Proceedings of the
Estonian Academy of Sciences
2025, 74, 4, 521-524

https://doi.org/10.3176/proc.2025.4.05

www.eap.ee/proceedings
Estonian Academy Publishers

MATHEMATICS,
TOPOLOGY

RESEARCH ARTICLE

Received 19 February 2025
Accepted 21 April 2025
Available online 13 October 2025

Keywords:
Ro-topology, symmetric topology,
number of topologies on a finite set

Corresponding author:
Mart Abel
mabel@tlu.ee

Citation:

Abel, M. 2025. An iterative formula for
finding the number of different
Ry-topologies on a finite set. Proceedings
of the Estonian Academy of Sciences,
74(4), 521-524.
https://doi.org/10.3176/proc.2025.4.05

© 2025 Author. This is an open

access article distributed under the

terms and conditions of the Creative
Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0).

An iterative formula for finding the
number of different R,-topologies on
a finite set

Mart Abel?:P

a8 School of Digital Technologies, Tallinn University, Narva mnt 25, Room A-416, 10120 Tallinn,
Estonia

b |nstitute of Mathematics and Statistics, University of Tartu, Narva mnt 18, Room 4078,
51009 Tartu, Estonia

ABSTRACT

We present an iterative formula for calculating the number of different R-topologies on a finite
set.

1. Introduction

A topological space (X, 7) is called an Ry-space (see [1], p. 888, for example)
or a symmetric space if for each x,y € X, x # y either

1) x has an open neighbourhood that does not contain y, and y has an open
neighbourhood that does not contain x,
or

2) each open neighbourhood of x also contains y, and each open neigh-
bourhood of y also contains x.

The topology T making a topological space (X, 7) an Ry-space is called
an Rg-topology on the set X.

Mathematicians have calculated the number of different Ry-topologies
on an n-element set where 7 is a positive integer for some smaller values of
n, but a general formula for finding the total number of Ry-topologies on an
n-element set for an arbitrary positive integer n has not yet been found.

In 2024, Anne-Mari Vainura wrote her bachelor’s thesis [3], where she
used a computer programme to calculate the number of different types
of topologies on a finite set, including the number of Ry-topologies for
n € {1,2,3,4,5,6,7}. At least for these values, the number of different
Ry-topologies on an n-element set coincided with the Bell number B,,, but no
general relationship between these two number sets was yet established.

It is known (see [2] or [4], for example) that the Bell numbers B, for an
arbitrary positive integer n > 2 can be calculated by the following iterative

formula:
n—1

By= ) CI'B;,
i=0
where C}" denotes the number of different ways one can choose exactly k
elements out of a set containing exactly m elements.

In the present paper, we propose a formula that is similar, yet different,
for calculating the number of different Ry-topologies on a finite set, using the
number of such Ry-topologies on finite sets that do not have any singleton set
open.

2. Results

We start with the following proposition.

Proposition 1. Let n € Z*, X be a set with exactly n elements, T be a topology
onX,A={xeX:{x} et}, B=X\ A and g = 7|g be a subset topology.
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If (X, 1) is an Ry-space, then the following conditions hold:

1) (B, tB) is an Ry-space;

2) g C T, i.e. each subset of B that is open in g is also open in 7;
3) each nonempty subset C € tp contains at least two elements.
Moreover, if the condition 1) is fulfilled, then (X, 7) is an Ro-space.

Proof. Let (X, 1) be an Ry-space.

Take any x, y € B such that x # y. As x, y € X, then there are two possibilities:

a) there exist Oy, 0y € tx such thaty ¢ O, and x ¢ O,. Take V, = OyNn Band V, = O,N B.
Then V is such an open neighbourhood of x in 7 that does not contain y, and V), is such an open
neighbourhood of y that does not contain x;

b) each open neighbourhood O, € 7 of x in 7 also contains y, and each open neighbourhood
O, € 7 of y in 7 also contains x. But then each open neighbourhood V, = Oy N B € T of x in 73
also contains y, and each open neighbourhood Vy, = O, N B € 75 of y in 75 also contains x.

Hence, (B, 7p) is an Rp-space, and the condition 1) holds.

To show that the condition 2) holds, it is sufficient to show that B € 7. For that, notice that for
each x € B and each a € A, there exists a neighbourhood O, = {a} € 7 such that x ¢ O,. Hence,
there should also exist a neighbourhood U,, € 7 of x such that a ¢ U,. Now,

0x=ﬂua

acA

is a neighbourhood of x in 7 and, as A is a finite set, then O, € 7. Moreover, O, C B.

Notice that
B = U OyeT
xXeB

is a union of open sets. Hence, every element of 75 = {VN B : V € 7} is open in 7 as an intersection
of two sets that are open in 7. Thus, the condition 2) holds.

Let C € 75 \ {0}. Then C € T, by the condition 2), and C C B. If C were a singleton, then there
would exist an element x € B such that C = {x} and {x} € 7. But all such elements were already
included in A. Thus, each nonempty element of 75 should contain at least two elements.

Hence, all three conditions hold for an Ry-space (X, 7).

Suppose that the condition 1) holds for the subset topology 75. Notice that

T={CUD:Cetg,DCA}

because all elements of A, as singleton sets, have to be open in 7.

Take any x, y € X with x # y. Now, we have three possibilities:

a)x,y € A. Then Oy = {x},0, ={y} € 7,y ¢ Ox,x & Oy, and the case 1) of the definition of
an Rp-space realizes.

b) x,y € B. Then, by the condition 1), there are two possibilities.

b1) There exist neighbourhoods V,,V, € g such thatx € V,,y € V,,y ¢ V,, x ¢ V,. By the
definition of a subspace topology, there exist neighbourhoods O, O, € 7 of x and y, respectively,
such that V., = Oy N B and Vy, = O, N B. But then O, and O, satisfy the condition 1) of the
definition of an Ry-space.

b2) Every neighbourhood V of x in 75 also contains y, and every neighbourhood Vy, of y in 7p
also contains x. Take arbitrary neighbourhoods O, € 7 of x and O € 7 of y. Then O, N B is an
open neighbourhood of x in 75, and Oy N B is an open neighbourhood of y in 7. Hence, O, must
contain y, and O, must contain x. It means that the case 2) of the definition of an Ry-space realizes.

¢) One of the elements x, y is in A and another in B. Without loss of generality, we may assume
that x € A,y € B. Then there exist O, = {x} € T and O, = B € 7 such that the condition 1) of the
definition of an Ry-space is fulfilled.

Therefore, if the condition 1) is fulfilled, (X, 7) is an Ry-space. |

Remark 1. With that, we have demonstrated that (X, 1) is an Rg-space if and only if the conditions
1), 2) and 3) are fulfilled. Indeed, under the assumptions of Proposition 1, from the condition 1) it
also follows that the conditions 2) and 3) must hold because the condition 1) guarantees that (X, 7)
is an Ryp-space, which means that all of the conditions 1), 2) and 3) must hold. Hence, there could
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not be any Ry-topology on X without a subset Ry-topology on B where the conditions 2) and 3) are
also fulfilled.

Corollary 1. Let X be a finite set, B={x € X : {x} ¢ 7} and 15 = 7| be a subset topology on B.
Then there is a bijection between the Ry-topologies on X and such Ry-topologies on B where no
singleton is open, i.e. the following conditions hold:

1) to each Ry-topology T on X there corresponds a unique Ro-topology tg on B where each
element of Tp is either an empty set or contains at least two elements;

2) to each Ro-topology T on B where each element of Tp is either an empty set or contains at
least two elements, there corresponds exactly one Ry-topology T in X such that g = 7|p.

Proof. If X = 0, then B = (), and there is exactly one topology on both X and B, which makes both
of them Ry-spaces.

If X # 0, then the condition 1) follows from Proposition 1 by taking 75 = 7|p.

Suppose that 75 is such Ry-topology on B where each element of 75 is either an empty set or

contains at least two elements, and take any topology 7 on X such that 7z = 7|p = {ONB: 0 € 1}.

Then the conditions 1) and 3) of Proposition 1 hold, whence r = {CUD : C € 73,D C X \ B} is
the unique topology on X, making it an Ry-space where 75 = 7|p, and for each a € X \ B, we have
{a} € 7. Thus, the condition 2) holds. O

Denote the number of all topologies making an n-element set an Ry-space by Ry(n), and the

number of all topologies making an n-element set an Ry-space where no singleton is open by Ro(n, 2).

Then, according to the results proven above, we obtain the formula

n
Ro(n) = )" CRo(n —1,2),
i=0

where C" again denotes the number of different ways one can choose exactly k elements out of a
set containing exactly m elements.

It is easy to see that R(0,2) = 1 and R(1,2) = 0, but how to calculate R(n,2) for n > 2
in general, we do not know yet. By computer experiments run by Vainura, we know that
Ro(2,2) =1 = Rp(3,2),Rp(4,2) =4, Ro(5,2) = 11, Ry(6,2) = 41 and Ry(7,2) = 162. Hence,
the values of Ry(n,2) for n changing from 0 to 7 correspond to the first eight members of the
sequence A000296 in the On-Line Encyclopedia of Integer Sequences (OEIS).

Notice that the obtained formula is different from the formula

n-1
B,=) CI"'B;
i=0

for calculating the Bell numbers because here the summation goes until 7, while in the case of the
Bell numbers it finishes with n — 1. Moreover, at least for n € {5,6,7, 8}, Ro(n —1i,2) is, in general,
not equal to any of the Bell numbers. So, the obtained formula is certainly diffrent from the iterative
formula for calculating the Bell numbers.

We finish the paper by including some additional results on the number of such topologies on an
n-element set where all open sets contain at least m elements, hoping that these will be useful for
someone who wants to use the idea of looking at such type of topologies.

For m,n € Z* with m < n, denote by T'(n,m) the collection of all such topologies on an
n-element set where each open nonempty set contains at least m elements. For a subset A of an
n-element set X, denote by |A| the cardinality of A, i.e. the number of elements in A. So, for example,
if X = {x1,x2,...,x7}and A = {x2, x4, x5}, thenn = 7 and |A|= 3.

Lemma 1. Let m,n € Z* withm < n and (X, T) be a topological space for which X is an n-element
set and T € T(n,m). Then, for each A, B € T we have that either ANB =0 or|ANB| > m. In
A,ifA =B

particular, for |A| = m = |B|, one has AN B = ]
0, otherwise

Proof. Let C = ANB.ThenC € Aand C C B. Since A,B € 7,then C = AN B € 1. As
7 € T(n,m), then either C = @ or |C| = m. If |A| = m =|Bj, then, if C # 0, we must have both
C = A and C = B. Hence, either C = @ or C = A = B, and the claim holds. m]
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Lemma 2. Let m,n € Z* withm < n and (X, 7) be a topological space for which X is an n-element
setand t € T'(n, m). Then in T there could be at most Lﬁj different open sets with exactly m elements
in each.

Proof. By Lemma 1, all different open sets with exactly m elements should be disjoint. Hence, the
total number of such different sets could be at most |_ J (where | -] denotes the floor function). O

n
m
3. Conclusion

In this paper, we found an iterative formula for calculating the number of distinct Ry-topologies on a
finite set using the numbers of such distinct Ry-topologies on finite sets that do not have any open
singletons.
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Iteratiivhe valem erinevate Ry-topoloogiate arvu leidmiseks loplikel
hulkadel

Mart Abel

Artiklis tuletatakse iteratiivne valem, mille abil saab vélja arvutada I6plikul hulgal defineeritavate R,-topoloogiate
arvu, kasutades selliste Ry-topoloogiate arve Ioplikel hulkadel, kus ei leidu Ghepunktilisi lahtisi hulki.
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