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Abstract. The main goal of insurance company management is to increase shareholders’ value and implement a strategy that promotes 
sustainable growth of the company. Well-known possible measures intended to achieve that goal are as follows: share price, economic 
value, market capitalisation, gross premiums earned and solvency ratio. These measures include efficient capital management as 
capital expenses could be a major cost position depending on risk appetite and the extent of capital needed to support it. This research 
focuses on non-life insurers for reserve risk modelling. In the current study, a more accurate risk quantification model has been 
developed than the standard model provided by the EU regulator under the Solvency II framework. The proposed model provides 
capital cost gains as well. A case study based on non-life real data set with underwriting in the Baltic countries is discussed with 
inclusion of pandemic trends that had an impact on economies and customer behaviours. The study considers different non-life 
reserve distributions for each insurance business line, risk aggregation and the way of choosing the most appropriate type of copula 
model for non-life reserve risk. Adequate capital is calculated by applying value at risk at 99.5%, which is mandatory in the EU 
market. The study considers which selected tests have to be implemented in order to choose the most appropriate copula model for 
reserve risk. 
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1. INTRODUCTION 
 
The EU insurance industry has fully recognized and acknowledged the role of capital in risk monitoring and 
control since the introduction of Solvency II framework in 2016. It is the first risk-based insurance regulation 
after financial crises and financial market pressure from the banking sector where such regulations have been 
in force since 2010. The previous solvency margin requirements were established in 1973 under the first 
council directive for non-life insurers (73/239/EEC), which had no direct link between riskiness of portfolio 
and required capital needs.  

The new regulation has extended performance measures such as return on risk-adjusted capital and return 
on equity, all of which are reflected in the concept of the risk underwritten by insurers. Today’s mindset of 
culture and management means not only the measure of profit or whether the expected net cash flow is 
positive, but it also implies whether the return obtained within a given group of contracts is proportionate to 
the risk incurred. Dacorogna (2018) has published an overview on the new solvency rules, their imple -
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mentation in the organisational structure and their adoption procedure. The author describes how a progressive 
insurer should operate from the enterprise risk management perspective, taking into account direct tasks to 
be performed with regard to different management roles (e.g., chief executive, chief risk, chief underwriting, 
chief financial officers, etc.).  

The object of the paper is non-life insurance, the subject – efficient capital management using an internal 
model. 

The present section considers the concept of capital, providing the distinction between available capital 
𝐶𝑎 and total risk-adjusted capital for all risks 𝐶𝑟𝑇 (or solvency capital requirement, SCR) based on probability 
distributions. We also provide literature review of the main internal model concepts and pertinent 
mathematical approaches – copula, stochastic and deterministic reserving, and hypothesis tests for the copula 
model. In Sections 2 and 3, we introduce theoretical concepts and the algorithm of the model proposed by 
the authors of the article. Section 4 describes the results of the case study where the Baltic countries’ non-
life insurance data are used and identifies the difference between the required capital of a standard model 
and that of the internal model. In the last section, we conclude the paper by summarising the features marking 
the evolution of the internal model in terms of future perspectives and challenges. 

Capital can be seen as a guarantee to every customer that the company will meet all its obligations up to 
a certain level of probability. The EU regulator of insurance and pensions industry (EIOPA) requires a level 
of 99.5% within one year. In their turn, customer’s obligations are claims (e.g., costs of repairing hail damage 
to car, fire to household real estate). Insurance provides a fundamental social function and, therefore, a 
regulator imposes minimum levels to the amount of capital that it must hold. This minimum amount in various 
papers is called risk-adjusted capital, regulatory capital, or (SCR). Capital actually held by the insurer is 
called economical capital or available capital 𝐶𝑎 which is higher than the regulatory capital 𝐶𝑟𝑇 and driven 
by many considerations, such as to protect the company from insolvency, to maintain the rating given by 
major rating agencies (e.g., S&P), to appeal to the investors or to increase the number of customers, especially 
corporate customers. The company’s solvency ratio, SR, is then defined as follows: 

 
  
 
Available capital is provided by investors of the insurance company, who ask for a certain return on the 

capital, which is above the level of almost risk-free return that they could get from government bonds. The 
required return depends on the level of riskiness. The next performance measure is return on required capital 
(RORC), which should be maximised by the management to achieve the highest return with a given risk 
expressed as the required capital for all risks 𝐶𝑟𝑇  and annual profit 𝑃𝑟𝑜𝑓𝑖𝑡𝑎. It is defined as follows: 

 
 
 

where the aim of management is to maximise function 
 
 
 

where 𝐶𝑟𝑇 > 0. Formula (3) explains a well-known principle of the efficient frontier in the modern portfolio 
theory, which was first formulated by Markowitz (1952). The aim of the present paper is to provide the 
detailed algorithm of the model for required capital 𝐶𝑟𝑇, which is called an internal or partial model under 
Solvency II framework. The proposed model reflects reserve risk assessment. In non-life insurance companies 
claim reserving is the main process which determines what is held on the balance sheet for claims that are 
not yet settled, affects the level of risk premium, influences the capital that is held to support the solvency 
position, as well as affects dividend distribution, its frequency and stability. Thus, the amount of capital that 
must be held for reserve risk is crucial for both society and investors of the company.  

Although insurance claims data are usually modelled by skewed, heavy-tailed distributions, a regulator 
applies many simplifications in a standard formula, where risk aggregation for reserve risk is done using the 
Pearson linear correlation matrix (EIOPA 2014). The proposed model for required capital is modelled using 
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risk aggregation with copula model which addresses insurance data specifics by aggregating risks with an 
adequate modelling approach. Such an approach will avoid insolvency due to inaccurate capital assessment 
for dependent losses between lines of business (LoB) and by ignoring non-linear dynamics, especially in 
tails. Risk aggregation technique applied in a standard formula is mentioned as the main weakness based on 
the authors’ previous literature review (Zarina et al. 2019). 

By searching for the terms ‘insurance & copula’ in the Scopus database, we would like to highlight the 
most cited and the most relevant papers and books that have also affected the proposed model described in 
subsequent sections of the paper. McNeil et al. (2005) provide a comprehensive examination of the theoretical 
concepts and modelling techniques of quantitative risk management, including a copula approach for the 
financial sector. Patton (2006) tests asymmetry in a model of the dependence between the Deutsche mark 
and the yen, and takes into account correlation via a copula approach. Aas et al. (2009) show how financial 
multivariate data, which exhibit complex patterns of dependence in the tails, can be modelled using a cascade 
of bivariate-copula. Cherubini et al. (2004) apply copulas to major topics in derivative pricing and counter -
party default risk analysis. In turn, Genest et al. (2009) provide goodness-of-fit testing of copula models with 
application to insurance data. 

Claim reserve calculation between lines of business is the next major topic. Although different techniques 
are used, classical chain ladder method (CLM) is usually the basis according to the 2016 report on reserving 
practices by the International Actuarial Association. We will apply a stochastic method with underlying 
deterministic chain ladder approach. The concept of the method was introduced by Tarbell (1934) and it 
became well-known in the early 1970s. England and Verrall (2002) have summarised literature on the topic 
pointing out notable papers such as Kremer (1982), Taylor and Ashe (1983), Renshaw (1989). We refer to 
the most cited papers in the Scopus database after searching the terms ‘chain ladder & reserve’ and 
‘chainladder & reserve & copula’. Mack (1993a, 1993b, 1994) describes the standard error formula for a 
distribution-free reserving CLM, which helps assess reserve risk. Ashe et al. (1986) introduced a stochastic 
approach for reserve risk assessment with bootstrap estimates of prediction errors in claim reserving based 
on a bootstrapping statistical technique first proposed by Efron (1979). The method produces an estimate of 
the distribution of future cash outflows. Shi and Frees (2011) apply copula approach and parametric bootstrap 
for multiple multiyear run-off triangles for personal and motor business with data of the majority of U.S. 
insurers. Fersini and Melisi (2016) applied a stochastic model to evaluate the fair value of motor third-
party liability and quantification of the capital requirement from the Solvency II perspective using the data 
of Italy. We have not identified any paper addressing the whole process consisting of a proposed algorithm 
for an internal model with application to real data sets (underwriting in the Baltic market) where different 
distributions for lines of business for the product exist, data is joined with a correlation matrix, and copula 
family tests are performed in the context of Solvency II framework with one-year time horizon.  
 
 
2. THEORETICAL  APPROACH  OF  INTERNAL  MODEL  TECHNIQUES 
 
2.1. A  case  for  non-internal  default  model  or  standard  formula  set  by  the  EU  regulators 
 
Calculation steps and underlying assumptions are described in Solvency II Directive (138/2009/EC) and 
Commission Delegated Regulation (EU) 2015/35 supplementing the directive. Firstly, required capital 𝐶𝑟 is 
set aside with a defined capital standard based on a 0.995 quantile α, called value at risk (𝑉𝑎𝑅α), where time 
horizon is one year, and it is calculated by considering risk mitigation such as reinsurance protection. 
Confidence level must be also used for an internal model. Secondly, it is assumed in standard formula that 
reserve distribution for each and every product and line of business has log-normal distribution. Next, 68–
95–99.7 rule or empirical rule is used. Capital for reserve risk 𝐶𝑟 in case of product (or line of business) 𝑒 in 
insurer’s portfolio is as follows: 
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where σ𝑒 denotes volatility measure, standard deviation for 𝑒 product reserve risk and 𝐶𝐵𝐸𝑒 is volume 
measure or the best estimate of the claim reserve in economical balance sheet for the product 𝑒. Generally 
casualty insurers’ portfolios consist of different lines of business. Correlation and diversification effect then 
is reflected by calculating a standard deviation coefficient σ𝑡𝑜𝑡𝑎𝑙 for the whole portfolio as follows: 

 
 

 
where 𝐶𝐵𝐸𝑡𝑜𝑡𝑎𝑙 is the sum of claim reserves best estimate after reinsurance for all the lines of business, with 
the sum covering all possible combinations (𝑒, 𝑝) of the lines of business 𝑒 to 𝑝; 𝐶𝑜𝑟𝑟𝑆(𝑒,𝑝) signifies the 
correlation coefficient between lines of business 𝑒 and 𝑝 set out by the Solvency II Directive.  
 
2.2. Internal  model  approach  using  copula 
 
2.2.1. General principles 
 
The authors propose, instead of formula (5) and correlation coefficients set out by the EIOPA, applying 
Spearman rank correlations, reserve distributions and another risk aggregation technique – copula. The risk 
aggregation procedure is the same as in the standard model and market practice if an alternative model is not 
accepted by regulators. As mentioned in the section above, alternative capital requirement for reserve risk 
should be calculated by using formula: 

 
 
 

where 𝑉𝑎𝑅𝑒
99.5% denotes value at risk (𝑉𝑎𝑅) at 99.5% confidence level for line of business 𝑒 and 𝐶𝐵𝐸𝑒 is the 

best estimate of claim reserve for line of business 𝑒 or 𝑉𝑎𝑅 at 50% confidence level which represents fair 
value of liabilities in economical balance sheet. The same principle works for aggregated reserve risk (of 
different business lines), which is the difference between value at risk at 99.5% and the mean or the best 
estimate booked in economical balance sheet.  
 
2.2.2. Types of uncertainty in models and bootstrap chain ladder method for claims best estimate  
 
Deterministic CLM is one of the key methods that have been developed for use in non-life insurance. This 
method is used to derive reserve estimates and provide a single estimate of reserves to be booked without 
uncertainty and potential shift assessment around the estimate. Real data sets are organized in a triangle 
format (e.g., incurred claims) where past development is used as a guide for estimation claims development 
in future. The concept was introduced by Tarbell in 1934 and it became well known in the early 1970s. The 
basis of the method is as follows: 

 
 
 
 
 
 
 
 
 

 
where 𝐼𝐶 represents incremental claims data; the suffix 𝑖 refers to the row indicating accident year; the suffix 𝑗 
refers to the column and indicates the delay, here assumed to be measured in years. 𝐷𝑖𝑗 denotes assumed 
cumulative claims. The development factors of the CLM are denoted by {λ�𝑗:𝑗 = 2, ... , 𝑛} and the estimates 
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of the development factors λ�𝑗 are then applied to the latest cumulative claims in each row 𝐷𝑖,𝑛–𝑖+1 to produce 
forecasts of future values of cumulative claims. 

However, the calculated estimates can be reliable if there is sufficient historical data and historical 
uncertainty can also be assumed as future uncertainty. Internal capital modelling team must take into account 
types of uncertainty errors in the model that will improve reality (see Fig. 1). 

Figure 1 demonstrates how important it is to use expert judgment during the reserving process. The 
proposed internal model excludes the procedure of expert judgement as each entity product design, and local 
legal requirements differ from each other. Stochastic method application is crucial for determination of capital 
requirements. However, it is an essential tool during the business planning process, merger and acquisition 
transactions, reinsurance pricing, and the approach is not restricted by the modelling distributions. Math -
ematical representation of prediction uncertainty is measured with the mean squared error of prediction, 
which can be divided into two components for process and parameter estimation variance, and overall practice 
changes depending on which stochastic reserving method or procedure is used: 

 
 
 

where 𝑋 denotes an unknown future value or claims best estimate and 𝑋� represents the estimators. This 
formula has been explored in the context of stochastic reserving by such authors as Taylor and Ashe (1983), 
Renshaw (1994), and based on conditional probabilities by Mack (1993a), Merz and Wüthrich (2008). 
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Fig. 1. Types of uncertainty for reserve setting and its capital requirements (created by the authors based on Marshall et al. 2008 and 
Hindley 2017). 
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Deterministic CLM is an underlying method for a stochastic method used in further study – bootstrap chain 
ladder. The method is simulation based and therefore produces an estimate of the full distribution of future 
claims and operates within one-year time horizon. Claim distribution finding is the key reason why a 
stochastic reserving technique is used in the model and specific distributions for each line of business will 
be later used for risk aggregation process in the copula approach and for finding aggregated distribution.  

Bootstrapping (Efron & Tibshirani 1993) is a powerful yet simple simulation technique; the methodology 
is based on sampling with replacement from the observed data sample to create a large number of pseudo-
samples, which are consistent with the underlying distribution (England and Verrall 1999).  

In a standard application of bootstrapping, where data are assumed to be independent and identically 
distributed, resampling with replacement is performed with source data. In regression type problems, the 
data are usually assumed to be independent, but not identically distributed, since the means (and possibly 
the variances) depend on covariates. Therefore, in regression type problems, it is common to use bootstrap 
residuals, rather than the raw data, since the residuals are approximately independent and identically 
distributed, or can be made so. For generalised linear models (GLM), there is a range of extended definitions 
of residuals; the precise form being dictated by the underlying modelling distribution (see McCullagh & 
Nelder 1989). For the over-dispersed Poisson chain ladder model, we use the Pearson residuals for 
bootstrapping. After discarding the suffices that indicate the origin and development year, the Pearson 
residuals 𝑟𝑝 are defined as 

 
 
 

where 𝑚� is the fitted incremental claim and IC denotes incremental claim amount given by the over-dispersed 
Poisson chain ladder model (see England and Verrall 2002, p. 21). The bootstrap process involves resampling 
with replacement from the residuals. A bootstrap data sample is then created by inverting Eq. (13) and using 
the resampled residuals together with the fitted values. Given a resampled Pearson residual 𝑟𝑝

* together with 
the fitted value 𝑚, the associated bootstrap incremental claims amount 𝐼𝐶* is given by 

 
 
 
Resampling the residuals (with replacement) gives rise to a new triangle of past claims payments. Having 

obtained the bootstrap sample, the model is refitted and the statistic of interest calculated. Strictly, we ought 
to fit an over-dispersed Poisson GLM to the bootstrap sample to obtain a bootstrap reserve estimate. However, 
we can obtain identical reserve estimates using standard chain ladder (CL) methodology. At this point the 
usefulness of the bootstrap process becomes apparent, we do not need sophisticated software to fit the model, 
a spreadsheet will suffice. Having fitted the CL model to the bootstrap sample and obtained forecast 
incremental claims payments, we invoke the second stage of the procedure which replicates the process 
variance. This is achieved by simulating an observed claims payment for each future cell in the run-off 
triangle, using the bootstrap value as the mean and using the process distribution assumed in the underlying 
model, which, in this case, is over-dispersed Poisson model. The procedure is repeated a large number of 
times, each time providing a new bootstrap value and simulated forecast payment. For each iteration, the 
reserves are calculated by summing the simulated forecast payments. The set of reserves obtained in this 
way forms the predictive distribution, from which summary statistics, such as the prediction error, can be 
obtained (which is simply the standard deviation of the distribution of reserve estimates). More detailed 
description of the bootstrap procedure is given in England and Verrall (2002) and Hindley (2017). 

General procedure of a non-parametric residual resampling bootstrap with regard to claims best estimate 
is as follows (Hindley 2017): 
1. Define a statistical model that is appropriate for modelling the claims development process. This model 

will produce estimates of the future claims payments. 
2. Fit this model to an observed data triangle. 
3. Determine appropriately defined residuals between the fitted statistical model and the observed data. 
4. Use Monte Carlo simulation to produce random selections of the residuals (with replacement). 
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5. Use the randomly generated residuals to generate new ‘pseudo data’ analogues to the observed data 
sample. 

6. Re-fit statistical model to each version of the pseudo data and predict forecasts of the future claims 
payments, ensuring that the process error is incorporated in a suitable way. 

7. Finally, examine the distribution of the forecasts to produce estimates of the prediction error – related to 
uncertainty caused by both parameter and process error. 

 
2.2.3. One-year bootstrap approximation for vector – one-year run-off shifts for the best estimate 
 
In the context of capital requirement setting in internal modelling, we are interested in one-year time horizon 
and, therefore, with regard to the reserving area it is one-year claim development and its distributions. Merz 
and Wüthrich (2008, 2014) have published the way how claim development for one year can be derived 
using the bootstrap CLM. The main advantages of the bootstrap methodology are summarised by 
Boumezoued et al. (2011) and Diers (2008) and illustrated in Fig. 2. 

 
2.2.4. Distribution fitting method for one-year run-off vector 
 
Claim distributions usually are skewed. Several distributions such as gamma, Weibull, normal, log-normal, 
exponential were applied to data and tested by goodness-of-fit tests. One-sample Kolmogorov–Smirnov test, 
AIC test and Q-Q plots were used to find out the best fit.  
 
2.2.5. Spearman’s rho rank correlation 
 
Natural catastrophes or pandemic events (or both) have occurred in past years affecting different lines of 
business (property insurance, motor own damage) resulting in high correlation between claim developments. 
Correlation matrix is created from real data and correlations between various underlying risks are assessed. 
Correlation matrix is calculated by using Spearman’s rho rank correlation (Spearman 1904). The Spearman 
correlation coefficient is defined as the Pearson correlation coefficient between the ranks. Ranks in the 
reserving context are calculated from incurred claims in each accident year for each line of business. 
 
2.2.6. Risk aggregation via copula approach 
 
Actuary or reserve risk holder needs to know the volatility best estimate of the company’s portfolio and 
estimate the value at risk at certain confidence level. In order to obtain a multivariate distribution of an 
aggregate risk level considering all lines of business, copula approach is used. Next, diversification effect 
can be calculated as the difference between sums of all risks and aggregated risk from the multivariate 
distribution.  
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Fig. 2. One-year best estimate (based on Boumezoued et al. 2011). 



Copulas are certain distribution function of a random 𝑑-vector. Let us recall that the distribution function 
𝐻 of a 𝑑-dimensional random vector X = (𝑋1, ... , 𝑋𝑑)′ is the function defined by 

 
 
 
The distribution function 𝐹𝑘 of 𝑋𝑘, 𝑘 ∈ {1, ... , 𝑑} can be recovered from the distribution function of a 

random 𝑑-vector 𝐻 by 𝐹𝑘(𝑥𝑘) = 𝐻(∞, ... , ∞, 𝑥𝑘, ∞, ... , ∞), 𝑥𝑘 ∈ �. This is why 𝐹1, ... , 𝐹𝑑 are called the 
univariate margins of 𝐻 or the marginal distribution functions of X. Sklar’s theorem can be used to create 
copula families from existing families of distribution function of a random 𝑑-vector. It is a central theorem 
of copula theory. Proof can be found in Sklar (1996); a probabilistic one in Rüschendorf (2009). For the 
univariate distribution function 𝐹, 𝑟𝑎𝑛𝐹 = {𝐹(𝑥) : 𝑥 ∈ �} denotes the range of 𝐹 and 𝐹← denotes the quantile 
function associated with 𝐹.  

Sklar’s Theorem (Sklar 1959). For any distribution function of a random 𝑑-vector 𝐻 with univariate 
margins 𝐹1, ... , 𝐹𝑑 , there is a 𝑑-copula 𝐶 such that 

 
 
 

The copula 𝐶 is uniquely defined on ∏𝑑
𝑘=1 𝑟𝑎𝑛 𝐹𝑘 and is given by  

 
 
 

Conversely, given a 𝑑-copula 𝐶 and univariate distribution functions 𝐹1, ... , 𝐹𝑑, 𝐻 defined by (16) is a 
distribution function of a random 𝑑-vector with margins 𝐹1, ... , 𝐹𝑑 where 𝑟𝑎𝑛 𝐹𝑘 denotes the range of the 
distribution function, 𝐹𝑘. 

 
Normal copula 

 
The distribution function of a random 𝑑-vector normal copula 𝐶𝑛

𝑑 is the copula defined by Sklar’s theorem 
from the multivariate normal distribution 𝑁𝑑(0,P), where P is correlation matrix of 𝑋~𝑁𝑑(0,𝑃). If Φ𝑑 denotes 
the distribution function of the latter, 𝐶𝑛

𝑑(u) is given, for any u ∈[0,1]𝑑 by  
 
 
 

where Φ–1 denotes the quantile function of 𝑁(0,1) (Hofert et al. 2018). 
 
𝑡-copula 
 
The 𝑡-copula 𝐶𝑡

𝑑,𝑣 is the distribution function of a random 𝑑-vector defined by Sklar’s theorem from the 
multivariate 𝑡 distribution with location vector 0, correlation matrix P and 𝑣>0 degrees of freedom. If 𝑡𝑑,𝑣  
denotes the distribution function of the latter, 𝐶𝑡

𝑑,𝑣(u) is given, for any u ∈ [0, 1]𝑑, by  
 
 
 
 

where 𝑡𝑣
–1 denotes the quantile function of the univariate Student 𝑡 distribution with 𝑣 degrees of freedom 

(Hofert et al. 2018). 
Assume now that the copula 𝐶 has been selected. We are interested in the value at risk (𝑉𝑎𝑅) of a position 

by using the Monte Carlo method which generates a number 𝑁 of such scenarios and the sample α-quantile 
is then the one period value at risk at the confidence α defined by: 
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ሻܠሺܪ(15) ൌ Զሺࢄ ൑ ሻ࢞ ൌ Զሺ ଵܺ ൑ �ଵǡ ǥ ǡ ܺௗ ൑ �ୢሻǡ ࢞ ൌ ሺݔଵǡ ǥ ǡ ௗሻᇱݔ א ԹୢǤ             
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ሻ࢛ሺܥ(17) ൌ ଵሻǡǥݑଵ՚�ሺܨ൫ܪ ǡ ௗሻ൯ǡݑௗ՚�ሺܨ ࢛ א ς ௞ௗ௞ୀଵܨ�݊ܽݎ Ǥ!!!!!!!!!!!!!!!!!!!!!!!!!!! !
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ௗǡ௩௧ܥ(19) ሺ࢛ሻ ൌ ଵሻǡǥݑ௩ିଵሺݐௗǡ௩൫ݐ ǡ ௗሻ൯ݑ௩ିଵሺݐ ൌ ׬ ǥ௧ೡషభሺ௨೏ሻିஶ ׬ ʒቀೡశ೏మ ቁʒቀೡమቁሺగ௩ሻ೏మξௗ௘௧ࡼ ቀͳ ൅ ௩࢞షభࡼᇲ࢞ ቁି�ೡశ೏మ ଵݔ݀ ǥ݀ݔௗ௧ೡషభሺ௨భሻିஶ  ,

(20)

\ ܸܴܽఈ ൌ                                                                  ,ሻߙ௅శ՚ሺܨ
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where 𝐿+ is aggregate loss, 𝐹𝐿+ is known as loss distribution and α denotes the confidence level α ∈ (0, 1). 
The capital needed is the difference between reserve in economical balance sheet 𝐵𝐸𝑡𝑜𝑡𝑎𝑙 and the value at 
risk at the confidence level α = 0.995: 

 
 

 
2.2.7. Hypothesis tests for selection of copula model 
 
We have used hypothesis tests in order to validate various copula models. Basic graphical diagnostics can be 
sufficient in practise for finding risk assessment approximation. However, it is not a sufficient argument of 
internal capital model methodology, documentation package for national regulators, and financial market 
authorities. Formal statistical tests, which compute 𝑝-values that can help as to guide the choice of the 
hypothesized copula family, play an important role. We assume this goodness-of-fit issue for adequate 
parametric copula family amounts formally by testing 

 
 
 

where under Ƕ0 the choice of the hypothesised copula family � cannot be rejected and Ƕ1 states that the 
choice of the hypothesised copula family � can be rejected.  
 
Parametric bootstrap 
 
As suggested in Fermanian (2005), Quessy (2005), and Genest and Rémillard (2008), a natural goodness-of-
fit test consists of comparing 𝐶𝑛 with an estimate 𝐶θ𝑛 of 𝐶 obtained under the assumption that 𝐶 ∈ � holds. 
The estimated margins are used to form the sample 

 
 
 

where for any 𝑗 ∈ {1, ... , 𝑑}, 𝐹𝑗 is estimated by using component samples of X1, ... , X𝑛, 
 
 
 
In the previous statement, θ0 is an estimate (parameter vector) of θ computed from the pseudo-

observations 𝑈1,1 , ... , 𝑈𝑛,𝑛 such as the maximum pseudo-likelihood estimator. 
We use an approach that appears to perform particularly well according to the large-scale simulations 

carried out in Genest et al. (2009), where Cramer–von Mises statistic is used for the test fitting: 
 
 
 

An approximate 𝑝-value for the test based on 𝑆𝑛
𝑔𝑜𝑓 can be obtained by means of a parametric bootstrap whose 

asymptotic validity is investigated in Genest and Remillard (2008). Advantage of the method is its conceptual 
simplicity. 
Parametric Bootstrap algorithm is summarised by Hofert et al. (2018):  
1. Compute the pseudo-observations 𝑈1,1 , ... , 𝑈𝑛,𝑛. 
2. Compute an estimate θn of θ from the pseudo-observations 𝑈1,1 , ... , 𝑈𝑛,𝑛. 
3. Compute the test statistic 𝑆𝑛

𝑔𝑜𝑓. 
4. For some large integer 𝑁, repeat the following steps for every 𝑘 ∈ {1, ... , 𝑁}: 
    4.1. Generate a pseudo-random sample 𝑈1

(𝑘), ... , 𝑈𝑛
(𝑘) from the fitted copula 𝐶θ𝑛 and compute the correspond- 

          ing pseudo-observations 𝑈(𝑘)
1,𝑛 , ... , 𝑈(𝑘)

𝑛,𝑛. 
    4.2. Compute an estimate θ𝑛

(𝑘) of θ from the pseudo-observations 𝑈(𝑘)
1,𝑛 , ... , 𝑈(𝑘)

𝑛,𝑛 using the same (rank-based)  
          estimator as in Step 2. 
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௥ܥ(21) ൌ ȁ������� െ ܸܴܽͲǤͻͻͷȁ.                     
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௡ǡ௝ሺ௫ሻܨ(24) ൌ ଵ௡ାଵσ ͳ൫ ௜ܺ௝ ൏ ൯ǡݔ ݔ א Թ௡௜ୀଵ  .

(25)
 ܵ௡௚௢௙ ൌ ׬ ݊ ቀܥ௡ሺ࢛ሻ െ ሻቁଶ࢛ఏ೙ሺܥ ሻ࢛௡�ሺܥ݀ ൌ σ ቀܥ௡൫ ௜ܷǡ௡൯ െ ఏ೙൫ܥ ௜ܷǡ௡൯ቁଶ௡௜ୀଵሾ଴ǡଵሿ೏  .



    4.3. Compute the corresponding value 𝑆𝑛
𝑔𝑜𝑓,(𝑘) of 𝑆𝑛

𝑔𝑜𝑓 as: 
 
 
 

where 
 
 
 
Under Ƕ0, 𝑆𝑛

𝑔𝑜𝑓,(𝑘) are approximately independent copies of 𝑆𝑛
𝑔𝑜𝑓. 

5. An approximate 𝑝-value for the test is given by 
 
 
 
 

Cross-validation criterion 
 

There is a possibility that all candidate parametric copula families are rejected when the sample size is large 
or none of the families is rejected when the sample size is small. The test that uses Akaike information 
criterion (AIC) and performs the selection of the best ranked family can be justified by using formula 

 
 
 

where 𝑙𝑛,𝑚𝑎𝑥 is the maximized likelihood function and 𝑚 is the total number of marginal and copula 
parameters. Grønneberg and Hjort (2014) have defined cross-validation copula information criterion up to a 
multiplicative constant, the first-order equivalent of the cross validation criterion: 

 
 
 

where θn,–1 is the maximum pseudo-likelihood estimate computed from the sample X1, ... , X𝑖–1, X𝑖+1, ... , X𝑛 
and  

 
 
 

with 
 
 
 
 
This test leaves out and penalises copula families with too many parameters that tend to overfit. Several 

authors have produced papers with the aim of improving the AIC formula approach and historical 
development of the copula theory in a more detailed way, for instance Claeskens and Hjort (2011), 
Grønneberg and Hjort (2014), Jordanger and Tjøstheim (2014), McNeil et al. (2015).  
 
 
3. PRACTICAL  APPROACH  AND  ALGORITHM  OF  INTERNAL  MODEL 
 
This section describes the basis of each simulation and analytical techniques, as well as provides relevant, 
primary reference papers. The algorithm of calculation is demonstrated in Fig. 3. 
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Step 1  –  Data  collection 
 
We have collected incurred Baltic claim data sets from past nine years (2012–2020), including accident years 
and development years. The data set also includes pandemic trends, which had an impact on economics and 
customer behaviours. The model has been applied to data sets of three lines of business – motor third party 
liability insurance (MTPL), general third-party liability insurance (GTPL) and credit and suretyship insurance 
(C&S). The data set is in line with CL  using formula (7) for general third party liability business line. An 
example can be seen in Fig. 4. 
 
Step 2  –  Calculation  of  correlation  matrix  
 
We have assessed Spearman correlations in occurred claims. Calculations are performed based on incurred 
claims for each accident year as end of 2020 and the average rank of each year (Annex 2). Figure 5 
demonstrates the differences in correlations between lines of business according to the internal and the non-
internal or standard formula model. 
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Fig. 3. Full algorithm steps of the internal model for reserve risk by aggregating various lines of business (LoB). 
 



Step 3  –  Assessment  if  claims  follow  distributions  
 

We have used R package ChainLadder (Gesmann et al. 2015) and its key functions CDR (calculates standard 
deviation of the claims development result after one year), BootChainLadder for real non-life data sets, for 
results derived in Table 1. Then the obtained one-year potential best estimate is tested to examine whether it 
follows certain distribution by using R package MASS (Venables and Ripley 2002). Probability distribution 
that real data follows, it’s histograms, theoretical densities and numerical results of hypothesis tests, and 
Q-Q plots can be seen in Annex 1. We have chosen three different distributions as combination of numerical 
results and Q-Q plots (Annex 1), and applied such distributions and parameters as seen in Table 1.  
 
Step 4  –  Copula  simulation  and  choice  of  model  by  applying  hypothesis  tests  
 
We have used R package copula (Hofert et al. 2020, Yan 2007, Kojadinovic and Yan 2010, Hofert and 
Maechler 2011) and its functions rCopula (for normal copula) and 𝑡copula. And we have used R package 
gofCopula (Zhang et al. 2016, Genest et al. 2009) with its key functions xvCopula and gofcopula for 
goodness-of-fit tests. 
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Fig. 4. An example of data set during data collection in thousands EUR. 
 

  Spearman rank correlation matrix 
  

  Standard formula (EIOPA, 2014)  

  MTPL GTPL C&S    MTPL GTPL C&S 
MTPL 1.00 0.90 0.28   MTPL 1.00 0.50 0.25 
GTPL 0.90 1.00 0.10   GTPL 0.50 1.00 0.50 
C&S 0.28 0.10 1.00   C&S 0.25 0.50 1.00 

 
 

Fig. 5. Correlation matrix and comparison with the default model. 
 

Distribution MTPL GTPL C&S 
 Log-normal Normal Weibull 

meanlog/scale             15.93          2 859 768 3 115 480 
sdlog/shape               0.16             613 643.50               4.60 ܧܤܥ௘  Best estimate in EUR 8 352 978          2 859 768 1 180 261 ߪ standard deviation for standard formula¶V� 
   model provided by regulator  

              0.16                        0.22               0.91 

 
 

Table 1. Unique distributions, parameters and claims best estimate 
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  Spearman rank correlation matrix 

 
  Standard formula (EIOPA, 2014)



4. CASE  STUDY  RESULTS  AND  CAPITAL  GAINS 
 
Capital requirement for reserve risk with standard model is 7 172 629 euros, with internal model using normal 
copula 4 272 847 euros; and using 𝑡-copula it is 4 341 205 euros. Capital savings by comparing the proposed 
internal models versus the standard model are 40.43% with normal copula and 39.48% with 𝑡-copula 
(Table 2). However, 𝑡-copula (number of degrees of freedom (df) is 4) as a copula family must be rejected 
based on hypothesis tests (Table 3).  
 
 
5. CONCLUSIONS  AND  FURTHER  STUDY 
 
A more accurate risk quantification model has been developed than the standard model provided by the EU 
regulator under the Solvency II framework. The proposed model provides capital cost gains as well. The case 
study has shown that capital needs in case of non-internal model application can vary up to forty percent. 
The proposed model can be used not only as an internal model but also as an individual tool by each and 
every insurer for their own risk assessment and financial planning process. Real data set provided capital 
gains, but for others it could indicate capital shortage. The provided full algorithm can be easily adjusted 
depending on entity data specifics; more dimensions (LoB) can be added and other claim reserving methods 
applied; for instance, methods based on neural network architecture or machine learning. Next, these new 
claim reserving methods can be used for measuring digitalization and automatic claim handling impact on 
required capital for reserve risk. These are also further research steps.  
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Model VaR 99.5% Reserve risk, �௥ Capital savings Capital gains in % 

Standard model provided by regulator 19 565 636 7 172 629   

Internal model using normal copula 16 665 854 4 272 847 2 899 781 40.43 

Internal model using ݐ-copula, df = 4  16 734 212 4 341 205 2 831 424 39.48 

Table 2. Capital requirement results and capital gains in euros 
 
 

Model/Approach AIC and p-value Parametric  
bootstrap 

Decision 

Internal model using normal copula 0.02 and 0.8027                5.47 Plausible, Ꭶ଴ cannot be rejected 

Internal model using ݐ-copula, df = 4 0.21 and 0.0005          ±623 Ꭶ଴ is rejected 
 
 

Table 3. Goodness of fit, numerical results of hypothesis testing 
 
 



ANNEX 1. 
 

Claim distributions, histogram and theoretical densities, Q-Q plots for MTPL LoB (up), GTPL LoB (middle), C&S LoB 
(down).  
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ANNEX 1. Continued.

  

GTPL: Gamma 
GTPL: Normal (chosen based on 

numerical results of hypothesis tests) GTPL: Log-normal 

  

Surety: Gamma  

Surety: Weibull (chosen based on 
numerical results of hypothesis test and Q-

Q plot) Surety: Log-normal 

 
GTPL: Normal (chosen based on 

numerical results of hypothesis tests) 

 
Surety: Weibull (chosen based on 

numerical results of hypothesis test and Q-
Q plot) 

 

MTPL: Log-normal (chosen based on 
numerical results of hypothesis tests and 

Q-Q plot) MTPL: Normal MTPL: Gamma

GTPL: Gamma GTPL: Normal (chosen based on 
numerical results of hypothesis tests)

GTPL: Log-normal

Surety: Gamma

 
Surety: Weibull (chosen based on numerical 

results of hypothesis test and Q-Q plot) Surety: Log-normal
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ANNEX 2. 
 

Incurred claim and the calculated average ranks 2012–2020.

 

MTPL C&S GTPL MTPL C&S GTPL
2012 22 880 869 1 313 110 971 946 1 3 1
2013 25 643 495 4 218 699 1 243 851 2 7 2
2014 28 824 391 1 548 426 1 676 612 3 4 3
2015 39 491 919 931 116 2 552 748 5 1 6
2016 39 879 874 6 805 097 2 055 760 6 8 4
2017 36 985 472 3 953 775 2 348 722 4 5 5
2018 43 412 120 9 354 271 3 892 655 8 9 9
2019 47 139 227 4 025 493 2 660 400 9 6 7
2020 40 975 775 1 157 132 2 965 314 7 2 8
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Efektiivne  kapitali  juhtimine  sisemudeli  abil:  kahjukindlustuse  juhtum 
 

Ilze Zariņa-Cīrule, Gaida Pettere ja Irina Voronova 
 

Artiklis on välja töötatud koopulate teoorial põhinev sisemudel kindlustusfirma reservide hindamiseks lähtudes 
Solventsus II regulatsioonides määratud nõuetest. Mudelit on rakendatud kindlustusfirma kahjuandmetele, mis on esi-
tatud ahel-redel meetodit järgides kolme erineva kahjude klassi korral. Leitud on parimad lähendavad jaotused iga kah-
jude klassi kirjeldamiseks ja need on ühendatud kolmemõõtmeliseks jaotuseks Gaussi koopula abil. Viimane andis 
kahjudele adekvaatsema kirjelduse kui t-koopulal põhinev mudel. Saadud mudeli abil hinnatud vajalike reservide suurus 
on tunduvalt väiksem kui standardse metoodika abil leitud reservide kogusumma. 
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