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Abstract. We generalize some results about the topological product and the topological projective limit of galbed algebras. We
also prove that the topological product is an (αn)-galbed algebra if and only if its each factor is an (αn)-galbed algebra.
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1. INTRODUCTION

Throughout this paper, the set N of natural numbers includes also 0, all topological spaces are Hausdorff
spaces, and K denotes either the field R of real numbers or the field C of complex numbers. All topological
algebras will be associative algebras over the field K (with separately continuous multiplication).

Let sK denote the set of all K-valued sequences (αn), i.e. (αn)∈ sK if and only if αn ∈K for each n∈N.
As usual, the set l0 will consist of all such sequences (αn) ∈ sK for which the set {n ∈ N : αn ̸= 0} is

finite. Similarly, the set l1 will consist of all such sequences (αn) ∈ sK for which
∞

∑
v=0
|αv|< ∞.

Set l = l1 \ l0.
Let us recall that an (αn)-galbed algebra for (αn) ∈ l is a topological algebra (A,τA) for which, for each

neighbourhood O of zero in (A,τA), there exists a neighbourhood U of zero in (A,τA) such that{ n

∑
k=0

αkak : n ∈ N,a0, . . . ,an ∈U
}
⊆ O.

A topological algebra (A,τA) is a galbed algebra if there exists (αn) ∈ l such that (A,τA) is an (αn)-galbed
algebra.

One can read a short history of galbed algebras in [2], p. 14.
The main aim of this paper is to generalize Proposition 1 from [2], p. 16, about the topological product

of galbed algebras by substituting the condition of the finiteness of the number of certain sequences (αn) ∈ l
by a weaker condition, where finiteness is no more needed. After doing that, we will also generalize Propo-
sition 3 from [2], p. 23, about the projective limit of galbed algebras, using the same technique as in the
generalization of Proposition 1 of [2].
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In [2], p. 15, the following result (called Lemma 1 in [2]) was proved.

Lemma 1. Let (A,τA) be an (αn)-galbed algebra and (B,τB), where τB = τA |B, a subalgebra of (A,τA).
Then (B,τB) is also an (αn)-galbed algebra.

Next, let us recall a result (rewording of Lemma 7 from [1], p. 14), which says the following.

Lemma 2. Let (A,τA) be an (αn)-galbed topological algebra. Then there exists a sequence (βn) ∈ l such
that βk ∈ R, βk > 0 for each k ∈ N, and (A,τA) is a (βn)-galbed algebra.

In the proof of this lemma, the sequence (βn) is constructed as follows.
Let (A,τA) be an (αn)-galbed algebra. Define i0 := min{k : αk ̸= 0}, i j := min{k : k > i j−1,αk ̸= 0} for

each j ∈ N \ {0}, and set βk :=|αik | for each k ∈ N. Then (βn) satisfies the conditions of the lemma, and
(A,τA) is a (βn)-galbed algebra.

Definition 1. Let (αn) ∈ l. The sequence (βn), defined by βk :=| αik | for each k ∈ N, where
i0 := min{k : αk ̸= 0} and i j := min{k : k > i j−1,αk ̸= 0} for each j ∈ N \ {0}, is called the skeleton
sequence of the sequence (αn).

Notice that if (βn) is the skeleton sequence of (αn), then
∞

∑
n=0

βn =
∞

∑
n=0
|αn|.

The construction of the skeleton sequence for any sequence (αn)∈ l will be a very important tool for proving
our main result of this paper.

Let I be any set on indices and {(Ai,τi) : i ∈ I} a family of topological algebras. Denote by (A,τ) the
topological product of the family {(Ai,τi) : i ∈ I}. Then A is just the algebraic direct product of algebras
{Ai : i ∈ I}, and the topology τ is the product topology. Recall that the base of the product topology consists
of all sets of the form ∏

i∈I
Ui, where Ui is from the basis of the topology τi for each i ∈ I. It means that

every neighbourhood O of zero in τ contains a neighbourhood of zero in the form ∏
i∈I

Oi, where Oi is a

neighbourhood of zero in τi for each i ∈ I.
Next, recall that a pre-ordered set is a pair (I,⩽), where I is any set and ⩽ is a pre-order, i.e. a reflexive

and transitive binary relation, on I.
Let {(Ai,τi) : i ∈ I} be a collection of topological algebras indexed by a pre-ordered set (I,⩽). The pair

(B,τB) is the topological (projective) limit1 of the collection {(Ai,τi) : i ∈ I} of topological algebras if there
is

1) a family (φi j : A j→ Ai)i, j∈I,i⩽ j of continuous algebra homomorphisms
and

2) a family (πi : B→ Ai)i∈I of algebra homomorphisms (called projections)
such that

a) the map φii : Ai→ Ai is the identity map for each i ∈ I;
b) for all i, j,k ∈ I, where i ⩽ j ⩽ k, holds φi j ◦φ jk = φik;
c) for all i, j ∈ I, where i ⩽ j, holds φi j ◦π j = πi;
d) for2 any topological algebra (C,τC) and any family (ρi : C→ Ai)i∈I of continuous algebra homomor-

phisms with φi j ◦ρ j = ρi for all i, j ∈ I with i ⩽ j there exists a unique continuous algebra homomorphism
ρ : C→ B such that ρi = πi ◦ρ for all i ∈ I.

1 Several authors demand for a topological projective limit that the pre-order ⩽ on I should be a direct order, i.e. for any i, j ∈ I
there should exist k ∈ I such that i ⩽ k and j ⩽ k. In this paper, we do not need that restriction.

2 This condition is usually omitted in the literature on topological algebras, but it should be included based on the category-
theoretical principles. Everything in this paper will remain true also in the case when we do not consider this condition as a
part of the definition of a topological (projective) limit.
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The topology τB is the projective limit topology, i.e. the initial topology with respect to the projections
(πi)i∈I . In other words, τB is the smallest topology that makes all projections continuous.

The topological projective limit of the collection (Ai,τi)i∈I of topological algebras is often denoted by
(B,τB) = (lim←−Ai,τlim←−Ai).

It is known that the (projective) limit of a collection of topological algebras is a subalgebra of the direct
product of the same collection of topological algebras.

2. RESULTS

Now we can generalize Proposition 1 from [2], p. 16.

Proposition 1. Let I be any set of indices, {(Ai,τi) : i ∈ I} a collection of topological algebras, (A,τA) the
topological product of topological algebras {(Ai,τi) : i ∈ I} and {α(i) = (α(i)n) : i ∈ I} a collection of
sequences from l such that, for each i ∈ I, the algebra (Ai,τi) is an (α(i)n)-galbed algebra. For each i ∈ I,
let β (i) = (β (i)n) be the skeleton sequence of the sequence α(i). If inf{β (i)k : i ∈ I} > 0 for each k ∈ N,
then

1) the sequence (γn), where γn = inf{β (i)n : i ∈ I} for each n ∈ N, belongs to l;
2) (A,τA) is a (γn)-galbed algebra.

Proof. 1) Since all elements of (β (i)n) are positive for each i ∈ I, then also all the elements of (γn) are
positive, which means that (γn) ̸∈ l0. Fix any j ∈ I. By the definition, (α( j)n) ∈ l, which means that

∞

∑
n=0
|α( j)n|< ∞.

Notice that
∞

∑
n=0
|γn|=

∞

∑
n=0

γn ⩽
∞

∑
n=0

β ( j)n =
∞

∑
n=0
|α( j)n|< ∞.

Hence, (γn) ∈ l.
2) For each j ∈ I, let B j be the base of neighbourhoods of zero in A j for τ j, and p j : A→ A j be the

projection, sending an element b = (ai)i∈I ∈ A to a j ∈ A j.
Let O be an arbitrary neighbourhood of zero in (A,τA). From the definition of the base of the product

topology, it is known that there exist l ∈ N, i1, . . . , il ∈ I, neighbourhoods Oi1 ∈ Bi1 , . . . ,Oil ∈ Bil and a
neighbourhood

O′ =
l⋂

u=1

p−1
iu (Oiu)

from the base of neighbourhoods of zero in τA such that O′ ⊆ O.
Remember that each (Aiu ,τiu) is an (α(iu)n)-galbed algebra. This means that there exist balanced neigh-

bourhoods Ui1 in (Ai1 ,τi1),. . . ,Uil in (Ail ,τil ) of zero such that

q

∑
v=0

α(iu)va(iu)v ∈ Oiu

for each q ∈ N, each u ∈ {1, . . . , l} and all a(iu)0, . . . ,a(iu)q ∈Uiu .
Let

U =
l⋂

u=1

p−1
iu (Uiu),
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q ∈ N and b0, . . . ,bq ∈ U be arbitrary elements. Then U is a neighbourhood of zero in A in the product
topology, piu(bv) ∈Uiu and

0 <

∣∣∣∣ γv

α(iu)v

∣∣∣∣⩽ 1

for all u ∈ {1, . . . , l}, v ∈ {0, . . . ,q} and q ∈ N.
As the neighbourhoods Ui1 , . . . ,Uil are balanced, we obtain for all u ∈ {1, . . . , l} and n ∈ N that

γn

α(iu)n
piu(bn) ∈Uiu .

Since

piu

( q

∑
v=0

γvbv

)
=

q

∑
v=0

γv piu(bv)=
q

∑
v=0

α(iu)v

(
γv

α(iu)v
piu(bv)

)
∈Oiu

for each u ∈ {1, . . . , l}, then
q

∑
v=0

γvbv ∈
l⋂

k=1

p−1
iu (Oiu)⊂ O

for all b0, . . . ,bq ∈U and each q ∈ N. Hence, (A,τA) is a (γn)-galbed algebra in the product topology.

Using this result, we can generalize also Proposition 3 from [1], p. 23, as follows.

Proposition 2. Let (I,⩽) be a pre-ordered set of indices, {(Ai,τi) : i ∈ I} a collection of topological alge-
bras, (B,τB) the topological projective limit of the collection {(Ai,τi) : i ∈ I} and {α(i) = (α(i)n) : i ∈ I}
a collection of sequences from l such that, for each i ∈ I, the algebra (Ai,τi) is an (α(i)n)-galbed algebra.
For each i ∈ I, let β (i) = (β (i)n) be the skeleton sequence of the sequence α(i). If inf{β (i)k : i ∈ I}> 0 for
each k ∈ N, then (B,τB) is a (γn)-galbed algebra, where γn = inf{β (i)n : i ∈ I} for each n ∈ N.

Proof. By Proposition 1, the topological product (A,τA) of the collection {(Ai,τi) : i ∈ I} is a (γn)-galbed
algebra. Projective limit of this collection is a topological subalgebra of the topological product of the same
collection. Hence, by Lemma 1, (B,τB) is a (γn)-galbed algebra.

We finish this paper with another result about the topological product of topological algebras.

Theorem 1. Let I be any set on indices, {(Ai,τi) : i ∈ I} a collection of topological algebras, (A,τA) the
topological product of topological algebras {(Ai,τi) : i ∈ I} and (αn) ∈ l. Then (A,τA) is an (αn)-galbed
algebra if and only if (Ai,τi) is an (αn)-galbed algebra for each i ∈ I.

Proof. Suppose that (A,τ) is an (αn)-galbed algebra and take an arbitrary i0 ∈ I. Let Oi0 be any neighbour-
hood of zero in (Ai0 ,τi0). Then O = ∏

i∈I
Ui, where

Ui =

{
Oi0 , if i = i0,
Ai,otherwise

is a neighbourhood of zero in (A,τ).
Hence, there exists a neighbourhood U of zero in (A,τ) such that

{ n

∑
k=0

αkbk : n ∈ N,b0, . . . ,bn ∈U
}
⊆ O.
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Now, there exist neighbourhoods {Ui : i ∈ I} of zero such that Ui is a neighbourhood of zero in (Ai,τi) for
each i ∈ I and ∏

i∈I
Ui ⊆U . As the scalar multiplication and addition are performed ‘coordinate-wise’ in the

topological product, we obtain that the condition{ n

∑
k=0

αkak : n ∈ N,a0, . . . ,an ∈Ui0

}
⊆ Oi0

must hold. But this means that (Ai0 ,τi0) is an (αn)-galbed algebra. As i0 was chosen arbitrarily from I, we
see that, for each i ∈ I, (Ai,τi) is an (αn)-galbed algebra.

Suppose that, for each i ∈ I, the algebra (Ai,τi) is an (αn)-galbed algebra. Then, by Corollary 2 from
[2], p. 19, (A,τ) is an (αn)-galbed algebra.

Therefore, (A,τA) is an (αn)-galbed algebra if and only if (Ai,τi) is an (αn)-galbed algebra for each
i ∈ I.

3. CONCLUSION

In the present paper, we found some sufficient conditions on a collection of galbed algebras such that their
topological product and topological projective limit would also be galbed algebras. We additionally showed
that the topological product of a collection of topological algebras is an (αn)-galbed algebra if and only if
each member of this collection is an (αn)-galbed algebra.
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Gälbalgebrate topoloogilisest korrutisalgebrast

Mart Abel

Artiklis leitakse piisavad tingimused selleks, et gälbalgebrate pere topoloogiline korrutisalgebra ja topoloogi-
line projektiivne piir oleksid samuti gälbalgebrad. Samuti näidatakse, et topoloogiliste algebrate pere topo-
loogiline korrutisalgebra on gälbalgebra siis ja ainult siis kui iga pere liige on samuti gälbalgebra.
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