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Abstract. This paper presents a universal approach of identification and closed-loop control of manufacturing equipment, de-
livered through web services using Open Platform Communications United Architecture (OPC UA). Rapid prototyping as well
as retrofitting and digitization of legacy systems often need design and application of closed-loop controllers. The analysis and
modelling for systems such as energy-conversion or material transport devices is labour-intensive and needs process understanding.
Current identification and control toolboxes require systematic preparation of input/output data, modification and tuning of the
derived models, also proper design of classic PID controllers. An on-demand service paradigm is applied to allow identification
and control with direct access to the controlled system over a network connection. The identified parameters are used to adapt a
model predictive controller (MPC), which stabilizes the system and drives trajectories to different operating points. To evaluate
the performance of the controllers in terms of stability, accuracy, and time response, several target trajectories and disturbances
(signal noise, external physical disturbances, latency in communication) were investigated. The identification service was used to
model the linear dynamics of a 6-DOF industrial robot and a laboratory-scale waterworks containing two separately controllable
pumps. The robot’s axes and the waterworks’ pumps were successfully controlled with current set-points by using their respective
identified state-space models. Simulation and laboratory experiments show promising results for the control of diverse systems
with varying time-constants, and imply broad applicability. As a major achievement, this approach enables to efficiently implement
system identification and model predictive control in manufacturing.
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1. INTRODUCTION

Usually, the control and regulation technology is located close to the associated industrial plant or industrial
robot. Local controllers are limited in their computing and storage capacity, which imposes restrictions
on complex, computationally intensive functionalities. Therefore, outsourcing them, e.g. as on-demand
services in a cloud, can prove attractive and is currently intensively investigated in research and industry.

In the course of transformation to Industry 4.0, automation and digitization of factories and production
systems is advancing rapidly. The trend develops towards high connectivity of distributed system compo-
nents. This opens new opportunities for the use of cloud services. In addition to computing and storage
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capacities, cloud services can also provide complex functionalities (value added services) such as the control
of industrial robots and plants [1]. Due to their accessibility via network interfaces, they eliminate the need
for local installation and execution of software [2]. Moreover, cloud services can cost-effectively add new
features to existing production systems [3]. They increase the mobility and flexibility of these production
systems, and thus their efficiency. The subdivision and software separation of communication, hardware,
and value-added services also creates scalable, distributed systems that can be adapted to dynamic factory
environments.

One functionality with high demands on computing power is, for example, image processing. Rudorfer
and Krüger [4] designed a cloud-service-based system architecture in which image processing is offered
as a web service. Based on their experiments, they conclude the possibility of rapid prototyping of new
image processing applications. By using OPC UA, this can involve the use of various modular services
from different sources, although the authors noted the lack of real-time capability of the service offered.

Lambrecht et al. [5] implemented a cloud-based system architecture with path planning for mobile
robots as a value-added service. Using a 4G campus network as the communication medium, they detected
a negligible impact of communication latencies on navigation success. However, the authors restricted this
finding to reduced speeds of their mobile robot considering a maximum latency for their use case at 150 ms.

Wassermann et al. [6] also designed a cloud-service-based system architecture, whereas path planning,
robot control, visualization and local hardware services were offered as modular, independent, relocatable
web services. They successfully demonstrated the approach using a pick-and-place task in an environment
with obstacles. Object detection and path planning were performed correctly and the processing time of the
planning tasks was considered acceptable. The authors suggested the use of OPC UA as a communication
framework.

A comparison of the performance of a model predictive control (MPC) and a proportional-proportional
integral (P-PI) control as cloud services in network environments with fluctuating latency and bandwidth
was performed by Vick et al. [7] on a six-axis industrial robot. The state-space model on which the MPC
controller is based was derived analytically and control parameters were tuned manually. In experiments, the
MPC controller was found to be more stable and faster for increasing latencies, and exhibited less overshoot
and lower steady state error than the P-PI control. Latencies up to 160 ms were tested.

Instead of deriving a state-space model of the robot to be controlled, Briese et al. [8] investigated the
possibility of using a non-model-based control approach (modified Switching Active Disturbance Rejection
Control) for cloud-service-based distributed robot control in a network with jitter. In experiments, they
achieved stabilization of all six axes of their robot for cycle times up to 100 ms. The small number of tuning
parameters and thus a simpler model adaptation than with the model synthesis using first-principle methods
are advantages of the authors’ approach.

A different grey-box approach was investigated by Gillespie et al. [9]. The authors performed a system
identification of a soft-robotic axis by first training a neural network with measurement data of the system
to be identified and then deriving a linearized state space model from the neural network. They compared
the MPC based on this model with a conventionally synthesized model. For the control based on the system
model learned by the neural network, the authors detected a steady state error of two degrees, as well as a
higher overshoot and a larger rise time than for the conventionally synthesized model.

Cloud-based control structures in conjunction with system identification services can further facilitate
the integration of both conventional industrial plants and novel prototypes into a factory cloud [10]. This
is because the universal applicability of this combination of services can eliminate the need for labour-
intensive modelling and the adaptation of control algorithms on the engineering side. Research potential
arises in investigating the feasibility of the universal approach and its applicability to unknown, dynamic
systems. In a first approximation, only linear and linearizable systems are to be considered.



446 Proceedings of the Estonian Academy of Sciences, 2021, 70, 4, 444–452

2. METHODS

2.1. Service-based automation

In terms of service-based automation systems, the architecture is split into hardware services and value-
added services. The hardware services are responsible for running the driver to control a particular device
and provide a common interface for the orchestration client or other services. The value-added services are
responsible for high-level algorithms and data processing providing an interface to execute their functions.
In contrast to choreography, the concept of orchestration is chosen because it facilitates the flexible addition
and disconnection of services, and contributes to the reusability of individual services in the future. In
addition, orchestration is more scalable with respect to a possible extension of the system to multi-client
capability. The greater communication overhead in the orchestration client due to the redirection of all
exchanged information must be accepted as a drawback. The OPC UA standard is chosen for communication
between the services and clients. This is an M2M communication protocol for industrial applications and it
is often used to enable the use of data from different sources.

2.2. Subspace system identification

The system descriptive matrices of a state space representation can be obtained using subspace system
identification methods based on input and measured data. The most common methods in this regard are
Canonical Variate Analysis (CVA), Multivariable Output Error State Space (MOESP), and Numerical Sub-
space State Space System Identification (N4SID) [11]. In general, these methods are based on finding the
subspace spanned by the columns of an extended observability matrix.

Starting from a given set of system input U and response Y, using several decompositions and trans-
formations, {A∗ = TAT−1,B∗ = TB,C∗ = CT−1,D∗ = D} are found. By setting C∗ = I, and D∗ = 0 for
causal systems, only two matrices A∗ and B∗ (using another T) have to be transported later. Adding OPC
UA communication interfaces for input, response, parameters and system matrices provides a value-added
service for identification of arbitrary linear systems.

2.3. Model predictive control

With the help of the system model, e.g. a discrete-time state space model, the future measured variables
ŷ(t+k|t) are estimated up to the prediction horizon at time step t+Np on the basis of the past input variables
u(t) and measured variables y(t) as well as the future input variables u(t + k|t) up to the control horizon at
time step t +Nc. Initial values are first used for the future input variables.

A cost function J is calculated from the deviation of the estimated measured variable trajectory ŷ(t+k|t)
from a reference trajectory w(t + k|t) up to the prediction horizon and from the required control effort
u(t + k|t) up to the control horizon. Both terms are weighted with corresponding weighting matrices Q and
R, respectively. Manipulated variable constraints umin and umax or other constraints can be incorporated.
Combining both horizons Np and Np to a common horizon N allows using the cost function (1):

J(y,u) =
N

∑
k=0

[(y(k)−w(k))T Q(y(k)−w(k))+uT (k)Ru(k)] (1)

Adding OPC UA communication interfaces for system model, state, target and manipulated variables
provides a value-added service for model predictive control of arbitrary systems.



UniveressarTVV. Te roo et al.: rssal identification and contrrool 447

Fig. 1. System architeecture for service-based identification and control.g y

IDENTIFICAAIMPLEMENT3. CONCEPT AND TAATTION OF UNIVERSAL ATTION AND

CONTRROOL

3.1. System architecture

Services depend on the results of other services to progress in the program flow. The exchange of infor-
mation and the temporal coordination take place via the orchestration client. The services connected to the
orchestration client, their inputs, tasks and outputs are shown in Fig. 1.

The hardware service has access to the physical system hardware. By controlling actuators it applies
the control signals, and by polling sensors it returns the current system state. The hardware service can
be replaced by a simulation service containing the plant simulation. It must be initialized with the system
model matrices. Like the real plant, it then accepts control signals and returns the system state.

The identification service identifies and returns the system matrices based on the logged input and output
variables. In addition to the simulation service, these matrices are also required by the MPC service. The
latter is initialized with these matrices. It calculates a control trajectory to reach the target position using the
target state and the current state, and then returns the entire manipulated variable sequence.

The orchestration client initializes the services and forwards the results to other endpoints. In addition,
the orchestration client communicates with another client, the target client, with the help of an integrated
server. It is able to accept target positions entered by the user, produce random manipulated variable se-
quences, play back recorded manipulated variable sequences, generate target positions in the form of a
step/ramp function and forward all this data to the orchestration client.

The principle of communication between the services and clients is shown in Fig. 1. In addition, this
sketch also illustrates the possibility of outsourcing simulation, identification and control services to a cloud.

3.2. System Components

erRobot Serv r.. The Robot Server is the OPC UA capable server of the six-axis Amtec robot.The Amtec
robot consists of six PowerCube modules, which are arranged in a kinematic chain and can be controlled

interfindividually via a CAN faace. The robot control hardware service inherits from an OPC UA Adapter and
provides variables for accessing the PowerCube driver. The PowerCube driver implements the following
operations:
• Motion with target positions;
• Motion with target speeds;
• Motion with target motor currents.

Depending on the operation mode, outer closed-loop controllers can be defined, e.g. axes position
control by motor currents, which will be used by the MPC service.
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Waterworks Server. The waterworks is a basin with two inlets and one outlet. The flows of the inlets are
controlled by one pump each. The water supply to the pumps is provided by the outlet of the basin. Thus,
the waterworks is a closed-loop system. The input variables of the waterworks system are the set-points
of the pump capacities. The corresponding output variable is the pressure change caused by the pumps.
This is specified in Pascal and measured starting from the system normal pressure, which is approx. 0.21
Pascal. The Waterworks Server implemented in Codesys accesses a PLC that controls the pumps and reads
the pressure sensor. The Waterworks Server is designed to run close to the system to be controlled, since a
direct bus connection to the PLC of the waterworks is necessary to control it in real time. The Waterworks
Server inherits from the OPC UA Adapter, providing the input and output variables respectively.

Simulation Server. The Simulation Server is a server instance for simulating linear systems of arbitrary
order using their state space representation. The Simulation Server program consists of two threads that are
executed in parallel.

One thread runs the OPC UA Server, which provides access to various variables of the simulation. Since
the sizes of these variables and the associated elements of the simulation class object depend on the system
to be simulated, they are generated dynamically. OPC UA variables are created, transmitting the matrices of
the state space representation and a constant disturbance of the system to be simulated as well as the input
and output variables. Furthermore, when simulating systems, it is possible to add a Gaussian noise to the
state variables. The standard deviation of this noise can also be specified by the OPC UA client.

In another thread, the actual simulation is executed, where the evolution of the simulated system is
discretized. The time step length depends on the discretization time constant when discretizing the model
and can also be specified by a client. Unlike the Hardware Server, the Simulation Server is not limited to
local execution. The only limiting criterion is the cycle time, which increases with distance from the Control
Client. Therefore, the Simulation Server is suitable for outsourcing to a cloud.

Identification Server. The Identification Server is an OPC UA server implemented in Python that provides
a service for identifying state space models based on input and output data. Subspace identification is per-
formed using the Python module SIPPY (Systems Identification Package for Python). This module provides
methods for identification and simulation of linear, dynamic SISO and MIMO systems. In the case of noisy
data, it is first smoothed before the actual identification takes place.

The identified matrices are transformed so that the initial output matrix C∗ is a unit matrix. A simulation
of the state trajectory can be initiated server-side using the identified model to compare with the output data
from the submitted dataset and calculate an error measure. This functionality will be used to validate the
identification results.

MPC Server. The MPC Server calculates manipulated variable sequences according to the principle of
model predictive control. For this purpose, the matrices of an identified state space representation required
for the MPC, the weighting matrices R and Q from the cost function (1) and the manipulated variable
constraints of the system must be sent via OPC UA. Since the size of the matrices depends on the system
to be controlled, the OPC UA variables and the MPC automation class object are dynamically generated on
client request.

During cyclic control, the current system state and the target are each sent from the client to the MPC
server. Once the client requests the OPC UA variable of the input variable sequence, the MPC calculations
are executed and the result is returned to the client. The actual MPC was implemented using algorithms and
data structures from the control and matrix sections of the C++ toolbox dlib.
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RESUL4. EXPERIMENTS AND LTTS

The aspects under which the identification quality is to be considered are the correctness of the i
Tmodels and their statistical certainty, i.e. trustworthiness. Too evaluate the control quality, the perform

the MPC shall be checked with respect to the steady state error, the overshoot and the rise time. Th
meacorrectness shall be quantified using the normalized root an square error (NRMSE). The value

the NRMSE is from −∞ to one. A smaller value means a worse fit and a value of one stands for
fit. If the NRMSE is zero, then the fit is as good as using the mean as a model of the data.

The generality and universal applicability of the combination of services for identification an
predictive control will be tested by three-stage experiments. The identification performance and th
performance will first be verified using the simulation of the Amtec robot. This is followed by exp
on the real Amtec robot system, in which both disturbances can occur and constraints must be con

FinallyHowever, the real robot system has the same structure as the robot in the simulation. y, inves
adifare carried out on a structurally ffferent system, the waterworks. For both systems, the avverage ste

aaerror, the avverage overshoot and the avverage rise time are calculated.

perf4.1. Model accuracy and control foormance in simulation

In the simulation experiments, model accuracy was higher for axis velocities than for their posit
creasing with increasing latency from a mean NRMSE of 0.73 at 7 ms latency to 0.025 at 140 m
and remaining constant as noise increases.

The NRMSE is comparable for all axes and it decreases with increasing cycle time (see Fig
curve fitting shows that the modelling quality of the velocity courses of all axes, except axis 4, d
exponentially and with similar strength. At a cycle time of 7 ms, the NRMSE of the velocities is
avverage for all axes and 0.025 at a cycle time of 140 ms.

The modelling quality of the position trajectories decreases less with increasing cycle time (see
aFor all axes, there is a similar negative development from an avverage NRMSE of 0.315 to 0.035.

The steady-state error from the feedback controlling the identified model in simulation ranges fr
t 1% f ll i l l d l t i t t d O h t i li l f 0% t
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fperf4.2. Model accuracy and control foormance foor AMTEC industrial robot

In the robotic experiments, axes 1, 4, 5, and 6 were observed to be linear, so a state-space model could be
Widentified. Therefore, only these axes were considered in the experiments. Wiith a mean cycle time of 70 ms,

Tthe NRMSE of the velocities was again better than the NRMSE of the positions (see Taable 1), with mean
values of 0.83 and 0.23, respectively. Small-scale bootstrapping showed certainty of the model parameters,
with all certainties at least one order of magnitude smaller than the mean value of the respective parameter,
except for the parameters identified as zero.

sufSince the identified models of axes 1, 4, 5 and 6 are assumed to be ffificiently reliable, an arbitrary data
set was selected from the seven collected data sets for the physical experiments. The model identified on the
basis of this data set was selected for the controller performance experiments, the plots of which are shown
in Fig. 3. The steady-state error for axes 1 and 5 was less than 1% and for axes 4 and 6 it was less than 4%

T(see Taable 1). The control performance is exemplarily depicted in Fig. 3a.

fperf4.3. Model accuracy and control foormance foor waterworks

The water system proved to be linear over a range of 60% to 120% of the pump output. At an average cycle
time of 70 ms, the NRMSE of the modelled system pressure was 0.78 with high confidence in the model
parameters.

Table 1. AAvverage and standard deviation of NRMSE for robot axes velocity model and
MPC performance indicators for robot axes position control

Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6
AVVeelocity NRMSE Avverage 0.84 –0.14 0.52 0.81 0.84 0.81

VVeelocity NRMSE Std Dev 0.002 1.1 0.23 0.009 0.009 0.05
APosition NRMSE Avverage –0.11 –8.17 –0.87 –0.11 0.72 0.45

Position NRMSE Std Dev 0.41 17 0.55 0.37 0.10 0.20
Position Steady State Error 0.4% – – 3.9% 0.9% 2.1%
Position Overshoot 5.4% – – 1.9% 14.5% 9.4%
Position Rise Time 1.0s – – 2.4s 0.5s 0.4s

(a) AMTEC Robot Axis 1 W(b) Waaterworks Pressure Change

Fig. 3. Position control for Amtec industrial robot
from identification service.

t and pressure control for waterwoorks using MPC service with derived models
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The waterworks models’ parameters had a standard deviation at least one magnitude smaller than their
mean. This is valid in the considered range of pump performance between 60% and 120%. The simulations
of the validation trajectory using the identified models also indicate a good quality of system identification.
The average NRMSE of the pressure modelling was 0.78 with a low standard deviation of 0.016.

The average steady state error was 0.3%. The average overshoot of 54% was much higher than in the
experiments on the Amtec robot, and in particular the values of overshoot after reaching the second, sixth
and seventh control targets were very high with 47%, 219% and 45%, respectively.The reason for the strong
overshooting control, on the one hand, is due to the long cycle time of 309 ms on average, on the other hand
due to the missing possibility of controlling the pumps with negative values. The control performance is
depicted in Fig. 3b.

5. CONCLUSIONS

Overall, subspace identification and model predictive control have been shown to be universally applicable
to linear systems, even with high measurement noise and in network environments with latencies up
to 140 ms. Stable control is achieved at even higher cycle times, but performance degradation occurs. To
achieve optimal control performance, several technical problems must be solved. The main cause of insuf-
ficient control performance in the experiments was the non-optimal setting of the MPC weights, especially
when switching between models with different cycle times or between models based on noise-free or noisy
data sets. Automated determination or analytical derivation of the MPC parameters would help to achieve
the optimal, or at least comparable, control performance with each identified model.

Using the above designed and implemented architecture, web service-based subspace identification and
model predictive control were shown to be feasible.Within the limits set, the service combination for iden-
tification and the MPC were demonstrated to be comparable and in some cases even competitive to conven-
tional, first-principle methods of modelling and feedback control.
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