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Abstract. All over the world a rapid increase in demand for photovoltaic system installations has generated an outstanding growth 
in production numbers in the manufacturing facilities of photovoltaic (PV) systems. Production companies are facing challenges in 
providing the best quality along with rising manufacturing quantities. Due to the underlying technology not all the quality decisions 
can be made in real time. This research is focused on the development of experimental study and mathematical modelling of the 
quality control parameters for PV modules, which could only be tested during chemical processes and not be monitored constantly 
by operators at the production line. 
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INTRODUCTION 
 
Smart manufacturing shows the direction for production companies to stay competitive on the market and to 
deliver the maximum return on assets. The companies have to continuously search for innovative ways to 
improve their production and quality control processes, to optimize manufacturing processes using new I4.0 
based technologies and perform work in a faster and better way [1,2]. Production processes should be 
effectively monitored and controlled to avoid malfunction and unplanned downtime.  

Product quality is becoming an increasingly important function for the company due to the increased 
customer demands and product quality requirements. The manufacturing company has to deal with the 
increasing number of data and alternatives to be decided during on-time or off-time process, as well as with 
product quality control. As regards the latter, usually the fully dedicated data experts and expensive 
information technology solutions are not readily available, making it very hard to track the important and 
process related information which should be gathered and used for optimization. Manufacturing companies 
apply modern quality control techniques to improve the production line and the quality of its processes, and 
through that also the final end product quality [3]. A range of techniques are available to control product or 
process quality. These include seven statistical process control (SPC) tools, acceptance sampling, quality 
function deployment (QFD), failure mode and effects analysis (FMEA), six sigma, and design of experiments 
(DoE). Quality control (QC) and quality assurance (QA) can be defined as meeting the specification or 
customer requirements without any defect. A product is said to be high in quality if it is functioning as 
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expected and is reliable. Quality control refers to activities ensuring that produced items meet the highest 
possible quality level.  

The volumes of installations of photovoltaic (PV) modules are rapidly growing annually.  The global 
compound annual growth rate of cumulative photovoltaic installations during the period from 2010 to 2019 
was as high as 35% [4]. Photovoltaic modules utilize the photovoltaic effect that generates flow of electrons 
inside the materials which are exposed to light. Different materials can be used for achieving the photoelectric 
effect.  Currently the most popular way of manufacturing (due to efficiency, price and manufacturability) PV 
modules is by using the silicon-based solar cells. According to [4], 95% of manufactured modules are built 
on silicon-based solar cells. The simplified cross section of a solar cell and the PV principle are presented in 
Fig. 1. 

Different materials are employed to build a PV module, in order to ensure maximization of light gathering, 
structural health as well as electric and climate insulation. The structure of a PV module includes several 
components [6]: 
● Front sheet – glass or some other transparent material for light transparency as well as for climate and 

mechanical protection; 
● Photovoltaic cells – for current generation; 
● Ribbon connections – for electrical circuit; 
● Back sheet – for electrical and climate insulation; 
● Encapsulant – for laminating everything together, protection from moisture and air as well as being 

transparent for light. 
The current work collects the experimental data in real time, and based on these data builds mathematical 

model(s) for prediction of the quality of encapsulant gel content. The obtained results will allow manufacturers 
to predict the crosslinking level instantly on site on the basis of real measured parameters and increase the 
feedback of the final end product quality.  
 
 
EXPERIMENTAL  EVALUATION  OF  THE  QUALITY  OF  ENCAPSULANT 

 
Quality of lamination is a general focus of a series of papers and an emerging problem for solar companies. 
The encapsulant under study is ethylene/vinyl acetate (EVA), as it is mainly used by the partner PV 
manufacturer of this study. 

For particular research assessment, lamination success could be divided into two main categories, as 
presented in Fig. 2: 
1. Visual component – all possible visual faults that lead to bigger issues in the future. 
2. Quality of encapsulant (crosslinking level) – gel content of the EVA material, should be defined during 

the time-consuming process [7].  
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Fig. 1. Schematic cross section of c-Si solar cell [5]. 

Cross section of solar cell



Ensuring the quality of encapsulant is challenging due to the lack of possibilities to assess and evaluate 
the quality of lamination on the chemical composition level right after the lamination cycle is completed. In 
order to define the crosslinking level, laboratory tests are needed. A good cross-linking level is considered to 
be 65% [8]. The supplier of EVA suggests the target value for PV modules to be between 70% and 80%. 
Sample gathering is a process that makes a PV module non-usable later. 

There are a number of inputs that impact the quality of the lamination process [9]: temperature, duration, 
pressure/vacuum time. As according to us, temperature and duration of the process have the greatest impact 
on the quality of encapsulation, we decided to measure the temperature from the edge of the module during 
the real manufacturing lamination cycle. Previous experience has shown that measuring from the surface of 
the module is damaging to the back sheet and the module becomes visually defected and non-usable. 

External equipment was employed in order to measure the temperature in real time with the possibility to 
trace everything via online cloud-based graphical user interface. During the experimental phase of measuring 
temperature by external equipment, the research group faced the fact that there was a difference between the 
real measured temperature from the module and the temperature shown by the lamination machine, which is 
demonstrated in Fig. 3. Also, there was dependence on temperature difference related to the time the 
lamination occurred: first laminations after the startup, numerous continuous laminations or lamination after 
a long pause. This is a point of interest to the PV manufacturer as the need has arisen to tune the receipts 
used in production.  

The dataset used includes 16 different values, 2–3 repetitive tests were performed for each value (see 
Table 1). It should be mentioned that the mesh-points have non-uniform distribution. 
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Fig. 2. Quality assessment of cured ethylene/vinyl acetate. 

 

Fig. 3. Difference between machine measured temperature against real measurement from the module edge. 

  ,



NUMERICAL  MODELS 

 
The following two numerical models are presented for describing the dependence of the gel content on the 
processing time and the temperature measured by external sensor.   
 
Artificial  neural  networkbased  model 
 
In engineering design, the emerging growth in the use of artificial intelligence (AI) tools and methods can 
be observed [10,11]. In the current study, the artificial neural network (ANN) model was utilized. It is well 
known that in the case of a limited dataset available (see Table 1), the feedforward ANN with one hidden 
layer is satisfactory. The tuning of the ANN was performed on the dataset provided in Table 1. The 
Levenberg–Marquardt training algorithm was applied. The nonlinear tansig and linear purelin transfer 
functions were utilized in hidden and output layers, respectively. The optimal configuration of the ANN was 
found with only four neurons in the hidden layer. The mean squared error of the developed ANN model is 
given in Fig. 4. 

The accuracy achieved is satisfactory, since the test data still include the measuring error.  Nevertheless, 
a problem exists that different runs of the ANN model generate slightly different results. This issue is caused 
by the fact that in the ANN model the initial weights were generated at random and if the dataset is not 
sufficiently big, the final models and their accuracy may differ. Thus, the preliminary results were obtained, 
but the ANN model needs an improved dataset.    
 
Haar  waveletbased  model 
 
The following provides an alternative approach using the existing dataset. More generally, the 𝑛-th order 
derivative of the function can be expanded into Haar wavelets as 
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1 130   870 57.6 

2 130 1025 58.4 

3 130 1172 59.2 

4 130 1320 59.9 

5 137   870 56.4 

6 137 1025 61.6 

7 137 1172 62.7 

8 137 1320 63.9 

9 144   870 55.2 

10 144 1025 64.8 

11 144 1172 66.3 

12 144 1320 67.9 

13 150 870 70.7 

14 150 1025 81.1 

15 150 1172 81.8 

16 150 1320 82.5 

 

 

Table 1. Gel content dependence on temperature and processing time 

  No. Temperature, C    Total processing time (s)     Gel content, % 

                                                Only test data with the gel content value over 50% are considered. 

  870 



                                                                                                                           
                                                                                                                            
 

Herein the gel content function 𝑓(𝑥, 𝑦) is expanded directly into Haar wavelets as  

i.e. the simplest case, where 𝑛 = 0 is used. In the case of 𝑛 ≥ 1, the accuracy of the Haar wavelet model will 
increase with the increasing 𝑛 value, but extra test data is required for determining the integrating constants 
(functions).  

In (1)–(2) 𝑎𝑖𝑗 are unknown coefficients, 𝑥 and 𝑦 are design variables. The Haar functions are defined as 
 

where 𝑖 = 𝑚 + 𝑘 + 1, 𝑚 = 2𝑗 is the maximum number of square waves deployed in interval [𝐴,𝐵] and the 
parameter 𝑘 indicates the location of the particular square wave, 

where 𝑗 = 0.1, ... , 𝐽 and 𝑘 = 0.1, ... , 𝑚 – 1 stand for dilatation and translations parameters, respectively. Note 
that equations (1) and (2) correspond to the higher order method and the widely used Haar wavelet method, 
respectively [12]. 

As pointed out above, in the case of limited dataset, the ANN model has some drawbacks and the Haar 
wavelet-based deterministic model can be preferred. In most applications the Haar wavelet method is used 
with a uniform mesh. However, the test data given in Table 1 correspond to a non-uniform mesh. In the latter 
case the Haar matrices derived for a uniform mesh are not applicable. Instead, the Haar functions can be 
evaluated by using formula (3). The accuracy achieved utilizing a Haar wavelet-based model relies on the 
same range as that of the ANN. Here, the gel content does not have one fixed target value but its desired 
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Fig. 4. The mean squared error of the ANN model. 
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value is in the range of 70–80%. Further optimization of the gel content can be performed by taking the target 
value of 75% and employing the traditional gradient based and global optimization methods [13–18].  
 
 
CONCLUSIONS 
 
The external measurement equipment has been elaborated for measuring temperature in real time. 
Furthermore, it has been observed that the real measured temperature from the module and the temperature 
shown by the lamination machine differ. The temperature and process duration are considered for the 
modelling quality of the gel content. The two mathematical models, feedforward ANN and Haar wavelet 
models, have been developed. For the given dataset the accuracy of both models lies in the same range. 
However, the deterministic Haar wavelet method can be preferred since the ANN model varies in different 
runs. Implementation of the higher order Haar wavelet method requires extra design experiment with the 
required test points within the boundary of the design domain. 

In further study it is planned to measure the pressure/vacuum conditions directly from the lamination 
chamber without relying on machine data, embedding a wireless sensor inside the PV module.  
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Päikesepaneeli  moodulite  kvaliteedi  eksperimentaalne  hindamine  ja  numbriline  
modelleerimine 

 
Pavel Tšukrejev, Kristo Karjust ja Jüri Majak 

 
Päikesepaneeli mooduli temperatuuri täpsemaks mõõtmiseks reaalajas on välja töötatud riistvara- ja tarkvaralahendus. 
Mõõtmistulemuste analüüs näitas, et väljatöötatud seadme abil mõõdetud temperatuur moodulis erineb mõnevõrra 
lamineerimismasina mõõdetud temperatuurist. Töös uuriti etüleen-vinüülatsetaadi kihi geelisisaldust mõjutavaid 
parameetreid ja valiti välja kaks olulisemat mõjutegurit: temperatuur ja lamineerimisprotsessi aeg. Geeli sisalduse 
kirjeldamiseks koostati kaks matemaatilist mudelit: tehisnärvivõrkude ja Haari lainikute kasutamisel põhinevad mudelid. 
Mõlemaid mudeleid on lihtne kasutada, kuid tehisnärvivõrkude mudel sõltub juhuslikkusest ja andmehulga väiksuse 
tõttu olid eri käivitustel saadud tulemused erinevad. Seega antud andmehulga korral võib eelistada Haari lainikute 
kasutusel põhinevat mudelit. Kõrgemat järku lainikute meetodi rakendamine eeldab selleks kohandatud katsete 
planeerimist. Edasistes uuringutes on kavas integreerida juhtmeta andur päikesepaneeli moodulisse ja mõõta 
rõhu/vaakumi tingimusi otse lamineerimiskambrist. 
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