶 (𝜑) = 𝑢𝜑,
as needed.
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The derivative of (48) reads

𝑢′ = −𝐴1 sin [𝑘 (𝜃) 𝜃] [𝑘 (𝜃) + 𝑘′ (𝜃) 𝜃], (49)

where
𝑘′ (𝜃) = − 𝛼

𝜑 + 𝛽 ⋅ 𝜃 ⋅ (𝜑 − 𝜃)
−

𝛼 ⋅ 𝛽 ⋅ (𝜑 − 𝜃) ⋅ (𝜑 − 2𝜃)
[𝜑 + 𝛽 ⋅ 𝜃 ⋅ (𝜑 − 𝜃)]2 . (50)

As 𝑘 (0) = 𝑘0 + 𝛼, it follows that

𝑢′′(0) = −𝐴1 cos [𝑘 (𝜃) 𝜃] (𝑘0 + 𝛼)
2 , (51)

and therefore,
(𝑢′′ + 𝑢)|𝜃=0 = 1 − 𝐴1 (𝑘0 + 𝛼)

2 . (52)

On the other hand, as 𝑢(0) = 1, it follows from (5) that

(𝑢′′ + 𝑢)|𝜃=0 = 𝐴 + 𝐵. (53)

Thus, equating (53) with its approximant (52), we get

𝛼 = √
1 − 𝐴 − 𝐵

𝐴1
− 𝑘0 = −5.475095605182012 ⋅ 10−9. (54)

There remains to determine the second fitting parameter 𝛽. To this end, analogously to the
constraint (44), we assume that equation (48) predicts the correct value for 𝑢𝜙, i.e.

arccos(
𝑢𝜙 − 𝐵1

𝐴1 ) − 𝑘0𝜙 =
𝛼 ⋅ 𝜙 ⋅ (𝜑 − 𝜙)

𝜑 + 𝛽 ⋅ 𝜙 ⋅ (𝜑 − 𝜙)
. (55)

From this we obtain

𝛽 = 𝛼

arccos(
𝑢𝜙 − 𝐵1

𝐴1 ) − 𝑘0𝜙
−

𝜑
𝜙 ⋅ (𝜑 − 𝜙)

= −0.27324119900454. (56)

As both fitting parameters are fixed, we can calculate the trajectory according to (48). As shown in
Fig. 4, the result is practically indistinguishable from the numerical solution of the relativistic Binet’s
equation. This is in agreement with constraint 2 stated in Section 1. However, it would be desirable
to determine all model parameters without actually solving Binet’s equation. This was not the case
for the important reference angle 𝜙, which corresponds to the minimum of the effective potential,
and has been determined from the numerical solution of (5). Fortunately, somewhat surprisingly,
the following simple formula holds:

𝜙 = 𝜑/2 − 2𝛼, (57)

where 𝜑 and 𝛼 are given in (18) and (54), respectively. Strictly speaking, (57) is an approximate
relation, but the approximation is so good that we can use here the equality sign instead of ≈. We
shall prove this now.

Proof. Let us assume that in a tiny range of polar angles around 𝜙 (including 𝜑/2), (48) gives a
highly reliable prediction of the real orbit. It then follows that

𝑢𝜑/2 = −𝐴1 sin(
𝛼𝜑

4 + 𝛽𝜑) + 𝐵1 = 0.82944062387413. (58)
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Fig. 4. Models C and D: the numerical solution of Binet’s equation (5) in comparison with the trajectories according to (48). For model C, the

parameter 𝜙 was determined numerically (see the explanations at the end of Section 2), while for model D, this parameter was fixed by (57).

As can be seen, the predictions of models C and D are almost identical, both giving a very good approximation to the real trajectory.

On the other hand, taking into account that 𝜙 ≈ 𝜑/2, we can use the Taylor expansion

𝑢𝜑/2 = 𝑢𝜙 + 𝑢′
𝜙 ⋅ (𝜑/2 − 𝜙) + ...,

where higher-order terms can be ignored, as 𝑢′′
𝜙 = 0 and (𝜑/2 − 𝜙)𝑘 for 𝑘 = 3, 4, ... is a very small

quantity. Thus, using (58), (18), (15) and (27), we get

𝜙 = 𝜑/2 +
𝑢𝜙 − 𝑢𝜑/2

𝑢′
𝜙

= 𝜑/2 − 2 ⋅ (−5.475091188 ⋅ 10−9) = 𝜑/2 − 2 (𝛼 + Δ𝛼),

where Δ𝛼 = 4.417 ⋅ 10−15. We see that Δ𝛼 is indeed a very small quantity, which completes the
proof. How could we interpret this surprising but very useful result? A reasonable explanation seems
to be that (48) provides a very good approximation, so that the fitting parameter 𝛼 can be explicitly
related to the important characteristics 𝜙 and 𝜑 of the real relativistic trajectory.

Model D. Using the obtained result, we can slightly modify model C. The basic formula (48) remains
the same, as well as the fitting parameter 𝛼 determined by (54). Thereafter, one uses (57) to get

𝜙 = 1.5707964632154628, (59)

which is slightly different but, in fact, almost indistinguishable from the value given in (27). Finally,
using (56) and (59), we obtain

𝛽 = −0.2732428582076941. (60)

Inserting these modified parameters into (48), we get another approximation to the relativistic
trajectory. As expected and explicitly demonstrated in Fig. 4, the predictions of models C and D
practically coincide, and they both give a very good approximation to the numerically calculated
relativistic orbit. Analogously, inserting (57) into (45), one gets a marginally modified value for the
fitting parameter 𝛼0, which has almost no effect on the trajectory 𝑢𝐵 (𝜃).
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3.2. Conceivable force field for model D

Probably the most unexpected result of this work is the simple formula (57) that connects three
parameters of rather different kind. Indeed, the apsidal angle 𝜑 is an important characteristic of the
real relativistic orbit, and 𝛼 is a fitting parameter for models C and D. The third quantity, the polar
angle 𝜙, corresponds to the minimum of the real effective potential, but according to (57), it is also
a fitting parameter for model D. Therefore, to provide an additional argument for the validity of (57),
let us calculate the central force that corresponds to

𝑢𝐷 (𝜃) = 𝐴1 cos [𝑘(𝜃) ⋅ 𝜃] + 𝐵1, (61)

where 𝐴1 and 𝐵1 are given in (39) and the function 𝑘(𝜃) is defined by formula (47) with the parameters
𝑘0, 𝜑, 𝛼 and 𝛽 given in (41), (18), (54) and (60), respectively. Note that all these fitting parameters are
uniquely fixed by the basic parameters 𝐴 and 𝐵 given in (6) and (7), in accordance with constraint 3
stated in Section 1. Moreover, there is no need to solve Binet’s equation (5) in order to fix the function
𝑘 (𝜃) in (61). This hugely saves time and is the main reason why model D (not C) is additionally
tested in this subsection.

To begin the analysis, let us fix the first and the second derivatives of (61):

𝑢′
𝐷 = −𝐴1 sin [𝑘 (𝜃) 𝜃] [𝑘 (𝜃) + 𝑘′ (𝜃) 𝜃],

𝑢′′
𝐷 = −𝐴1 cos [𝑘 (𝜃) 𝜃] [𝑘 (𝜃) + 𝑘′ (𝜃) 𝜃]

2 − 𝐴1 sin [𝑘 (𝜃) 𝜃] [2𝑘′ (𝜃) + 𝑘′′ (𝜃) 𝜃], (62)

where

𝑘′ (𝜃) = − 𝛼
𝜑 + 𝛽 ⋅ 𝜃 ⋅ (𝜑 − 𝜃)

−
𝛼 ⋅ 𝛽 ⋅ (𝜑 − 𝜃) ⋅ (𝜑 − 2𝜃)

[𝜑 + 𝛽 ⋅ 𝜃 ⋅ (𝜑 − 𝜃)]2 ,

𝑘′′ (𝜃) =
𝛼 ⋅ 𝛽 ⋅ (4𝜑 − 6𝜃)

[𝜑 + 𝛽 ⋅ 𝜃 ⋅ (𝜑 − 𝜃)]2 +
2𝛼 ⋅ 𝛽2 ⋅ (𝜑 − 𝜃) ⋅ (𝜑 − 2𝜃)2

[𝜑 + 𝛽 ⋅ 𝜃 ⋅ (𝜑 − 𝜃)]3 .

Thus, according to Binet’s equation (3),

−𝑚𝑟2

𝐿2 𝐹 (𝑟) = 𝐴1 cos [𝑘 (𝜃) 𝜃] {1 − [𝑘 (𝜃) + 𝑘′ (𝜃) 𝜃]
2
} (63)

−𝐴1 sin [𝑘 (𝜃) 𝜃] [2𝑘′ (𝜃) + 𝑘′′ (𝜃)] + 𝐵1.

The function 𝐹 (𝑟) consists of two parts:

𝐹 (𝑟) = −𝐺𝑀𝑚
𝑟2 + 𝐹𝐷, (64)

where the first term is Newton’s gravitational force and 𝐹𝐷(𝑟) is the additional force we are seeking.
As

−𝑚𝑟2

𝐿2 ⋅ (−𝐺𝑀𝑚
𝑟2 ) = 𝐴,

we can separate the second term of the corresponding Binet’s equation in order to make a comparison
with the relativistic term 𝐵𝑢2 of equation (5):

𝐵𝐷𝑢2
𝐷 ≡ −

𝑚𝑟2
𝐷

𝐿2 𝐹𝐷 = 𝐴1 cos [𝑘 (𝜃) 𝜃] {1 − [𝑘 (𝜃) + 𝑘′ (𝜃) 𝜃]
2
} (65)

−𝐴1 sin [𝑘 (𝜃) 𝜃] [2𝑘′ (𝜃) + 𝑘′′ (𝜃)] + 𝐵1 − 𝐴.

The result of the comparison is shown in Fig. 5. As expected, the functions 𝐵/𝑟2 and 𝐵𝐷/𝑟2
𝐷 nearly

coincide, which confirms the validity of model D.
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Fig. 5. A comparison between the second term of the relativistic Binet’s equation 𝐵/𝑟2
and the corresponding term 𝐵𝐷/𝑟2

𝐷 in the frame of

model D, according to formula (65).

4. Conclusion

Although the relativistic Binet’s equation cannot be solved analytically, one can construct a highly
reliable analytic approximant to that solution. In this article, we proposed four different models for
this purpose. The simplest and the most unpunctual of them is model A based on formula (42), which
is, in fact, the exact solution for a potential 𝑉 (𝑟) = −𝑎1/𝑟 − 𝑎2/𝑟2. The coefficients 𝑎1 and 𝑎2 can be
easily evaluated, but this effort is unnecessary because the constants 𝐴1, 𝐵1 and 𝑘0 are explicitly
related to the parameters of the real relativistic orbit. In particular, the aphelion of approximant (42)
equals the real aphelion given by (18). This is an important nuance that makes (42) quite reliable, as
it predicts the correct positions of both the perihelion and the aphelion. Unsurprisingly, the largest
discrepancy (but only 65 m; see Fig. 2) occurs near 𝜃 = 𝜑/2.

Compared with model A, an additional constraint is set for models B, C and D: the model must
correctly predict the position of the point (𝜙, 𝑢𝜙). The inverse of the minimum of the effective
potential 𝑢𝜙 = 1/𝑟𝜙 is given by (23), but the corresponding polar angle 𝜙 can only be determined,
strictly speaking, by very accurately calculating the integrals (20) and (21) for 𝑢𝜃 = 𝑢𝜙. Fortunately,
as we proved, a simple formula (57) can be used, which predicts the correct value for 𝜙 with a
very high degree of accuracy. This way we easily get the necessary reference point between the
perihelion and the aphelion. As a result, a much better approximation to the real relativistic trajectory
is achieved.

Another innovation compared with model A concerns the argument of the cosine function in
the basic formula 𝑢(𝜃) = 𝐴1 cos (𝑘𝜃) + 𝐵1. Namely, in the frame of models B, C and D, 𝑘 is not
a constant but a function of the polar angle 𝜃. The function 𝑘(𝜃) is built up in such a way that it
ensures the correct position of the perihelion and the aphelion. Model B contains a single fitting
parameter 𝛼0, which should fit with the position of the third reference point (𝜙, 𝑢𝜙). Its value given
in (45) is based on the numerical estimation (27). Alternatively, using (57), we get the value

𝛼0 =
arccos(

𝑢𝜙 − 𝐵1

𝐴1 ) − 𝑘0𝜙

𝜙(𝜑 − 𝜙)
= −2.218979779535 ⋅ 10−9, (66)

which only marginally differs from (45). Thus, it does not matter which of these values, (45) or (66),
is inserted into (44): the real trajectory is approximated with the precision better than 3 m.

Models C and D are practically identical. They include two fitting parameters, 𝛼 and 𝛽, where 𝛼
is the same in both models and is given by (54). The value of 𝛽 depends on the parameter 𝜙, which is
marginally different for models C and D. On the basis of simplicity, the preference should certainly
be given to model D because then there is actually no need to solve Binet’s equation (5). Indeed, to
apply (61), one first uses (18) to determine the aphelion 𝑟𝜑. The next step is to fix the coefficients 𝐴1



Relativistic Binet’s equation 537

and 𝐵1 according to (38). The constant 𝑘0 = 𝜋/𝜑 is determined by the apsidal angle (17), the fitting
parameter 𝛼 is obtained from (54), and the parameters 𝜙 and 𝛽 for model D are given in (59) and
(60), respectively. Thus, in presumption that the basic parameters 𝐴 and 𝐵 are known, all parameters
for model D are uniquely determined, and one can use (61) to get an excellent approximation to
the real relativistic trajectory. The conclusion is paradoxical: the highly reliable solution to the
relativistic Binet’s equation can be obtained without actually solving this equation!

In this context, we have to recall once again that the success of model D is based on formula (57),
which enables to easily fix the third reference point (𝜙, 𝑢𝜙) in addition to the perihelion and the
aphelion. Obviously, if two nearly elliptical curves have three common points not close to each other,
these curves would be relatively close everywhere. Thus, unsurprisingly, their largest difference
is less than 31 cm. Of course, there is no need for such an extreme precision, but the real point is
that there is also no need to solve the relativistic trajectory equation. Instead, one can use a simple
analytic formula (61) for this trajectory. Elaborating model D, which provides optimal balance
between simplicity and accuracy, may be considered the main result of this work.

To test the actual quality of this model, one needs a highly reliable comparison basis. This was
obtained by solving the relativistic Binet’s equation numerically to a high degree of accuracy. The
corresponding data file is available as a supplementary material for this article (online resource).

The proposed approach was applied to study the orbit of Mercury, which does not mean that the
obtained results are somehow specific to Mercury. On the contrary, the principles of the theoretical
analysis remain the same for any other planet or celestial body in the relativistic force field. It would
therefore be interesting to perform an analogous study for another planet, e.g. for Venus whose
perihelion shift per orbit, Δ = 2.572418 ⋅ 10−7rad [12], is not so different from that of Mercury.

Data availability statement

Online resource: the data supporting this work are available in the spreadsheet Mercury-GRdata.xlsx,
which can be accessed at https://osf.io/er7hk/?view_only=fa7e4f75c3984b2e9ab634df8ff6283e.
It contains the numerical solution of the relativistic Binet’s equation from 𝜃 = 0 to 𝜑 with step
𝜑/40000.
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Lihtne ja usaldusväärne analüütiline lähend relativistliku Binet’ võrrandi

numbrilisele lahendile – rakendus Merkuurile

Matti Selg

Mittelineaarne trajektoori võrrand (Binet’ võrrand), mis kirjeldab osakese liikumist relativistlikus jõuväljas, on

lahendatav ainult numbriliselt või alternatiivina häiritusteoreetilise lahendusskeemi abil. Viimast kasutas 1915.

aastal Albert Einstein, tuletades kuulsa valemi Merkuuri periheeli anomaalse pretsessiooni kindlakstegemiseks.

Käesoleva artikli fookuses ei ole periheeli pretsessioon, vaid Merkuuri relativistlik orbiit tervikuna, mis on

arvutatud numbriliselt 16 kümnendkoha täpsusega. See on hädavajalik võrdlusbaas, et saavutada töö peaees-

märki – tuletada lihtne analüütiline valem, mis oleks perfektses kooskõlas tegeliku relativistliku trajektooriga.

Analüüsitakse mitut erineva täpsusastmega mudelit ning peaeesmärk saavutatakse edukalt. Ühtlasi selgub, et

kolmandas jaotises kirjeldatava mudeli D sobitusparameetrid on leitavad Binet’ võrrandit lahendamata. Järeldus

on paradoksaalne: relativistliku Binet’ võrrandi lahendi saab trajektoori mistahes punktis väga täpselt kindlaks

teha (suurim kõrvalekalle on umbes 30 cm) seda mittelineaarset diferentsiaalvõrrandit tegelikult lahendamata.
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