
1. INTRODUCTION  
 
Industrial development and energy crisis are two aspects 
linked to the development of modern manufacturing. 
Increasing industrial power leads to the design and 
construction of more complicated mechanisms and in -
creased consumption of energy resources. 

Nowadays, no manufacturing is complete without the 
implementation of machines and special mechanisms. The 
use of robots, manipulators, and other autonomous de -
vices ensures greater productivity for enterprises and 
reduces the risk of defective products. Smooth and ac -
curate movements of robotic manipulators lead to the 
desired result with minimal loss of material and energy 
resources [1,2]. 

However, like any other system, robotic manipulators 
are subject to wear, namely the parts in which the force is 
transmitted from the motor that controls the movement of 

the robot to various mechanical parts using different gears 
[2,3]. Several types of transmissions are utilized for this 
purpose, each of which is used under certain conditions, 
to perform specific tasks. The wear of mechanical as -
semblies leads to the appearance of nonlinearities in the 
operation of robotic manipulators, reducing their technical 
capabilities [4]. As a consequence, there is a violation of 
the technological process, defective products, and nu -
merous increased resource costs [5]. 

Diagnostics of the overall performance of industrial 
robots is the main task for the standard operation of 
mechanisms. Diagnostics should be carried out for dif -
ferent systems [1,6,7]: 

- control system; 
- power electronics; 
- motors; 
- mechanical system. 
Diagnosis of the control system and power electronics 

involves diagnostic sensors used to obtain feedback from 
a robot and for more effective control mechanisms. This 
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type of diagnosis of the control system also includes 
checking of control algorithms and programs during the 
operation of an industrial robot [1,6,7]. 

The main research questions of this article are: 
- definition of the character of gear faults; 
- overview of diagnostic methods; 
- showing the influence of the faults of different mech - 
  anical parts on each other. 
This review is organized as follows. Section 2 

describes industrial robots, motor types used to move parts 
of a robot, and how to transmit force to other parts of the 
robot. Section 3 specifies the types of gears that transmit 
force from the motor to other parts of the mechanisms. 
For every type of gear, the advantages and disadvantages 
are given, and problem areas are indicated. A comparison 
of gears based on common properties is also provided. 
Section 4 summarizes the types of diagnostic and monitor -
ing methods related to transmission problems. The Hirata 
Cartesian robot is used as an example for comparing each 
type of diagnostic method.  

Diagnosis of the motor and mechanical components 
as well as mapping of the most probable damage minimize 
the risks associated with malfunctioning of mechanisms 
and prevent serious damage. Moreover, diagnostics of 
different types of gears allows to understand how to 
eliminate emerging problems with minimal cost, which is 
an essential criterion in the context of globally developing 
production and caring for the environment [1,6,7]. This 
article is a general overview of gears used for industrial 
robots and the related faults. The basic types of industrial 
robots presented in this article, which have the same 
transmission as the Hirata Cartesian robot, will be the 
main subject of future research. 
 

2. ROBOTS  AND  MOTORS 
 
Industrial robots cover an essential segment of industry 
[1], they are used to perform work that poses a threat to 
human life and health [8,9]. Any industrial robot consists 
of mechanical parts to perform specific functions, such as 
moving weights or the structure of the robot, or grabbing 
details or parts of another mechanism. Each part is rep -
resented by a specific gear, specifically suited for the 
particular type of operation [1,10]. 

For a more detailed consideration of transmission 
types, an example of some of the main robotic manipu -
lators is presented in Fig. 1 [8]. The robotic arm manipu - 
lator (Fig. 1a) is designed to move small details during the 
technological process and assemble other mechanisms. 
The telpher manipulator (Fig. 1b) is an industrial ma -
nipulator designed for operation with special attachments 
and devices as well as for moving heavy cargo along the 
technological line. The Cartesian robot (Fig. 1c) is de -
signed for operation in technological pro cesses of as- 
sembling and installing, usually applied in electronics 
manufacturing and conveyor systems [11,12]. 

As can be seen from the literature, servo drives and 
stepper motor drives are the most commonly used pro -
pulsion devices that satisfy high-performance require - 
ments and allow the robot to move smoothly with precise 
accuracy. Both motor types have their advantages and 
disadvantages, and a comparative analysis from the point 
of view of the dedicated application (robotic manipulator) 
is presented in Table 1 [13–16]. 

As seen from the comparison, the servo motor is the 
best drive element in terms of backlash presence, the 
range of power used, and wear. However, its control 
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Fig. 1. Sketches of industrial robotic manipulators: (a) robotic arm manipulator, (b) telpher manipulator, (c) Cartesian robotic 
manipulator. Mechanical gear joints are areas marked by red lines.  

(a) (b) (c)



system is more complex than that of the stepper motor, 
and there is no holding torque. Therefore, several trans -
mission types are used for servos, mainly the worm gear 
and the screw gear [16–19]. 

The areas marked by red lines in Fig. 1 indicate mech -
anical gears. The main task is to transmit force from the 
motor drive shaft to other parts of the robotic ma nipulator, 
allowing independent control for its different parts. 

As shown in Table 1, each motor type should use 
additional sensors for higher operation accuracy. The number 
of faults occurring during the motor’s operation is increas -
ing, which means that diagnosis of the robot’s operation 
should be performed on the mechanical and electrical 
systems. Therefore, diagnosis is further per formed on con -
trol systems, power electronics, and the mechanical parts. 

Faults occurring in the control system and power 
electronics lead to increased product failure, breaking the 
correct regime of operation, but do not allow the parts of 
the robot to be destroyed through protecting the systems. 

Damage to the mechanical system causes more 
negative consequences because minor changes in smaller 
mechanical parts lead to the nonlinear character of the 
robot’s operation. The situation leads to an increased 
consumption of energy resources and possible destruction 
of critical mechanical parts of the robot, which will 
require renovation and increase the consumption of ma -
terial resources. 
 
 
3. FAULTS  IN  THE  TYPES  OF  GEARS 
 
3.1. Gear  train  
 
A gear train is a mechanism that has gears to transmit 
force directly. It usually consists of two toothed wheels, 
one of which is called a cogwheel with fewer teeth, the 
other with more teeth is called a wheel [2,3,20]. A sketch 
of a gear train is presented in Fig. 2. The problem areas of 
the gear train (the possibility of jamming and overheating) 
are highlighted in red.  

The main advantages of the gear train are high 
efficiency, compactness, and high rotational speed, which 
allows it to be used at high power [21–23]. On the other 
hand, the disadvantages of the gear train which reduce the 
scope of its application are noise, increased dynamic load, 
frequent need for lubrication to avoid tooth jamming and 
abrasion, transmission rigidity [21–23]. Gear drives are 
mainly used for two purposes [24]: force transmission 
between parallel shafts and conversion of translational 
motion into rotary motion and vice versa. Therefore, those 
types of gears are used in cases where translational and 
rectilinear movement of a load or a high-power motor is 
used, e.g. moving the structure of a robotic manipulator 
along a technological line [25]. 
 
3.2. Belt  gear 
 
The belt gear is a mechanism that consists of at least two 
pulleys, with a belt stretched between them. The belt gears 
can be with or without teeth, depending on the load being 
transferred [2,3,20]. A sketch of the belt gear is presented 
in Fig. 3. The main failures that potentially affect belt gear 
performance are slippage and overheating. 

The advantages of belt gears are closely linked to their 
disadvantages, e.g. belt slippage causes transmission 
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Criteria Servo motor Stepper motor 
Requirements for the motor in terms  
   of power and the type of gearbox 

not needed needed 

Accuracy high accuracy high accuracy 
Backlash/slippage absent present 
Wear low degree of wear medium degree of wear 
Immediate detection of failure present present 
Need for additional sensors needed for normal operation needed to simply improve normal operation 
Complexity of the control system complex not complex 
Fixing of the motor shaft needed not needed 
Cost high price low price 

 

Table 1. Comparison of servo and stepper motors for a robotic manipulator 
 

 
 

Fig. 2. Faults of the gear train.



disruption and relieves shaft overload. Belt tension 
makes the transmission operation quiet and smooth, but 
it leads to additional heating. Some additional advan -
tages include low cost and minimal damage to the struc - 
ture in the event of some belt failures [21,26,27]. 
Usually, the belt gear is used to transmit force from the 
motor shaft to those parts of the mechanism that are in 
continuous motion and  employed for variable small and 
medium loads. However, the belt gear is also used to 
transmit tractive effort over long distances, e.g. 
conveyor-type machines [28,29]. 
 
3.3. Worm  gear 
 
A sketch of the worm gear is presented in Fig. 4. Possible 
failures of the worm gear are jamming, overheating, and 
increased friction. 

The worm gear is a mechanism that has a helical pair 
with teeth usually located orthogonally to each other. In 
the worm gear, the teeth of the worm slide over the teeth 
of the wheel, which leads to certain restrictions on its 
operation [2,3,20]. 

The advantages of the worm gear are smooth and quiet 
operation, compactness, and high kinematic accuracy, as 
well as the possibility of self-braking due to friction 
[21,30,31]. The disadvantages of the worm gear are as -
sociated with the friction of the teeth against each other, 
namely heating and low efficiency, the need to use anti-
friction materials, and jamming of the gear [21,30,31]. 
The significant performance characteristic of the worm 
gear is its assembly accuracy, which helps to reduce the 
chances of some imperfections and increases the service 
life [20]. Worm gears are used for direct force trans -
mission, similar to the gear train, e.g. in industrial manipu- 
lators [32,33]. 

3.4. Chain  gear 
 
The chain gear is a mechanism that combines the gear 
train and the belt gear. Instead of cogwheels and wheels, 
sprockets are used, and instead of a belt, a chain is used 
that meshes with the sprockets [2,3,34]. A sketch of the 
chain gear is presented in Fig 5. The problem areas are 
related to abrasion and wear. 

Since the chain gear is a combination of the gear train 
and the belt gear, its advantages are similar to those of 
such types of transmissions, such as high efficiency, the 
possibility of short-term overloads, the ability to transmit 
force over long distances, and no tension due to the chain 
engagement [21,35–37]. The disadvantages are similar 
to these of the gear train – the need for lubrication, noise, 
and additional dynamic load. The disadvantage of the 
chain transmission is the wear and tear of the chain joints 
[21,35,37]. Consequently, due to its design, the chain 
gear can be used where using a gear train is not possible 

Proceedings of the Estonian Academy of Sciences, 2022, 71, 3, 227–240230

 
 

Fig. 3. Faults of the belt gear.  

 
 

Fig. 4. Faults of the worm gear. 



and the belt gear is not suitable for such operation 
[2,38,39]. 

 
 

3.5. Analysis  of  a  gear  type  based  on  the  application 
      of  the  industrial  robotic  manipulator 
 
Based on the above, each type of force transmission from 
the motor to other parts of the robot is used for per -
forming specific tasks. It is necessary to consider sep - 
arately each of the types for each system, and the ex -
pediency of using that particular transmission for the 
assigned task. When developing mechanisms, several 
criteria can be dis tin guished by which transmissions can 
be compared and according to which a suitable trans -
mission can be chosen: compactness, power/area of ap - 
plication, degree of wear, and the possibility of trans -
mitting force over long dis tances. A comparative analysis 
based on the authors’ evaluation is presented in Fig. 6, 
where “5” is the highest and “1” the lowest proximity to 
the criterion. 

As illustrated by the comparative diagram (Fig. 6), 
each of the presented gears has several advantages over 
the others in specific criteria, which allows one to select 

the gear best suited for particular operating conditions. 
However, the degree of wear of each gear is relatively 
high. This is due to the constant friction of the gear parts 
against each other, tension, and heating. Therefore, during 
the operation of the mechanism, errors caused by the 
degree of gear wear may occur. To prevent more damage 
to the mechanism, it is necessary to diagnose the parts that 
are subject to wear over time. 
 
 
4. BEARING  FAULTS 
 
A bearing is a fundamental part of any gear or motor. A 
bigger part of the dynamic load is directly transferred to 
the bearing during the operating time of the motor. This 
means that many faults occur for different reasons, such 
as overload, friction, current on the shaft of the motor, 
damage due to improper lubrication, etc. [40]. As seen in 
Fig. 7, the following types of bearing damage occur most 
frequently [41]: 

- material wear, 
- cracks due to the wrong emplacement, 
- friction due to insufficient lubrication, 
- damage due to shaft current. 
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Fig. 5. Faults of the chain gear.   

 
 

Fig. 6. Comparative analysis of gear types for industrial robotic manipulators.  
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Wear in the bearing usually occurs due to cyclic oper -
ation of the mechanism and when the motor is operating 
at different high speeds [42]. Overload occurs during the 
motor’s operation in a stressed situation for the bearing, 
for example, as a result of additional tension or friction 
damage on the bearing surfaces. This damage causes 
unwanted vibration and increases the dynamic load on the 
motor shaft [43]. 

Wrong emplacement leads to an unequal load on the 
bearing and, as a result, an additional dynamic load on 
different areas. In this case, the bearing should be properly 
installed [44]. Before the installation it is required to check 
the shaft of the motor and the mounting surface of the 
bearing. If it is not done, it should be ensured that the 
bearing is mounted properly as its damage can lead to the 
destruction of the motor shaft or the different mechanisms 
connected with the shaft [43]. 

The latter type of fault can be caused by current in the 
motor. In this case, frosting or pitting take place on the 
surface of the bearing. As a result, the motor operation has 
nonlinear character [43]. No type of damage can be found 
without special devices, but this minor damage leads to 
bad faults in the operation of the mechanism. In this case, 
every damage should be diagnosed and steps should be 
taken to repair it [45]. 
 
 
5. METHODS  OF  DIAGNOSIS 
 
It is essential to predict damage before starting work on 
an industrial robot. The performance, accuracy, and 

energy efficiency depend on the overall condition of the 
device. Even a minor deviation from the standard oper -
ation of one part of the mechanisms over time can have 
serious consequences [6,46]. Damage to transmissions is 
of difficult nature. There are spalls of a cogwheel, over-
friction of gear parts, overheating and failure of the 
wheels, and breakage of the belt or chain, caused by 
tension or over-wear of the elements [7,40]. 

Various types of fault prediction and diagnostic 
methods are used to obtain information about the damage. 
Several types of diagnostics are used in practice, mainly 
[40,47]: 

- Fast Fourier Transform (FFT), 
- Short-Time Fourier Transform (STFT), 
- Continuous Wavelet Transform (CWT), 
- Advanced Diagnostic Techniques (ADT). 

 
5.1. Fast  Fourier  Transform 
 
The FFT is used to transform the input signal into different 
types of spectral analysis. This transformation provides 
information about the “degree of presence” of this or that 
frequency in the spectrum of the signal [48]. The FFT is 
used for stationary signals that do not change their spectral 
parts during that time. The pros and cons of the FFT 
analysis are schematically shown in Fig. 8.  

The FFT analysis has several advantages. Firstly, it 
allows to reduce the number of calculations needed for the 
analysis of the input signal. Secondly, the FFT provides a 
prediction of the result, obtaining the result of the spectral 
analysis of the entire time axis. Thirdly, it also has a 
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Fig. 7. Damage types of bearings: (a) material wear and friction due to insufficient lubrication, (b) crack due to the wrong 
emplacement, (c) pitting due to shaft current. The highlighted zones indicate the zones of increased friction. 
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simple structure without additional equations for the 
stationary signal [49,50]. 

At the same time, the following disadvantages need to 
be discussed. In the case of the FFT, it is impossible to 
analyze non-stationary signals as these signals have a 
complex structure with a different set of frequencies, 
which allows additional spectra to occur in the spectral 
analysis of the FFT. Furthermore, it is necessary to use a 
window weighting function f(σ) for the waveform to 
compensate for spectral dissipation, reducing the loss of 
information [51–54]. 
 
5.2. Short-Time  Fourier  Transform 
 
The STFT can be used for non-stationary signals, and in 
this case the STFT is a function of two variables – time 
and frequency [55]. Non-stationary signals have a few 
frequencies for problem analysis, but the STFT takes a 
small amount of time, providing thus a good basis for the 
signal analysis. The pros and cons of the STFT analysis 
are schematically shown in Fig 9. 

Unlike the FFT, the frequency-time characteristic is 
obtained. Unfortunately, the STFT has a significant 
disadvantage, which is related to the Heisenberg’s prin -
ciple [56,57]. This principle is based on two character- 
istics (momentum and position) of a point in an area that 
cannot be found with the same accuracy. If the STFT is 
used, a signal will disperse along one axis, narrowly 
localized along the other axis, and vice versa [58]. So, if 
a wide window is taken to localize a signal, poor res -

olution in time will be obtained, and in the other case, if a 
narrow window is taken, the uncertainty in frequency will 
increase [49,50]. Based on the above, to find a better 
solution to this problem, other diagnostic methods for 
damage should be used. 
 
5.3. Continuous  Wavelet  Transform 
 
The CWT is an alternative to the STFT because the CWT 
enables to solve problems with poor resolutions in time 
and frequency [59]. Usually, the CWT is used for signals 
that have a short-time high frequency and fewer long-
term frequency components [60]. The principle of the 
CWT is similar to the STFT but it has two crucial differ -
ences [61–63]: 

- CWT does not use the Fourier Transform for weighted 
  signals; 
- CWT width changes for each part of the signal, allow - 
  ing a better spectral analysis. 
The main benefits and drawbacks of the Wavelet 

Transform are shown in Fig. 10. 
In practice, many signals have the same structure that 

allows the use of the CWT for a spectral analysis [64]. It 
means that by using the CWT, good resolution in time and 
poor resolution in frequency are obtained for a high-
frequency area, and vice versa for an area with lower 
frequency [49,50]. In this case, the CWT has a few dis -
advantages such as an increased number of calculations 
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Fig. 8. Advantages and disadvantages of FFT. 
 

 
 

Fig. 9. Advantages and disadvantages of STFT. 
 
 



for signal diagnosis, and as a consequence, necessary com - 
putational power is also increasing. Continuous Wavelet 
Transform is used in different fields: acoustics, medicine, 
industrial attachments, etc. Thanks to the CWT, various 
anomalies in the operation of different mechanisms can 
be detected [65]. 
 
5.4. Advanced  Diagnostic  Techniques 
 
Advanced Diagnostic Techniques are modern methods 
that use artificial intelligence for faults diagnostics. These 
methods can include such algorithms as fuzzy logic (FL), 
machine learning (ML), and other methods to find slight 
deviations from the normal condition in mechanical and 
electrical parts of the robotic manipulator [66–69].  

Fuzzy logic is used for the diagnosis of faults in gears 
or bearings. Fuzzy logic methods allow to adapt each 
control system to different failures [70–72] and to send a 
report about minor deviations from the normal operation 
of a mechanism [73–76]. At the same time, machine learn -
ing methods allow us to teach a control system that 
defines deviations and faults, the malfunctions of which 
lead to possible damage of the mechanism [77,78]. After 
a few tests the ML is able to find different types of 
faults without human control and perform operations for 
minimizing the consequences [79–81]. 

The main benefits and drawbacks of the above-
mentioned techniques are shown in Fig. 11. 

These methods have a complicated structure and many 
calculations but they have good accuracy and a low 
probability of errors. Moreover, the advanced techniques 

can be used for different signals, but additional sensors 
should be installed [82–86]. 
 
 
6. COMPARISON  OF  DIAGNOSTIC  METHODS 
    BY  THE  EXAMPLE  OF  THE  HIRATA  
    CARTESIAN  ROBOT 
 
Each of the above methods can be applied to different 
conditions. It depends on the type of output signals, the 
construction of the robot, the type of operation, etc. To 
compare the diagnostic methods, the Hirata Cartesian 
robot is taken as an example. This robot consists of three 
orthogonal axes that are connected with different gears 
(belt gear and worm gear highlighted in Fig. 12). The 
driving force is transmitted by the belt gear, the worm 
gear, and the gear train to move different parts of the 
robot. It means that any fault that can occur during the 
robot’s operation leads to different types of disturbances, 
such as unwanted vibrations, increased friction, wear of 
the parts of the robot, and other disturbances. One can 
conclude that different types of signals are emitted in the 
case of damaged gears or disturbances of operating 
sensors [87]. The main aspects of the diagnostics of the 
Hirata Cartesian robot are presented in Table 2. 

The comparison of the diagnostic methods is based on 
the advantages and disadvantages of the presented 
methods and is recommendatory in nature, based on the 
opinion of the authors. 
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Fig. 10. Advantages and disadvantages of CWT. 
 

 
 

Fig. 11. Advantages and disadvantages of ADT. 
 



Each of the above types of diagnostic methods can be 
used for finding and describing faults that can occur 
during the operation of the robot. Nevertheless, the CWT 
and ADT methods can work and perform the spectral 
analysis of signals without noise and do not depend on the 
type of signals. At present, the FFT and the STFT have a 
simple structure, and these methods do not need additional 
sensors and computational power.  

Taking the above into account, it can be concluded that 
each type of diagnostic method can mark different types 
of damage and faults during the robot’s operation, 
depending on the aims that are set. The FFT and STFT 
methods can be used for fast and straightforward marking 
when we have stationary signals or signals with a small 
amount of noise. The CWT and ADT methods can be used 
for more complicated faults, where we should mark 
different types of signals without any errors. 

When examining Hirata Cartesian robots and which 
damage and faults can occur during operation, better 
methods for diagnosing faults in the control system of the 
robot and in the complex mechanical parts would be the 
CWT and the ADT. As the structure of the robot includes 

a few types of gears (belt gear and worm gear) and a few 
ways to move each part of the robot, which leads to sto -
chastic disturbances, the simple and fast FFT or STFT will 
not solve the task of diagnosing damage and faults in this 
case, but could be used for diagnosing simple mechanical 
faults such as damage to the tooth of the belt or pulleys. 

For modeling artificial damage to a mechanical part 
of the robot, the timing belt gear was chosen as an object. 
This transmission has second-order aperiodic transfer 
function: 

 
 
 
 
 
 
 
 
 
 

where 𝑟02 is the outer diameter of the driven pulley; 𝑟𝑛𝑙 , 𝑟𝑛2 denote the inner radius of the driving and driven 
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Fig. 12. Hirata Cartesian robot: (a) view with the worm gear, (b) view with the belt gear. 
 
 

(a) (b)

Aspect Value 
Model of the robot CRWQ-H2010APHT-11.5-7-2LL-B 
Diagnosis of the transmission Toothed belt transmission 
Parameters of the transmission:  
- diameter of the driving pulley;   75 mm 
- diameter of the driven pulley; 150 mm 
- length of the belt; 500 mm 
- distance between centers. 200 mm 
Working conditions Soft, dust-free area, motors without load 

Table 2. Aspects of diagnostics 
 

�(�) =  
�

�2�2 + �1� + �,                  (1)

�2 = ��2
2

�2 (���02�2 + ���),                  (2)

�1 =
��1

��(1.1 ∗ 103 − 3.2 ∗ 102���1) ,          (3)

 
� = ��� ,                                 (4)



pulleys, respectively; ρ is the density of the belt, 𝐴 
represents the section of the belt; 𝐹𝑦 denotes the beginning 
tension of the belt (table value); 𝑏 is the width of the belt; 𝑞𝑚 refers to the mass of 1 meter of the belt with a width 
of 1 mm (table value); α2 is the angle of the belt girth at 
the driven pulley. 

This transfer function was transformed into state-
space, the response of the timing belt transmission to the 
pulley damage and the spectral analysis of this damage is 
shown in Fig. 13a,b. 

The first graph is a spectral analysis of the output 
signal of the toothed belt gear by the FFT method 
presented in Fig. 13a. The graph shows the normal oper -
ation of belt transmission (red line) and the fully noisy 
output signal which occurred after disturbances (blue 
line). These disturbances occur during a transient process, 
for example, in the case of pulley or bearing damage or 
displacement of center pulleys. Figure 13b shows the 
diagnosis by the CWT method. The CWT method is a 
more presentable method than the FFT. In this case, 
additional information is provided about the faults. Based 
on these methods, it can be suggested which types of 
faults could occur in toothed belt transmission. This 
suggestion is based on the information about the character 
of faults. Each fault has a specific harmonic with definite 
frequency.  

From a diagnostic point of view, the main problems of 
the robot and its own transmission are related to non -
constant load, shift operation mode, and placement 
difficulty of additional sensors. In addition, working 
conditions must be considered. For example, if the robot 

is working in a dirty room, slippage of the belt may occur. 
In this case, it is difficult to isolate additional noise 
presented in the output signal. 
 
 
CONCLUSIONS 
 
Industrial robots have a complex mechanical structure, the 
joints of the robot parts, represented by transmissions that 
transmit force from the motor to other parts of the robot, 
are subject to various types of damage, such as friction, 
heating, wear, and others. The main aim of this research 
is to make an analysis of the transmission faults and 
diagnostic methods, to provide a comparison of trans -
mission advantages of industrial robots and to suggest 
different diagnostic methods for improving the efficient 
operation of the mechanisms. The methods presented in 
this article for diagnosing the damage and identifying 
faults allow timely detection of a malfunction in the 
robot’s operation, thereby preventing considerable damage. 
The article shows the possibility of using different 
diagnostic methods for the Hirata Cartesian robot, based 
on the opinion of the authors.  

For future work, models of all the gears that are part 
of the robot will be developed and the necessary ex -
periments will be carried out. The Hirata Cartesian robot 
has many mechanical parts represented by transmissions, 
which makes it possible to simulate various damage cases 
and understand which diagnostic method is the best for 
each transmission. The research is aimed at diagnos -
tics, selecting the best control mode, and developing a 
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Fig. 13. Spectral analysis of the damaged toothed pulley of the belt gear in the Hirata Cartesian robot: (a) FFT method, (b) CWT 
method. 

 

(a) (b)



control system that provides the required level of robotic 
control. 
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Tööstuslike  kartesiaanrobotite  võimalike  rikete  ja  tuvastusmeetodite  analüüs 
 

Siarhei Autsou, Anton Rassõlkin, Toomas Vaimann ja Karolina Kudelina 
 
Käesolev artikkel kirjeldab probleeme, mis kerkivad esile seoses roboti manipulaatori juhtimisega. Nimetatud mured 
tekivad eri tüüpi ülekannete kulumisest (esitletud juhtudel rihm- ja tiguülekanne), nagu ka artiklis on kirjeldatud. Oluline 
on märkida, et sellised kõrvalekalded normaaltalitluselt on tähtis aegsasti tuvastada ning leida ka sobivad võimalused 
nende kõrvaldamiseks, arvestades ressursi- ja kulutõhusust. Artikkel kirjeldab eri tüüpi roboteid (manipulaator, telfer, 
kartesiaanrobot), millele tuginedes antakse ülevaade võimalikest esinevatest riketest, mehhaanilise süsteemi kohanda-
misest ning tulenevalt sellest ka probleemide lahendamise strateegiatest. Lisaks esitatakse eri tüüpi ülekannete rikete 
omavaheline võrdlus ning kirjeldatakse rikete tuvastamise meetodeid tuginedes nende eelistele ja puudustele. Uurimuse 
peamine eesmärk on esitada täielik ülevaade mehhaanika valdkondadest, kus nimetatud kõrvalekalded robotite puhul 
esinevad, ja näidata võimalikke rikketuvastuse meetodeid ning võimalusi rikete kõrvaldamiseks. 
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