
1. INTRODUCTION 
 
Simulation is an approximate or 1:1 imitation of an actual 
process, often taking part in the virtual environment, 
troubleshooting, researching, testing, training, monitoring, 
controlling, or educating. In the past decade, simulations 
have been vital in production and development as they are 
capable of preventing many problems related to planning 
and reducing bottlenecks at early stages, also during the 
real-time maintenance of the process [1–5]. And con -
sidering especially the increasing complexity of tech - 

nology and the rise in using fully autonomous systems, 
simulations help to enforce and change features related to 
work safety. One of the simulation aspects – the concept 
of the Digital Twin (DT) [6,7] – is exploited in this 
research to develop a precise dual-way synchronized 
simulation interface for the propulsion drives [8,9] to be 
ready to be integrated into the electrical vehicles [10].   

Physics simulations are very common and critical 
nowadays. They are used enormously in such appli -
cations as MATLAB Simulink, Simscape, CAD design, 
SolidWorks, etc., and in simulations of the physical pro -
cesses in gamified environments. They should be con- 
sidered in the planning stage of mechatronic systems [11]. 
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Abstract. As autonomous vehicle development continues at growing speeds, so does the need to optimize, diagnose, and test various 
elements of autonomous systems under different conditions.  Since such processes should be carried out in parallel, it may result in 
bottlenecks in development and increased complexity. The trend for Digital Twins offers a promising option for the diagnosis and 
testing to be carried out separately from the physical devices, incl. autonomous vehicles in the virtual world. The idea of 
intercommunication between virtual and physical twins provides possibilities to estimate risks, drawbacks, physical damages to the 
vehicle’s drive systems, and the physical vehicleʼs critical conditions. Although providing communications between these systems 
arises at the speed that will be adequate to represent the physical vehicle in the virtual world correctly, it is still a trendy topic. This 
paper aims to demonstrate the enhancement of communications by using the Robot Operating System (ROS) as a middleware interface 
between two twinning systems by the example of the autonomous vehicleʼs propulsion drive. Data gathered from the physical and 
virtual worlds can be exchanged in the middle to allow for continuous training and optimization of the propulsion drive model, which 
would lead to more efficient path planning and energy-efficient drive of the autonomous vehicle itself. Additionally, a comparative 
analysis of  ROS and its next version ROS2 is provided, discussing their differences and outlining drawbacks. 
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Of course, all physics simulations have approximation and 
simplifications, since not all possible physical laws can 
be simulated simultaneously as yet; however, such simu -
lations provide considerable benefits in research and 
testing. 

In a previous study that we conducted on the electrical 
motors simulation in which the DT for a propulsion drive 
of an autonomous electric vehicle was developed [9], 
Unity3D was used for simulations of the DT that was 
exchanging messages with the Robot Operating System 
(ROS) node through a ROS bridge [12]. However, ROS 
is not only used for robots but also for various drones, 
self-driving vehicles, and autonomous systems. ROS 
enables inter-process communication; it is believed to be 
a quality method of interconnecting a digital twin pro -
pulsion drive system with its real counterpart. ROS was 
used for performance calculation applying an empirical 
performance model for the induction motor (IM). In this 
research Unity3D is used as a visualization tool, which is 
connected with ROS directly [13]. Even though Unity3D 
simulated most of the motor’s physical behaviour (torque 
and rotation), the response and the received numerical 
values, unfortunately, do not suit the DT development in 
the long run. The reason for this is the complexity of the 
overall system of physics of the IM. Moreover, to make 
the system transferable and usable with other models (not 
the ones present in Unity3D but also in Gazebo or else -
where), the physics handling must be close to stand alone.  

The main aim of the current research was to develop 
a framework and a toolkit, including a middle-layer ROS 
interface, connected with the physical propulsion drive 
workbench and its DT, which can be visualized in various 
simulation engines. The related paper aims to develop a 
methodology to connect the interface with Unity3D for 
the visualization, considering data exchange and feed -
back.  

 
 

2. METHODOLOGY 
 
2.1. Working  principle  of  a  test  bench  on  a  digital  

twin  
 
The physical component of the proposed DT is being 
developed as a hybrid of both data-driven and process-
driven modelling principles. Although most of the para - 
meters describing the physical behaviour of a propulsion 
drive can be calculated using physical equations, some 
values can only be read from the real electrical drive. An 
example of such ROS node structure used in the presented 
case can be seen in Fig. 1, where the input current from 
the frequency converter to the IM was recorded, simulated 
in ROS, and used to calculate other ROS parameters. The 
infrastructure features the nodes calculating torque, 
power, and the efficiency of the motor as well as a node 
that checks motor windings for mal functions.  
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Fig. 1. Input current measurements sampled at 5 kHz frequency. 



The DT operates on the simulated data, generated 
based on real data measured and gathered from the 7.5 kW 
IM (ABB 3GAA132214-ADE) for the current case study. 
The data was gathered using the data acquisition system 
(DAS) Dewetron DEWE2 and saved into files with 
a different extension (*.mat, *.xlsx, *.csv, *.txt). The 
measured data can be anything regarding the motor’s 
operation, namely input currents and voltages, consumed 
and shaft powers, torque and angular velocity on data 
acquisition, and other additional data calculated from 
them. According to DAS tuning (16Hz–100kHz), the 
parameters can be measured with different frequencies, 
and the received data is relative to time. This feature 
enables to recreate the motor’s behaviour precisely as it 
happened in the real case scenario with the help of the 
ROS server. It should be noted that the graph from the 
ROS package rqt plot is not included in this paper be -
cause it could not handle plotting messages at such high 
frequency. 

In the proposed DT system, the ROS server acts as a 
data server and physics simulator. The idea behind it is the 
following: the server is a standalone subsystem of a test 
bench (TB) responsible for processing real measured data 
of the motor, calculating other motor parameters based on 
the processed data, and streaming them to the ROS topics 
available for models.  

ROS nodes are ROS server components performing 
calculations, real data processing, and streaming of data. The 
real data is fetched to the appropriate ROS node presented 
in the server, processed and translated into ROS messages, 
and finally, sent to the DT model over the ROS bridge. The 
real data can be based on the empirical model (e.g., effi -
ciency map of the motor) or the actual raw data, an exam - 
ple of data used for fetched ROS node is presented in Fig. 2.  

Upon receiving ROS messages, the model can perform 
the necessary actions to simulate the mechanical, elec -
trical, or thermal behaviour. Models can be present in any 
simulation environment. They are subscribed to ROS 
server’s topics over the application programming interface 
(API) or the ROS bridge and configured to perform 
the necessary operations based on the subscribed ROS 
topic (e.g., rotation based on received angular speed). 
Furthermore, the module can feature simulated ‘measure -
ment’ devices/sensors that can send back the data over the 
ROS bridge. In this case, the ROS nodes can process and 
calculate other required values, as would happen in the 
TB.  

The current DT consists of the Unity3D model and the 
ROS server. The ROS server streams simulated values 
regarding input power (3-phase current and voltages), 
efficiency calculated based on measured torque, and 
angular velocity. The torque is calculated by the physics 
engine of Unity3D, whereas other values are based on the 
real data. This creates a problem of incorrect data cal -
culation because Unity3D does not focus on calculating 
correct values on physics laws, as it is more for games, 
allowing developers to adjust the physics laws to the game 
setup. This is why the shift from the physics engine of the 
model environment to ROS was introduced. The ROS 
server would serve physical parameters based on the real 
TB data and independent of the modelling environment. 
Figure 3 depicts the above-described architecture of the 
TB DT. The bottom part of the figure illustrates the 
operation of the ROS server and the top part shows 
Unity3D (the visualization environment). The processed 
data from the ROS server is streamed over the ROS bridge 
to Unity, where object controllers perform actions on parts 
of the drive based on the received data.  
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Fig. 2. Input current measurements sampled at 5 kHz frequency used for fetched ROS node.
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Additionally, ROS can record rosbags – files with 
recorded values from topics/servers that can be played 
back to repeat the behaviour. Such a feature would allow 
us additional analytical features on the DT side. 

 
2.1.1. ROS interfacing 
 
To allow easy interfacing of ROS with other systems, 
a ROS bridge node has to be used. It converts ROS 

communications into a JavaScript Object Notation 
(JSON) file format and sends them outside the ROS 
ecosystem. JSON is used because of its universal format 
with existing libraries that support its serialization and 
deserialization in almost every modern programming 
language. Taking it one step further, the ROS bridge can 
be used to port specific ROS topics to and out of Message 
Queuing Telemetry Transport (MQTT) protocol to upscale 
the system and allow it to run on multiple machines 
around the world. The so-called MQTT bridge sends data 
to the remote server by taking the serialized message on a 
specified ROS topic and publishes it into a specified 
MQTT topic. The MQTT bridge is also capable of the 
inverse – it receives a JSON-serialized message and 
attempts to deserialize it into a specified ROS topic in a 
specific message type. Together these systems make the 
inter facing of ROS with any visualization solution much 
simpler to develop. To further simplify the deserialization 
process, classes that match ROS message types were 
created in C# for Unity3D implementation of the ROS 
interface. This approach can be considered the most 
efficient because, in this case, a ROS message delivered 
in the serialized form via the MQTT can be directly 
deserialized into an object of a matching type. This 
approach can be implemented similarly on the majority of 
the existing programming languages, making it the most 
straightforward and most versatile option. 

Unity3D is used for visualization, see Fig. 4. Unity3D 
engine is connected to the physics simulator via the ROS 
interface, a 1:1 scale propulsion drive model with the 
transmission, wheel parts, and non-visible gears. The 
model is being assembled as the physical one, and each 
part is controlled by a related script, where data is fed from 
the middle layer.  
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Fig. 3. Architecture of the TB DT. 

Fig. 4. Visualization of the propulsion drive test bench created in Unity3D. 



2.2. Application  of  ROS2 
 
In that case, the DT architecture was transferred from 
ROS to the ROS2 framework. ROS2 is the next version 
of ROS. This transfer was required for several reasons: 
deprecation of ROS that would follow in 2025, support of 
the Data Distribution Service (DDS) standard, industry-
grade support [14]. Furthermore, ROS2 core libraries use 
the C++11 standard features and are targeting even some 
features of the C++14 standard, which improved the core 
of ROS [15]. The real-time operating systemsʼ support 
was a problem from the beginning of ROS, and many 
researchers tried to overcome this issue, leading to the 
creation of several ROS “spin-offs” for real-time op -
erating systems. However, these were still not sufficient 
to make ROS practical for embedded real-time systems 
[16]. ROS2 promises to introduce real-time support up to 
bare-metal microcontrollers. The ROS2 framework will 
become a powerful, robust, and modern middleware to be 
considered in any robotics/automotive vehicles project 
with all the implemented features.  

The contribution of ROS2 to the TB DT lies in the use 
of DDS. In ROS2, all communication is built upon the 
DDS standard defined by the OMG (Object Management 
Group) consortium, and developers are free to switch 
between supported vendors. DDS supports distributed 
discovery that allows nodes in the distributed network to 
be discovered by other nodes without a broker, which is 
different from the custom communication protocol used 
in ROS, a master node. Furthermore, ROS2 provides 
various QoS (Quality of Service) under which the mes -
sages are delivered. As soon as our TB is directly 
connected over the Internet to the DT, it will feature many 
sensors on it, making DDS a viable option to use in such 
a scenario. 

One of the beneficial features of ROS2 is its launch 
files, which are written in Python, allowing the creation of 
complex logic in launching ROS2 nodes. Previously, we 
had to create several launch files and run them in a specific 
sequence. Otherwise, a node responsible for the ROS 
bridge would crash. In ROS2, this problem is mitigated.  

From the developers’ point of view, ROS2 API encour -
ages the OOP (Object-Oriented Programming) principles 
much stronger and helps to understand the written code 
better. One drawback that was observed is the lack of 
information about specific functionalities, and it will take 
time before the ROS2 community becomes as big as the 
one ROS has.  
 
 
3. CONCLUSIONS 
 
The primary outcome of this part of the more extensive 
research in developing the fully synchronized DT of the 
propulsion drive was the development of the ROS 
interface and its later transfer to ROS2. It is possible to 
feed it with the physical data gathered and give the data 
to visual simulation, which in the related use case is 
Unity3D. The given data simulation runs and gives logged 
feedback about physical interactions back to the ROS 
middle layer, where the model is being improved and sent 
back to the visual side, improving it after each data 
movement loop. However, some limitations were met 
during the development of the methodology, and more 
developments are in progress to reach the final research 
aim, see Table 1. 

The ROS2 interface connected with the digital twin of 
the propulsion drive workbench visualized in Unity3D 
was introduced during the current research. Raw and 
simulated data as well as empirical models can be post-
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Table 1. Limitations and further steps 
 
 

Limitations Further steps 

The model was tested with only one type of visual 
simulation tool. Possible additional integrations should be 
performed in the middle layer to be suitable for additional 
software tool packages. 

To establish correct torque calculations based on the real 
values collected from the physical TB. 

To implement a two-way connection between the physical 
TB and its DT. 

If the DT and the TB work simultaneously over the 
Internet, the frequency of data acquisition may be too high 
to send on time and there is the possibility of lags. 

The injection process flow of new components of the TB 
into the DT. 

To create unpredicted behaviours in the system, trigger 
points, and try to make the system respond to the 
unpredicted change, thus making it more adaptive to 
changes. 

Table 1. Limitations and further steps 



processed and fed to the visual simulation, where addi -
tional data is being logged and given as feedback to the 
middleware to improve the model and physical simulation 
itself. The next crucial step is to feed physical simulation 
directly with data from the physical drive, enabling syn -
chron ization between the real and virtual worlds through 
the developed interface.  
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ROS-i  keskmise  kihi  integreerimine  Unity3D-ga  liidese  valikuna  autonoomsete  
sõidukite  jõuülekande  simulatsioonideks 

 
Vladimir Kuts, Anton Rassõlkin, Sergei Jegorov ja Viktor Rjabtšikov 

 
Kuna autonoomne sõidukite arendamine jätkub kasvava kiirusega, suureneb ka vajadus optimeerimiseks, diagnoosiks 
ja erinevate autonoomsete süsteemide elementide erinevates tingimustes katsetamiseks. Kuna nimetatud protsesse tuleks 
teostada paralleelselt, võib see arengus põhjustada kitsaskohti ja keerukust. Digitaalsete kaksikute kontsept pakub 
paljutõotavat võimalust diagnoosimiseks ja testimiseks, mis viiakse läbi füüsilistest seadmetest eraldi, sisaldades ka 
autonoomsete sõidukite testimist virtuaalmaailmas. Virtuaalsete ja füüsiliste kaksikute vahelise kommunikatsiooni 
põhimõte annab võimaluse hinnata riske, puudusi, sõiduki juhtimissüsteemide füüsilisi kahjustusi ning füüsilisi kriitilisi 
tingimusi. Nende süsteemide vahelise side loomine toimub kiirusega, mis on piisav füüsilise sõiduki virtuaalses maailmas 
täpseks esitamiseks, olles endiselt trendikas teema. Selle artikli eesmärk on näidata, kuidas antud probleemi lahendada, 
kasutades ROS-i vahevara liidesena kahe reaalse süsteemi vahel autonoomse sõiduki tõukejõu ajami näitel. Füüsilisest 
ja virtuaalsest maailmast kogutud andmeid saab vahetada keskse platvormi kaudu, et võimaldada jõuseadme mudeli 
pidevat õpetamist ja optimeerimist, mille tulemuseks on tõhusam tee planeerimine ning autonoomse sõiduki enda 
energiasäästlik kasutamine. Lisaks on esitatud robotite operatsioonisüsteemi (ROS) ja järgmise versiooni ROS2 võrdlev 
analüüs, kus on käsitletud nendevahelisi erinevusi ning välja toodud platvormide puudused. 


