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ABSTRACT

For the discrete linear multi-agent systems with random actuator faults and system distur-
bances, an iterative learning control strategy with the forgetting factor is proposed. Firstly, the
random variation of actuator faults with the number of iterations is considered. A multiplicative
stochastic fault model obeying a normal distribution is designed, and the correction mecha-
nism is given. Secondly, an iterative learning consistency control algorithm with a forgetting
factor is provided under the consideration of random disturbances in the system. The system
stability is analyzed by using the mean square stability theory. A sufficient condition for the
consistency in the multi-agent system is given through the relevant mathematical derivation,
which makes it possible to realize the state consistency for the discrete multi-agent system
under the occurrence of random faults in the actuator. Finally, the feasibility of the algorithm is
verified by numerical simulation in a multi-agent system.

1. Introduction
A multi-agent system (MAS) is a computational system composed of inter-
active agents. In a MAS, the agents can be physical entities or virtual entities
[20]. MASs have some applications in various fields, such as artificial in-
telligence, robot formations, and power systems [3,8,17]. They can be used
to solve complex problems such as collaborative task execution, distributed
decision making, and cooperative learning. Compared to a single agent, MASs
can achieve higher levels of functionality and performance, which improves
the robustness of the system. The consistency problem is a key issue in the
research of MASs [4].

With the development of the times and advancements in technology, the
environment of different industrial scenarios is highly variable. The agents
in a MAS are influenced by environmental factors, which presents additional
challenges for studying the stability and consensus of MASs. In [12], the
control problem of leader-follower consistency of MASs based on an event-
triggered mechanism is studied. The predetermined-time consensus problem of
a MAS with nonlinear uncertainties was investigated in [12]. The consensus
problem of a MAS with input amplitude constraints and input delays was
analyzed in [11]. A fully distributed adaptive protocol was designed in [21]
and applied to the nonlinear stochastic MAS with uncertain actuator faults.

Iterative learning control is regarded as an important branch of learning
control. It is a new type of learning control strategy. It improves control quality
by iteratively applying information obtained from previous experiments to
obtain control inputs that produce desired output trajectories. This strategy
is applied to the controlled systems with repetitive motion characteristics,
such as robots performing repetitive tasks and industrial controllers [6]. The
iterative learning control tracking problem for a linear continuous switching
system was studied by using a D-type iterative learning control algorithm
in [1]. The trajectory tracking problem of mobile robots through iterative
learning control was studied in [5].
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In addition, the study of iterative learning control in a MAS has attracted considerable attention.
A P-type iterative learning control algorithm was used in [2], which investigates the question whether
discrete time-varying MASs can be consistent in finite time. The iterative learning control method
was explored in the study of UAV formation in [7]. The consensus tracking problem of nonlinear
MASs under data transmission losses was considered in [10]. The output consensus tracking problem
for continuous linear MASs with measurement limitations was studied by using the P-type iterative
learning control method in [19]. In order to effectively reduce the impact of false data injection (FDI)
attacks, the consensus learning control problem of nonlinear MASs under FDI attacks was studied by
Peng in [13]. In [23], the consensus problem of one-sided Lipschitz MASs under deception attacks
and random disturbances was solved by using a pulse-based consensus protocol. As can be seen, the
first motivation of this paper is to apply iterative learning control algorithms to study the consensus
problem in MASs.

According to [16], reducing the dependence on past iterations in the face of uncertain dynamic
changes and external disturbances will better adapt to changing system states and improve con-
vergence speed and robustness. As a result, iterative learning control algorithms with forgetting
factors have also been extensively studied. The speed control system of diesel generator sets in
ship propulsion systems was studied by Huang using the iterative learning control algorithm with
a forgetting factor in [9]. In [18], a suitable iterative learning control algorithm with a variable
forgetting factor was designed by Wang for the trajectory characteristics of a lower-limb exoskeleton
robot. Additionally, in [22], Zhang studied the path tracking problem of mobile robots with repetitive
trajectories by introducing a forgetting factor into the PD-type discrete iterative learning control.
Another motivation of this paper is to investigate how to introduce a forgetting factor into the iterative
learning control algorithm to study the consensus problem in MASs.

Currently, there are relatively few studies on the consensus problem of MASs with random faults.
Based on the aforementioned studies, in this paper, an iterative learning control strategy with a
forgetting factor is applied to the consensus problem of a discrete linear MAS with random faults in
the actuator. The main contributions are as follows:

1. A new external random disturbance model is established. Unlike conventional external distur-
bances, this paper proposes that the system’s own disturbances follow a normal distribution, thereby
introducing greater randomness into the system.

2. Considering that actuator faults vary randomly with the iteration steps, this paper introduces
a multiplicative random fault model that follows a normal distribution along with a compensation
mechanism. This ensures that the fault parameters of the agents are different in each iteration.

3. Compared to traditional iterative learning control methods, this strategy introduces a forgetting
factor that reduces the reliance on past states and enables the system to focus more on the latest
errors generated during each iteration. This approach can more effectively address the uncertainties
arising from changes in the external environment during the operation of the MAS, ensuring that
the system retains good robustness in complex and dynamic practical applications. It provides a new
perspective for solving the consensus problem of MASs in complex dynamic environments.

Finally, numerical simulations are presented to validate the effectiveness of the proposed algo-
rithm.

2. Graph theory
In the study, graph theory is utilized to describe the network communication topology among agents
in a MAS. Each agent in the system is considered as a node, and thus the set of all agents can be
represented as a node set + = {1, 2, · · · , #}. The set of edges between the nodes is represented as
Y = + ⇥+ . The communication between the nodes can be described using the weighted adjacency
matrix � = (08 9) 2 '

=⇥=. The weights can represent the influence of the information. The three
parts above constitute ⌧ = {+ , Y, �}, representing the communication topology of a MAS. In the
adjacency matrix � = (08 9) 2 '

#:# , the indices 8 and 9 represent two different nodes. The set
of neighboring nodes of the 8-th node can be represented using #8 = { 9 2 + : (8, 9) 2 Y, 8 < 9}.
If 08 9 = 0 exists, it represents (8, 9) 8 Y, indicating that there is no communication relationship
between the node 8 and the node 9 . If the topology graph is an undirected graph, both (8, 9) 2 Y and
( 9 , 8) 2 Y exist. Otherwise, the topology graph is a directed graph. In graph theory, the Laplacian
matrix is an important matrix for analyzing the topology graph ⌧. The Laplacian matrix is defined
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as follows: ! = ⇡ � �, where ⇡ = 3806(31, 32, · · · , 3=) is the in-degree matrix of the topological
structure, and the in-degree of the node 8 is defined as 38 =

Õ=
9=1 08 9 . Leaders can be one or multiple

individuals. Let the set of nodes representing the leaders be denoted as + = + [ {a0}, and let
( = 3806{B1, B2, · · · B# }. Here, B8 represents the connection weight, 8 2 {1, 2, · · · , #}. If there is
a connection between an agent and a leader, it is denoted as B8 > 0; otherwise, it is represented as
B8 = 0.

3. Problem description
The MAS composed of = agents is considered in this paper. Each agent is characterized by the same
identical dynamic structure, although the parameters differ among agents. For the 9-th agent in the
MAS, the following linear discrete system is considered:(

G:, 9 (C + 1) = �CG:, 9 (C) + ⌫CD:, 9 (C) + l(C),
H:, 9 (C) = ⇠CG:, 9 (C),

(1)

where : represents the iteration number and G:, 9 (C) , D:, 9 (C) , H:, 9 (C) represent the control state,
control input, and control output of the 9-th agent at the :-th iteration, respectively; l(C) represents
the disturbance experienced by the system, which follows a continuous distribution P(l(C) > 0) = 1.
Additionally, ⇢ [l(C)] = `, ⇢ [(l(C)� `)2] = f

2. �C ,⌫C , and ⇠C are the corresponding time-varying
coefficient matrices.

The desired trajectory H3 (C) of the MAS is given. H3 (C) is considered a virtual leader, labeled as
0, while the remaining agents are treated as followers, labeled as 9 2 [1, 2, · · · , =]. It is assumed
that the desired trajectory H3 (C) is directly accessible only to partial agents. Thus, ⌧ = {+ , Y, �}
represents the complete communication topology, Y denotes the set of edges, and � represents the
adjacency matrix.

Actuator faults between the agents are considered in this paper, where the faults are represented
by a random multiplicative variable U:, 9 (C). The fault information received by the 9-th agent from
the 8-th agent is denoted by I:, 9 ,8 (C), which can be expressed as:

I:, 9 ,8 (C) = U:, 9 ,8 (C)H:,8 (C). (2)

The following assumptions are provided for the MAS and the random fault variable to facilitate
further analysis.

Assumption 1. The fault gain U:, 9 (C) follows a continuous distribution P(U:, 9 (C) > 0) = 1.
Additionally, ⇢ [U:, 9 ,8 (C)] = ` and ⇢ [(U:, 9 ,8 (C)�`)2] = f

2 are the parameters of the system, where
` is a known constant.

Assumption 2. The desired trajectory H3 (C) is achievable, as there exist an initial state H3 (C)
and an input H3 (C) for the system such that:(

G3 (C + 1) = �CG3 (C) + ⌫CD3 (C) ,
H3 (C) = ⇠CG3 (C) .

(3)

Assumption 3. When C = 0, the system state G:, 9 (0) equals the desired state G3 (0).
Assumption 4. Matrices ⌫ and ⇠ are full rank.
Assumption 5. The graph ⌧ = {+ , Y, �} contains a spanning tree, and the virtual leader is the

root of the spanning tree.
Remark 1. Assumption 5 is a sufficient condition for achieving consensus tracking in the MAS.

If there exists an isolated agent in the system that cannot access the desired trajectory, its output will
never converge to the desired value, regardless of the number of iterations. As a result, the system
will fail to reach a consensus state.

For the MAS (1), the control objective is to design an appropriate iterative learning control
algorithm. As the number of iterations increases, under the condition that only a subset of the agents
has access to the desired trajectory, the goal for the output of each agent is to converge to the desired
trajectory. That is, the system should satisfy:

lim
:!1

⇢

⇥
kH3 (C) � H:, 9 (C)k

⇤2
= 0,8C 2 [0, 1, 2, · · · =] . (4)
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4. Iterative learning consistency control for multi-agent systems
In Section 2, it is known that there exists a multiplicative random fault variable U:, 9 ,8 (C) in the
outputs among the agents. This causes the fault-affected information I:, 9 ,8 (C) received by the 9-th
agent to be unsuitable for direct use as the actual output of the corresponding agent in iterative
learning consensus control. Therefore, the following correction is first performed on the outputs of
the MAS affected by actuator faults:

Ī:, 9 ,8 (C) = `
�1
I:, 9 ,8 (C) = `

�1
U:, 9 ,8 (C)H:, 9 (C). (5)

Remark 2. Due to Assumption 1, the mean value of `�1
U:, 9 ,8 (C)H:, 9 (C) in (5) is zero. It ensures

that the corrected signal serves as an unbiased estimate of the original output. This allows the
corrected signal to be effectively applied in the consensus learning scheme.

In the general case of MAS consensus research, the consensus error of the 9-th agent at the :-th
iteration is:

b:, 9 (C) =
’
82#8

0 98
�
H:,8 (C) � H:, 9 (C)

�
+ B 9

�
H3 (C) � H:, 9 (C)

�

=
’
82#8

0 98
�
4:, 9 (C) � 4:,8 (C)

�
+ B 94:, 9 (C).

(6)

Unlike the general case, due to the output correction in this paper, the consensus error of the 9-th
agent at the :-th iteration is defined as:

b:, 9 (C) =
’
82# 9

0 98
�
I:, 9 ,8 (C) � H:, 9 (C)

�
+ B 9

�
H3 (C) � H:, 9 (C)

�

=
’
82# 9

0 98

⇣
`
�1
U:, 9 ,8 (C)H:,8 (C) � H:, 9 (C)

⌘
+ B 9

�
H3 (C) � H:, 9 (C)

�

=
’
82# 9

0 98

⇣
H:,8 (C) � H:, 9 (C) � (1 � `

�1
U:, 9 ,8 (C))H:,8 (C)

⌘
+ B 9

�
H3 (C) � H:, 9 (C)

�

=
’
82# 9

0 98
�
H:,8 (C) � H:, 9 (C)

�
+ B 9

�
H3 (C) � H:, 9 (C)

�
�

’
82# 9

0 98 (1 � `
�1
U:, 9 ,8 (C))H:,8 (C)

=
’
82# 9

0 98
�
H:,8 (C) � H:, 9 (C)

�
+ B 94:, 9 (C) +

’
82# 9

0 98 (1 � `
�1
U:, 9 ,8 (C))

�
4:, 9 (C) � H3 (C)

�
,

(7)
where 4:, 9 (C) = H3 (C) � H:, 9 (C) is the actual tracking error of the 9-th agent.

Unlike the general P-type iterative learning control algorithm, a P-type iterative learning control
law with a forgetting factor is adopted. The distributed control scheme is as follows:

D:+1, 9 (C) = fD:, 9 (C) + _:�b:, 9 (C + 1), (8)

where f(0 < f < 1) is the forgetting factor, � is the iterative learning gain matrix, and _: is a
decreasing sequence. Let

G: (C) =
⇥
G:,1

) (C), G) :,2(C), · · · , G) :,= (C)
⇤)
,

H: (C) =
⇥
H:,1

) (C), H) :,2(C), · · · , H) :,= (C)
⇤)
,

D: (C) =
⇥
D:,1

) (C), D) :,2(C), · · · , D) :,= (C)
⇤)
,

4: (C) =
⇥
4
)
:,1(C), 4):,2(C), · · · , 4):,= (C)

⇤)
,

�2 = 3806

�
�2,1, �2,2, · · · , �2,=

 
,

⌥:,8 (C) =
⇥
1 � `

�1
U:,1,8 (C), 1 � `

�1
U:,2,8 (C), · · · , 1 � `

�1
U:,=,8 (C)

⇤)
,

⌥: (C) =
⇥
⌥:,1(C),⌥:,2(C), · · · ,⌥:,= (C)

⇤)
,

� = 3806{�1, �2, · · · , �=}.

Here, �2, 9 represents the 9-th row of the adjacency matrix �.
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The MAS (1) can then be written in a compact form as
(
G: (C + 1) = (�= ⌦ �C )G: (C) + (�= ⌦ ⌫C )D: (C) + l(C),
H: (C) = (�= ⌦ ⇠C )G: (C).

(9)

Similarly, (8) can be written in a compact form as

D:+1(C) = fD: (C) + _: [(! + ⇡) ⌦ �]4: (C + 1) + _:⌥: (C + 1) [�2 ⌦ �]4: (C + 1)
� _:⌥: (C + 1) [�2 ⌦ �] (1= ⌦ H3 (C + 1)). (10)

To simplify the expression, the following inductive processing is applied to (9).
Let

D: = [D: (0)) , D: (1)) , · · · , D: (# � 1)) ]) ,
H: = [H: (1)) , H: (2)) , · · · , H: (#)) ]) ,

where D: and H: represent the input and output at the corresponding time of each iteration, respec-
tively.

It can be obtained as
H: = ⌧D: + �G: (0) + "l, (11)

H3 = ⌧D3 + �G3 (0), (12)

where

⌧ =
©≠≠≠≠
´

�= ⌦ ⇠C⌫C 0 0 0
�= ⌦ ⇠C�C⌫C �= ⌦ ⇠C⌫C 0 0

.

.

.

.

.

.

.
.
.

.

.

.

�= ⌦ ⇠�
#�1
C ⌫C �= ⌦ ⇠C�

#�2
C ⌫C · · · �= ⌦ ⇠C⌫C

™ÆÆÆÆ
¨
, � =

©≠≠≠≠≠
´

(�= ⌦ ⇠C�C ))�
�= ⌦ ⇠C�

2
C

�)
.
.
.�

�= ⌦ ⇠C�
#
C

�)

™ÆÆÆÆÆ
¨
,

" =
©≠≠≠≠
´

�= ⌦ ⇠C 0 0 0
�= ⌦ ⇠C�C �= ⌦ ⇠C 0 0

.

.

.

.

.

.

.
.
.

.

.

.

�= ⌦ ⇠C�
#�1
C �= ⌦ ⇠C�

#�2
C · · · �= ⌦ ⇠C

™ÆÆÆÆ
¨
.

Let �D: = D3�D: . Combining (10), (11), (12), and Assumption 3, the following can be obtained:

D:+1(C) = fD: + _: 14: + _:⌥: 24: � _:⌥: 2.3

= fD: + _: 1(⌧�D: � "l) + _:⌥: 2(⌧�D: � "l) � _:⌥: 2.

= fD: + _: 1⌧�D: + _:⌥: 2⌧�D: � _: 1"l � _:⌥: 2"l � _:⌥: 2.3 ,

(13)

where
 1 = (! + ⇡) ⌦ �,
 2 = �2 ⌦ �,
⌥: = 3806{⌥: (1),⌥: (2), · · · ,⌥: (#)}.

For the convergence analysis, the following necessary lemmas are provided.
Lemma 1. If the learning gain matrix � satisfies the condition that all eigenvalues of the matrix

�⇠C⌫C are positive real numbers, then the matrix �(! + ⇡) ⌦ (�⇠C⌫C ) is stable.
Lemma 2. [14] Let {b: , : = 1, 2, · · · },{g: , : = 1, 2, · · · }, and {j: , : = 1, 2, · · · } be real

sequences, and assume they satisfy

0 < g: < 1, j: � 0, g: ! 0,
1’
:=1

g: = 1,

and b:+1  (1 � g:)b: + j: . Then, the equation lim:!1 b: = lim:!1 j:/g: holds under the
condition that the limit on the right-hand side exists. Furthermore, if j:/g: ! 0 and b: � 0, then
lim:!1 b: = 0.
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Theorem 1. Considering the stability of the MAS (1) under Assumptions 1–5. If � is de-
signed such that the eigenvalues of �⇠C⌫C are all positive real numbers, then the learning con-
sensus scheme ensures that the input errors of all agents converge to 0 in the mean square sense,
lim:!1 ⇢

⇥��
D3 (C) � D:, 9 (C)

��⇤2
= 0. Consequently, the tracking errors ⇢

⇥
kH3 (C) � H:, 9 (C)k

⇤2 of
all agents also converge to 0 in the mean square sense.

Proof. From (13), the input error expression can be obtained as:

�D:+1 = f�D: � _: 1⌧�D: � _:⌥: 2⌧�D: + _: 1"l

+ _:⌥: 2"l + _:⌥: 2.3 .
(14)

Since the eigenvalues of the matrix �⇠C⌫C are all positive real numbers, by Lemma 2,�(! + ⇡)⌦
(�⇠C⌫C ) is stable, noting that �(! + ⇡) ⌦ (�⇠C⌫C ) is a block lower triangular matrix, and  1⌧ is
the diagonal block. It can be deduced that all eigenvalues of  1⌧ have positive real parts. Therefore,
there exists a positive definite matrix % such that the equation ⇥)

% + ⇥% = � (⇥ =  1⌧) holds.
Therefore, similarly to the proof in [15], a Lyapunov function +: = (�D): )%(�D:) is defined.

By substituting the input error expression (14) into the system, the following can be obtained:

+:+1 = (�D):+1)%(�D:+1)
= f

2�D):%�D: + _
2
:�D

)
:⇥

)
%⇥�D: + _

2
:�D

)
: (⌥: 2⌧))%⌥: 2⌧�D:

+ _
2
: ( 1"l))%( 1"l) + _

2
: (⌥: 2"l))%⌥: 2"l

+ _
2
: (⌥: 2.3))%⌥: 2.3 � f_:�D): [%⇥ + ⇥)

%]�D:
� _:f�D): [%⌥: 2⌧ + (⌥: 2⌧))%]�D: � 2f_:�D):%⌦1�D0

+ 2f_:�D):% 1"l + 2f_:�D):%⌥: 2"l + 2f_:�D):%⌥: 2.3

+ _
2
:�D

)
: [⇥)

%⌥: 2⌧ + (⌥: 2⌧))%⇥]�D:
� 2_2

:�D
)
:⇥

)
% 1"l � 2_2

:�D
)
:⇥

)
%⌥: 2"l � 2_2

:�D
)
:⇥

)
%⌥: 2.3

� 2_2
:�D

)
: (⌥: 2⌧)) % 1"l � 2_2

:�D
)
: (⌥: 2⌧)) %⌥: 2"l

� 2_:
2�D:) (⌥: 2⌧)) %⌥: 2.3

+ 2_2
: ( 1"l))%⌥: 2"l + 2_2

: ( 1"l))%⌥: 2.3

+ 2_2
: (⌥: 2"l))%⌥: 2.3 .

(15)

An X-algebra is defined as
F: ¨ X

�
G;, 9 , H;, 9 (C), D;, 9 (C), \;, 9 ,8 (C),l;, 9 (C), 0  C  # , 1  ;  : , 1  9 , 8  =

 
, representing the

set of all events caused by random variables up to the :-th iteration. Since the input at the :-th
iteration is generated using information from the previous iteration, it is evident that �D: 2 F:�1,
while ⌥: and l are independent of F: . Thus, by the definitions of ⌥: and l, we have ⇢ [⌥:] = 0
and ⇢ [l:] = 0. Consequently, the following can be obtained:

E
⇥
�D:) [%⌥: 2⌧ + (⌥: 2⌧))%]�D: | F:�1

⇤
= 0,

E
⇥
�D:)% 1"l | F:�1

⇤
= 0,

E
⇥
�D:)%⌥: 2"l | F:�1

⇤
= 0,

E
⇥
�D:)%⌥: 2.3 | F:�1

⇤
= 0,

E
⇥
�D): [⇥)

%⌥: 2⌧ + (⌥: 2⌧))%⇥]�D: | F:�1
⇤
= 0,

E
⇥
�D:)⇥)

% 1"l | F:�1
⇤
= 0,

E
⇥
�D:)⇥)

%⌥: 2"l | F:�1
⇤
= 0,

E
⇥
�D:)⇥)

%⌥: 2.3 | F:�1
⇤
= 0,

E
⇥
�D): (⌥: 2⌧)) % 1"l | F:�1

⇤
= 0,

E
⇥
�D): (⌥: 2⌧))%⌥: 2"l | F:�1

⇤
= 0,

E
⇥
( 1"l)) %⌥: 2"l | F:�1

⇤
= 0,

E
⇥
( 1"l)) %⌥: 2.3 | F:�1

⇤
= 0,

E
⇥
(⌥: 2"l)) %⌥: 2.3 | F:�1

⇤
= 0.

(16)
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In addition,
E

⇥
�D):⇥

)
%⇥�D: | F:�1

⇤
 (�D:))E[⇥)

%⇥ | F:�1]�D:
 d1(�D:))%�D: = d1+: ,

E
⇥
�D): (⌥: 2⌧))%⌥: 2⌧�D: | F:�1

⇤
 (�D:))E[(⌥: 2⌧))%⌥: 2⌧ | F:�1]�D:
 d2(�D:))%�D: = d2+: ,

E
⇥
( 1"l))%( 1"l) | F:�1

⇤
 d3,

E
⇥
(⌥: 2"l))%⌥: 2"l | F:�1

⇤
 d4,

E
⇥
(⌥: 2.3))%⌥: 2.3 | F:�1

⇤
 d5,

(17)

where d⇤ � 0, and ⇤ = 1, 2, 3, 4, 5 are appropriate constants.

E[�D:) [%⇥ + ⇥)
%]�D: | F:�1] = E

⇥
�D):�D: | F:�1

⇤
� d6+: ,

(18)

where d6 is a constant satisfying � � d6%.
Since % is a positive definite matrix, it can be written as % = %

1
2 %

1
2 . Thus, the following can be

obtained:

� 2�D:) (⌥: 2⌧))%⌥: 2.3  2

��������D:
) (⌥: 2⌧))% 1

2|                   {z                   }
0)

%

1
2⌥: 2.3|       {z       }

1)

�������
 �D:) (⌥: 2⌧))%⌥: 2⌧�D:|                                 {z                                 }

0)0

+ (⌥: 2.3))%⌥: 2.3|                      {z                      }
1)1

.

(19)

Therefore,
E

⇥
�2�D): (⌥: 2⌧))%⌥: 2.3 | F:�1

⇤
 d2+ + d5. (20)

Combining (15)–(18) and (20), the following can be obtained:

E[+:+1 | F:�1]
 f

2
+: + _

2
:d1+: + _

2
:d2+: + _

2
:d3 + _

2
:d4 + _

2
:d5

� _:fd6+: + _
2
:d2+: + _

2
:d5

= f
2
+: � f_:d6+: + _

2
:d1+: + 2_2

:d2+: + _
2
:d3 + _

2
:d4 + 2_2

:d5

= f
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_:d6
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+: +
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f
2 +: +

2_2
:d2

f
2 +:) +

(_2
:d3 + _

2
:d4 + 2_2

:d5)
f

2

#

 (+: �
_:d6
f

+: +
_

2
:d1

f
2 +: +

2_2
:d2

f
2 +:) +

(_2
:d3 + _

2
:d4 + 2_2

:d5)
f

2

=

 
1 � _:d6

f

+
_

2
:d1

f
2 +

2_2
:d2

f
2

!
+: +

(_2
:d3 + _

2
:d4 + 2_2

:d5)
f

2

=

1 � 1

f

_:

✓
d6 �

_:d1
f

� 2_:d2
f

◆�
+: +

(_2
:d3 + _

2
:d4 + 2_2
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f

2 .

(21)

Taking the expectation on both sides of (21), the following can be obtained:

E[+:+1]  (1 � ?:) E[+:] + @: , (22)
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where ?: = 1
f_:

h
d6 � _:

⇣
d1+2d2

f

⌘i
and @: = (_:

2d3+_:
2d4+2_:

2d5 )
f2 . By Lemma 2, E[+:],?: , and

@: correspond to b: ,g: , and j: , respectively. Since _: ! 0, when : is sufficiently large, by proper
scaling, the following can be obtained: _:

⇣
d1+2d2

f

⌘
 (1/2)d6,

@:

?:
=

1
f2 (_2

:d3 + _
2
:d4 + 2_2

:d5)
1
f_:

h
d6 � _:

⇣
d1+2d2

f

⌘i =
_

2
: (d3 + d4 + 2d5)

f_:

h
d6 � _:

⇣
d1+2d2

f

⌘i

 _: (d3 + d4 + 2d5)
fd6

!
:!1

0.

By Lemma 2, when : ! 1, E[+:] ! 0, lim:!1 E[kD3 � D: k2] = 0. Consequently, lim:!1
E[kH3 � H: k2] = 0. This proof indicates that the designed iterative learning consensus control
scheme with a forgetting factor can achieve consensus convergence in the MAS.

5. Simulation
In this section, the results obtained are validated by simulation. In this paper, we consider MASs
consisting of four followers and one virtual leader. The communication topology is shown in Fig. 1.

The virtual leader is numbered 0, and the followers are numbered 1–4. Based on the interaction

signal values of each agent, the adjacency matrix of the system can be derived as � =

26666664

0 2 2 0
1 0 0 1
1 0 0 1
0 2 2 0

37777775
,

the degree matrix ⇡ =

26666664

4 0 0 0
0 2 0 0
0 0 2 0
0 0 0 4

37777775
. Therefore, due to graph theory in Section 2, the Laplacian

matrix can be obtained as

! = ⇡ � � =

26666664

4 �2 �2 0
�1 2 0 �1
�1 0 2 �1
0 �2 �2 �4

37777775
.

Fig. 1. System communication topology.
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"EEJUJPOBMMZ
 POMZ UIF GPMMPXFST � BOE � DBO EJSFDUMZ SFDFJWF JOGPSNBUJPO GSPN UIF WJSUVBM MFBEFS ��
4P JU DBO CF PCUBJOFE BT

! =



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


.

5IF NBUSJY PG UJNF�WBSZJOH DPFђDJFOUT GPS EFTJHOJOH UIF EZOBNJD NPEFM PG UIF TZTUFN JT BT
GPMMPXT�

"! =

0.02 sin 0.01# −0.2 0.01#

0.2 −0.02# −0.04 sin 0.5#
0.1 0.1 0.2 + 0.05 cos 0.2#


,

$! =

1 − 0.5 sin 0.5# 0

0.01# 0.01#
0 1 + 0.1 sin 0.5#


,

%! =
[
0.2 + 0.1 sin 0.5# 0.1 −0.1

0 0.1 0.4 − 0.1 sin 0.4#

]
.

$POTJEFS UIF EFTJSFE USBKFDUPSZ PG UIF WJSUVBM MFBEFS � BT &" =
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4

cos !
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 BOE UIF BDUVBUPS SBOEPN GBVMU
JT EFOPUFE BT )(#) ∼ ( (0.95, 0.12)� 5IF TFRVFODF PG EFDSFBTJOH JUFSBUJWF MFBSOJOH HBJOT JT EFOPUFE

BT *$ = 0.95$ � 5IF JOJUJBM JUFSBUJWF MFBSOJOH HBJO NBUSJY JT DIPTFO BT Γ =
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0.4 0 0 0
0 0.4 0 0
0 0 0.4 0
0 0 0 0.4
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�

5IF JUFSBUJWF MFBSOJOH GPSHFUUJOH GBDUPS JT DIPTFO BT + = 0.90�
5IF SBOEPN GBVMU WBMVFT PG UIF BDUVBUPS BU FBDI JUFSBUJPO BSF HJWFO JO 'JH� �� *U DBO CF TFFO

UIBU GPS FBDI JUFSBUJPO PG UIF ."4
 UIF WBMVFT PG UIF BDUVBUPS GBVMUT BSF OPU UIF TBNF� *U SFёFDUT
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Additionally, only the followers 1 and 2 can directly receive information from the virtual leader 0. 
So it can be obtained as

The matrix of time­varying coefficients for designing the dynamic model of the system is as 
follows:

Actuator random fault distribution

Fa
ul

t v
al

ue

The random fault values of the actuator at each iteration are given in Fig. 2. It can be seen that 
for each iteration of the MAS, the values of the actuator faults are not the same. It reflects the 
randomness, which is more suitable for complex dynamic changes in the actual engineering 
applications.

as !" = 0.95". The initial iterative learning gain matrix is chosen as Γ =

The iterative learning forgetting factor is chosen as # = 0.90.
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Fig. 4.  Variation of control input component 2 for four agents with iteration.

Fig. 3.  Variation of control input component 1 for four agents with iteration.
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The variation of the two control input components of the four following agents along the iteration 
axis is shown in Fig. 3 and Fig. 4, respectively. It can be seen that when the forgetting factor is 0.9, 
with the increase in the number of iterations, the control input component 1 and the control input 
component 2 of the four agents both converge to 0 in a finite amount of time around the 20th 
iteration under the random fault of the actuator, and consistency is achieved.  

The changes in the three state components of the four following agents along the iteration axis are 
shown in Fig. 5, Fig. 6, and Fig. 7, respectively. It can be seen from Figs 5 and 6 that, with the increase 
in the number of iterations, the state component 1 and the state component 2 of the four agents 
converge to a stable value around the 20th iteration under random actuator failure. However, the 
curves show slight jitter due to the randomness of the actuator failure, though this is not significant, 
and consistency is essentially achieved. From Fig. 7, it can be observed that the state component 3 
of the four agents also tends to stabilize at the 20th iteration, performing better relative to the state 
components 1 and 2. 
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Fig. 5.  Variation of state component 1 for four agents with iteration.

Fig. 6.  Variation of state component 2 for four agents with iteration.

Fig. 7.  Variation of state component 3 for four agents with iteration.
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Fig. 9.  Variation of tracking error 2 for four agents with iteration.

Fig. 8.  Variation of tracking error 1 for four agents with iteration.
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The change in tracking error of the four following agents along the iteration axis is shown in 
Fig. 8 and Fig. 9, respectively. It can be seen from the figures that under the random fault of the 
actuator, the tracking error component 1 of the four agents tends to reach the same value at the 20th 
iteration. Considering the randomness of the faults, the error does not converge to 0 but gradually 
tends to decrease. The tracking error component 2 of the four agents converges to 0 at about the 
20th iteration, and tracking consistency control is essentially achieved. 

6. Conclusions 
In this paper, the P­type iterative learning control method, which introduces a forgetting factor, is 
applied to a discrete linear multi­agent system subject to random disturbances. By introducing a 
forgetting factor, reliance on past states is diminished, thereby enhancing the system’s adaptability 
to random actuator faults and preserving the consistency of the multi­agent system. Drawing upon 
the stability theory of mean­square significance, a sufficient condition for the ultimate convergence 
of system consistency error is derived and presented. It ensured that consistency is achieved in the 
mean­square sense. Numerical simulations confirm that the proposed control method demonstrates 
robustness in discrete linear multi­agent systems in the presence of random actuator faults and 
disturbances. 
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Mitmeagendiliste süsteemide iteratiivne õppimiskonsistentsuse
juhtimine unustamisteguritega täiturmehhanismide juhuslike
tõrgete korral
Yuhan Li ja Xingjian Fu

Diskreetsete lineaarsete mitmeagendiliste süsteemide jaoks, mille täiturmehhanismis esineb juhuslikke tõrkeid
ja süsteemi häiringuid, on töötatud välja unustamisteguriga iteratiivse õppimise juhtimise strateegia. Esiteks
on vaadeldud täiturmehhanismi tõrgete juhuslikku varieeruvust iteratsioonide arvu suurenedes. Selleks on
koostatud normaaljaotusele alluv multiplikatiivne stohhastiline tõrkemudel ja parandamismehhanism. Teiseks
on töötatud välja unustamisteguriga iteratiivne õppimiskonsistentsuse juhtimise algoritm, mis arvestab süsteemi
juhuslikke häiringuid. Süsteemi stabiilsust on analüüsitud keskmise ruutvea alusel. Tuletatud on piisavuse
tingimus mitmeagendilise süsteemi konsistentsuse saavutamiseks, mis võimaldab tagada diskreetse mitme-
agendilise süsteemi olekute konsistentsuse ka täiturmehhanismi juhuslike tõrgete korral. Väljatöötatud algoritmi
valideerimiseks on teostatud numbrilised simulatsioonid mitmeagendilises süsteemis.


