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ABSTRACT

We present an iterative formula for calculating the number of different '0-topologies on a finite

set.

1. Introduction

A topological space (-, g) is called an '0-space (see [1], p. 888, for example)
or a symmetric space if for each G, H ∈ -, G ≠ H either

1) G has an open neighbourhood that does not contain H, and H has an open
neighbourhood that does not contain G,
or

2) each open neighbourhood of G also contains H, and each open neigh-
bourhood of H also contains G.

The topology g making a topological space (-, g) an '0-space is called
an '0-topology on the set - .

Mathematicians have calculated the number of different '0-topologies
on an =-element set where = is a positive integer for some smaller values of
=, but a general formula for finding the total number of '0-topologies on an
=-element set for an arbitrary positive integer = has not yet been found.

In 2024, Anne-Mari Vainura wrote her bachelor’s thesis [3], where she
used a computer programme to calculate the number of different types
of topologies on a finite set, including the number of '0-topologies for
= ∈ {1, 2, 3, 4, 5, 6, 7}. At least for these values, the number of different
'0-topologies on an =-element set coincided with the Bell number �=, but no
general relationship between these two number sets was yet established.

It is known (see [2] or [4], for example) that the Bell numbers �= for an
arbitrary positive integer = ¾ 2 can be calculated by the following iterative
formula:

�= =

=−1∑
8=0

�=−1
8 �8,

where �<
:

denotes the number of different ways one can choose exactly :

elements out of a set containing exactly < elements.
In the present paper, we propose a formula that is similar, yet different,

for calculating the number of different '0-topologies on a finite set, using the
number of such '0-topologies on finite sets that do not have any singleton set
open.

2. Results

We start with the following proposition.

Proposition 1. Let = ∈ Z+, - be a set with exactly = elements, g be a topology
on - , � = {G ∈ - : {G} ∈ g}, � = - \ � and g� = g|� be a subset topology.
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If (-, g) is an '0-space, then the following conditions hold:
1) (�, g�) is an '0-space;
2) g� ⊆ g, i.e. each subset of � that is open in g� is also open in g;
3) each nonempty subset � ∈ g� contains at least two elements.
Moreover, if the condition 1) is fulfilled, then (-, g) is an '0-space.

Proof. Let (-, g) be an '0-space.
Take any G, H ∈ � such that G ≠ H. As G, H ∈ - , then there are two possibilities:
a) there exist $G , $H ∈ g- such that H ∉ $G and G ∉ $H . Take +G = $G∩ � and +H = $H∩ �.

Then +G is such an open neighbourhood of G in g� that does not contain H, and +H is such an open
neighbourhood of H that does not contain G;

b) each open neighbourhood $G ∈ g of G in g also contains H, and each open neighbourhood
$H ∈ g of H in g also contains G. But then each open neighbourhood +G = $G ∩ � ∈ g� of G in g�
also contains H, and each open neighbourhood +H = $H ∩ � ∈ g� of H in g� also contains G.

Hence, (�, g�) is an '0-space, and the condition 1) holds.
To show that the condition 2) holds, it is sufficient to show that � ∈ g. For that, notice that for

each G ∈ � and each 0 ∈ �, there exists a neighbourhood $0 = {0} ∈ g such that G ∉ $0. Hence,
there should also exist a neighbourhood *0 ∈ g of G such that 0 ∉ *0. Now,

$G =
⋂
0∈�

*0

is a neighbourhood of G in g and, as � is a finite set, then $G ∈ g. Moreover, $G ⊆ �.
Notice that

� =
⋃
G∈�

$G ∈ g

is a union of open sets. Hence, every element of g� = {+ ∩ � : + ∈ g} is open in g as an intersection
of two sets that are open in g. Thus, the condition 2) holds.

Let � ∈ g� \ {∅}. Then � ∈ g, by the condition 2), and � ⊆ �. If � were a singleton, then there
would exist an element G ∈ � such that � = {G} and {G} ∈ g. But all such elements were already
included in �. Thus, each nonempty element of g� should contain at least two elements.

Hence, all three conditions hold for an '0-space (-, g).
Suppose that the condition 1) holds for the subset topology g�. Notice that

g = {� ∪ � : � ∈ g�, � ⊆ �}

because all elements of �, as singleton sets, have to be open in g.
Take any G, H ∈ - with G ≠ H. Now, we have three possibilities:
a) G, H ∈ �. Then $G = {G}, $H = {H} ∈ g, H ∉ $G , G ∉ $H , and the case 1) of the definition of

an '0-space realizes.
b) G, H ∈ �. Then, by the condition 1), there are two possibilities.
b1) There exist neighbourhoods +G , +H ∈ g� such that G ∈ +G , H ∈ +H , H ∉ +G , G ∉ +H . By the

definition of a subspace topology, there exist neighbourhoods $G , $H ∈ g of G and H, respectively,
such that +G = $G ∩ � and +H = $H ∩ �. But then $G and $H satisfy the condition 1) of the
definition of an '0-space.

b2) Every neighbourhood +G of G in g� also contains H, and every neighbourhood +H of H in g�
also contains G. Take arbitrary neighbourhoods $G ∈ g of G and $H ∈ g of H. Then $G ∩ � is an
open neighbourhood of G in g�, and $H ∩ � is an open neighbourhood of H in g�. Hence, $G must
contain H, and $H must contain G. It means that the case 2) of the definition of an '0-space realizes.

c) One of the elements G, H is in � and another in �. Without loss of generality, we may assume
that G ∈ �, H ∈ �. Then there exist $G = {G} ∈ g and $H = � ∈ g such that the condition 1) of the
definition of an '0-space is fulfilled.

Therefore, if the condition 1) is fulfilled, (-, g) is an '0-space. �

Remark 1. With that, we have demonstrated that (-, g) is an '0-space if and only if the conditions
1), 2) and 3) are fulfilled. Indeed, under the assumptions of Proposition 1, from the condition 1) it
also follows that the conditions 2) and 3) must hold because the condition 1) guarantees that (-, g)
is an '0-space, which means that all of the conditions 1), 2) and 3) must hold. Hence, there could
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not be any '0-topology on - without a subset '0-topology on � where the conditions 2) and 3) are
also fulfilled.

Corollary 1. Let - be a finite set, � = {G ∈ - : {G} ∉ g} and g� = g|� be a subset topology on �.
Then there is a bijection between the '0-topologies on - and such '0-topologies on � where no
singleton is open, i.e. the following conditions hold:

1) to each '0-topology g on - there corresponds a unique '0-topology g� on � where each
element of g� is either an empty set or contains at least two elements;

2) to each '0-topology g� on � where each element of g� is either an empty set or contains at
least two elements, there corresponds exactly one '0-topology g in - such that g� = g|�.

Proof. If - = ∅, then � = ∅, and there is exactly one topology on both - and �, which makes both
of them '0-spaces.

If - ≠ ∅, then the condition 1) follows from Proposition 1 by taking g� = g|�.
Suppose that g� is such '0-topology on � where each element of g� is either an empty set or

contains at least two elements, and take any topology g on - such that g� = g|� = {$ ∩ � : $ ∈ g}.
Then the conditions 1) and 3) of Proposition 1 hold, whence g = {� ∪ � : � ∈ g�, � ⊆ - \ �} is
the unique topology on - , making it an '0-space where g� = g|�, and for each 0 ∈ - \ �, we have
{0} ∈ g. Thus, the condition 2) holds. �

Denote the number of all topologies making an =-element set an '0-space by '0(=), and the
number of all topologies making an =-element set an '0-space where no singleton is open by '0(=, 2).
Then, according to the results proven above, we obtain the formula

'0(=) =
=∑
8=0

�=
8 '0(= − 8, 2),

where �<
:

again denotes the number of different ways one can choose exactly : elements out of a
set containing exactly < elements.

It is easy to see that '(0, 2) = 1 and '(1, 2) = 0, but how to calculate '(=, 2) for = ¾ 2
in general, we do not know yet. By computer experiments run by Vainura, we know that
'0(2, 2) = 1 = '0(3, 2), '0(4, 2) = 4, '0(5, 2) = 11, '0(6, 2) = 41 and '0(7, 2) = 162. Hence,
the values of '0(=, 2) for = changing from 0 to 7 correspond to the first eight members of the
sequence �000296 in the On-Line Encyclopedia of Integer Sequences (OEIS).

Notice that the obtained formula is different from the formula

�= =

=−1∑
8=0

�=−1
8 �8

for calculating the Bell numbers because here the summation goes until =, while in the case of the
Bell numbers it finishes with = − 1. Moreover, at least for = ∈ {5, 6, 7, 8}, '0(= − 8, 2) is, in general,
not equal to any of the Bell numbers. So, the obtained formula is certainly diffrent from the iterative
formula for calculating the Bell numbers.

We finish the paper by including some additional results on the number of such topologies on an
=-element set where all open sets contain at least < elements, hoping that these will be useful for
someone who wants to use the idea of looking at such type of topologies.

For <, = ∈ Z+ with < ¶ =, denote by ) (=, <) the collection of all such topologies on an
=-element set where each open nonempty set contains at least < elements. For a subset � of an
=-element set - , denote by |�| the cardinality of �, i.e. the number of elements in �. So, for example,
if - = {G1, G2, . . . , G7} and � = {G2, G4, G5}, then = = 7 and |�|= 3.

Lemma 1. Let <, = ∈ Z+ with < ¶ = and (-, g) be a topological space for which - is an =-element
set and g ∈ ) (=, <). Then, for each �, � ∈ g we have that either � ∩ � = ∅ or |� ∩ � | ¾ <. In

particular, for |�| = < = |�|, one has � ∩ � =

{
�, 8 5 � = �

∅, >Cℎ4AF8B4
.

Proof. Let � = � ∩ �. Then � ⊆ � and � ⊆ �. Since �, � ∈ g, then � = � ∩ � ∈ g. As
g ∈ ) (=, <), then either � = ∅ or |� | ¾ <. If |� | = < = |� |, then, if � ≠ ∅, we must have both
� = � and � = �. Hence, either � = ∅ or � = � = �, and the claim holds. �
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Lemma 2. Let <, = ∈ Z+ with < ¶ = and (-, g) be a topological space for which - is an =-element
set and g ∈ ) (=, <). Then in g there could be at most

⌊
=
<

⌋
different open sets with exactly < elements

in each.

Proof. By Lemma 1, all different open sets with exactly < elements should be disjoint. Hence, the
total number of such different sets could be at most

⌊
=
<

⌋
(where b·c denotes the floor function). �

3. Conclusion

In this paper, we found an iterative formula for calculating the number of distinct '0-topologies on a
finite set using the numbers of such distinct '0-topologies on finite sets that do not have any open
singletons.
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Iteratiivne valem erinevate '0-topoloogiate arvu leidmiseks lõplikel
hulkadel

Mart Abel

Artiklis tuletatakse iteratiivne valem, mille abil saab välja arvutada lõplikul hulgal defineeritavate '0-topoloogiate

arvu, kasutades selliste '0-topoloogiate arve lõplikel hulkadel, kus ei leidu ühepunktilisi lahtisi hulki.
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