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Abstract. A quadratic dynamical system with practical applications is taken into consideration. This system is transformed into
a new bilinear system with Hadamard products by means of the implicit matrix structure. The corresponding quadratic bilinear
equation is subsequently established via the Volterra series. Under proper conditions, the existence of the solution to the equation
is proved by using a fixed-point iteration. Numerical experiments verify the proposed theory of the solution.
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1. INTRODUCTION

Consider a single-input and single-output quadratic dynamical system (QDS)

ẋ(t) = Ax(t)+g(x(t),u(t)),
y(t) =Cx(t), (1)

where x(t) ∈ Rn is the state vector of time t, u(t) ∈ R denotes an input function, g ∈ Rn represents a
quadratic function of u(t) and x(t), y(t) ∈R is the output function, A ∈Rn×n and C ∈R1×n are the state and
the output matrices, respectively. This system is one of the simplest nonlinear systems and is widely used in
many applications [1,4,12,22,24]. Consider, for example, a transmission line circuit consisting of resistors,
capacitors, and diodes with a constitutive nonlinear function id(v) = eav−1,(a > 0) [4,12]. Assumed that,
for simplicity, all resistors and capacitors have unit resistance and capacitance, then the input and output
are the entering current source and the voltage at the first node, respectively. The corresponding differential
system for this circuit at various nodes is

v̇1 =−2v1 + v2 +2− eav1− ea(v1−v2)+u(t),
v̇i = vi−1−2vi + vi+1 + ea(vi−1−vi)− ea(vi−vi+1), 2≤ i≤ n−1,
v̇n = vn−1 + vn−1+ ea(vn−1−vn).
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To linearize the above nonlinear system, one can define variables wi1 := eavi and wi2 := e−avi to obtain a
system of order at least 3n. In contrast, another difference step might further reduce the order of the system.
In fact, by setting vi,i+1 = vi− vi−1 as in [12], one has

v̇1 =−v1− v12 +2− eav1− eav12 +u(t),
v̇12 =−v1−2v12 + v23 +2− eav1− eav12 + eav23 +u(t),
v̇i,i+1 = vi−1,i−2vi,i+1 + vi+1,i+2 + eavi−1,i−2eavi,i+1 + eavi+1,i+2 , 2≤ i≤ n−2,
v̇n−1,n = vn−2,n−1−2vn−1,n +1+ eavn−2,n−1−2eavn−1,n .

(2)

Let w1 = eav1 −1 and wi = eavi−1,i −1 and differentiate both sides with respect to t. Then equations (2) can
be further represented as

ẇ1 = a(w1 +1)(−v1− v12−w1−w2 +u(t)),
ẇ2 = a(w2 +1)(−v1−2v12 + v23−w1−2w2 +w3 +u(t)),
ẇi = a(wi +1)(vi−1,i−2vi,i+1 + vi+1,i+2 +wi−1−2yi + yi+1), 2≤ i≤ n−1,
ẇn = a(wn +1)(vn−2,n−1−2vn−1,n +wn−1−2wn).

(3)

Combining of (2) and (3) forms the quadratic bilinear system of order N = 2n [4]

ẋ(t) = Ax(t)+H(x(t)⊗ x(t))+Mx(t)u(t)+Bu(t),
y(t) =Cx(t), (4)

where the state vector is x(t) = (v̇1, v̇12..., v̇n−1,n, ẇ1, ...ẇn)
> ∈ RN , the state matrix is

A =

[
A1 A2
A3 A4

]
∈ RN×N

with Ai(i= 1,2,3,4) being the tri-diagonal matrix, H ∈RN×N2
and M ∈RN×N are sparse matrices associated

with the quadratic functions x(t)⊗ x(t) and x(t)u(t), respectively, B is a vector of order N.
To efficiently control the quadratic system (4) when N is large, one has to search a low-dimensional

(reduced-order) system to substitute for the original one, so that their systematic behaviours (for example,
the stability and passivity) are sufficiently similar. Such a process is called the model order reduction
(MOR) and has been well-established for linear systems in various areas [2,3]. One of the most popular
MOR techniques is the balancing-type MOR, which has been successfully applied from the linear system to
the nonlinear system [6,13]. This approach mainly relies on the controllability and the observability, or the
Gramian matrix of the system, which is the solution to the corresponding algebraic matrix equation [4]:

AX +XA>+H(X⊗X)H>+MXM>+D = 0 (5)

with D = BB>. Obviously, solving the equation (5) involves a Kronecker product of the order N2 and is
normally expensive even if techniques of the truncation and compression [17] or the tensor matrization [19]
are applied.

Noting the implicit structure in the original system, the system (4) can actually be transformed into
another system to avoid the Kronecker product effectively. Indeed, let

F =

[
0n 0n
A3 A4

]
∈ RN×N

and G = IN . The quadratic item H(x(t)⊗ x(t)) in this example could be represented as (Gx(t)) ◦ (Fx(t)),
and thus the system (4) in [4] can be further rewritten as the quadratic bilinear system with the Hadamard
product (QBSH)

ẋ(t) = Ax(t)+(Gx(t))◦ (Fx(t))+Mx(t)u(t)+Bu(t),
y(t) =Cx(t). (6)
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The greatest advantage of the system (6) is that the nonlinear item depends merely on the Hadamard
product, instead of the Kronecker product, between two vectors. Hence, the computational cost could be
significantly reduced, especially for large N. If the afore-mentioned balancing-type MOR is used for the
order reduction, two problems are still supposed to be addressed:
• What is the form of the algebraic equation corresponding to the QBSH (6)?
• Does the solution to the corresponding algebraic equation exist?

This paper will give positive answers to the above two questions. Specifically, we will make use of the
Volterra series[23] to construct the corresponding quadratic bilinear equation of the QBSH (6) in Section 2.
In Section 3, the existence of the solution to the equation will be demonstrated by a fixed-point iteration.
Several numerical examples are listed in Section 4 to show the validity of the developed theory and Section 5
concludes the whole paper.

To proceed, the initial condition in the system (6) is assumed to be x(0) = 0. Throughout this paper, it is
written A≥ B (A> B) for symmetric matrices A and B if A−B is a symmetric positive semidefinite (definite)
matrix. σ(A) and ρ(A) denote here the spectrum and the spectral radius of the matrix A, respectively. The
definition of the stability and several lemmas are also required in this research.

Definition 1 ([5]). The matrix A is called stable (or semi-stable) if its spectrum lies in the left half of
the complex plane (or the left half of the complex plane plus the imaginary axis), i.e. σ(A) ∈ CN×N

< (or
σ(A) ∈ CN×N

≤ ).

Lemma 1 ([7,18]). Let the matrix A ∈ RN×N be stable in a linear system

ẋ(t) = Ax(t)+Bu(t),
y(t) =Cx(t), x(0) = 0.

The matrix X =
∫

∞

0 eAtBB>eA>tdt is the solution to the Lyapunov equation

AX +XA>+D = 0

with D = BB>.

Lemma 2 ([15]). Let the matrix A ∈ RN×N be stable and B ∈ RN×N be symmetric. Then the Lyapunov
equation

AX +XA> = B

has a unique symmetric solution X. Moreover, X ≥ 0 if B≤ 0.

Lemma 3 ([16]). Let A,B ∈ RN×N be symmetric matrices.
(1) If A > 0 and B > 0, then A◦B > 0.
(2) If A≥ 0 and B≥ 0, then A◦B≥ 0. Moreover, A◦B > 0 when A has no zero row.

2. THE ALGEBRAIC EQUATION CORRESPONDING TO QBSH

In this section, we concentrate on the reachability Gramian matrix of the QBSH (6) by using the Volterra
series. It will show that the Gramian matrix is the solution to a quadratic bilinear equation with the Hadamard
product (QBEH).

Only the continuous time-invariant QBSH (6) is considered and the discrete one can be derived analo-
gously. It is known from [23,24] that the output of a nonlinear system in the Volterra series depends on the
input of the system at all times and it could be expanded as

y(t) = h0 +
N

∑
n=1

∫ b

a
· · ·
∫ b

a
hn(t1, . . . , tn)

n

∏
j=1

x(t− t j)dt j.

The function hn(t1, . . . , tn) is called the order-n Volterra kernel.
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Proposition 1. The state vector of the QBSH (6) can be formulated as

x(t) =
∫ t

0
eAt1But1(t)dt1 +

∫ t

0

∫ t−t1

0
eAt1MeAt2But1t2(t)ut1(t)dt1dt2

+
∫ t

0

∫ t−t1

0

∫ t−t1

0
eAt1((GeAt2B)◦ (FeAt3B))ut1t2(t)ut1t3(t)dt1dt2dt3

+
∫ t

0

∫ t−t1

0

∫ t−t1−t2

0
eAt1MeAt2MeAt3But1t2t3(t)ut1t2(t)ut1(t)dt1dt2dt3 + ... (7)

with ut1,...tk(t) = u(t− t1− ...− tk) and k ≥ 1.

Proof. As the first equation in (6) is a differential system, one can integrate from both sides with respect to
t and get

x(t) =
∫ t

0
eAt1But1(t)dt1 +

∫ t

0
eAt1Mxt1(t)ut1(t)dt1 +

∫ t

0
eAt1((Gxt1(t))◦ (Fxt1(t)))dt1 (8)

with xt1(t) = x(t− t1). If the integrated upper bound is replaced by t− t1, xt1(t) can also be represented as

xt1(t) =
∫ t−t1

0
eAt2But1t2(t)dt2 +

∫ t−t1

0
eAt2Mxt1t2(t)ut1t2(t)dt1 +

∫ t−t1

0
eAt2((Gxt1t2(t))◦ (Fxt1t2(t)))dt2 (9)

with xt1t2(t) = x(t− t1− t2). By inserting (9) into (8), one has

x(t) =
∫ t

0
eAt1But1(t)dt1 +

∫ t

0

∫ t−t1

0
eAt1MeAt2But1t2(t)ut1(t)dt1dt2

+
∫ t

0

∫ t−t1

0
eAt1MeAt2Mxt1t2(t)ut1t2(t)ut1(t)dt1dt2

+
∫ t

0

∫ t−t1

0

∫ t−t1

0
eAt1((GeAt1B)◦ (FeAt1B))ut1t2(t)ut1t3(t)dt1dt2dt3 +O(

∫ ∫ ∫ ∫
). (10)

Again, noting

xt1t2(t) =
∫ t−t1−t2

0
eAt3But1t2t3(t)dt3 +

∫ t−t1−t2

0
eAt3Mxt1t2t3(t)ut1t2t3(t)dt3

+
∫ t−t1−t2

0
eAt3((Gxt1t2t3(t))◦ (Fxt1t2t3(t)))dt3 (11)

and inserting (11) into (10), the representation of x(t) in (7) holds true after rearranging some items.

The above proposition describes the Volterra expansion of the state vector x(t), which is helpful for
constructing the quadratic bilinear equation. To see this, let

L1(t1) = eAt1B,
L2(t1, t2) = eAt2MeAt1B

:= eAt2ML1(t1),
L3(t1, t2, t3) = eAt3 [(GL1(t1))◦ (FL1(t2)), MeAt2MeAt1B]

:= eAt3 [(GL1(t1))◦ (FL1(t2)), ML2(t1, t2)],
...

Lk(t1, ..., tk) := eAtk [(GL1(t1))◦ (FLk−2(t2, ..., tk−1)),

(GL2(t1, t2))◦ (FLk−3(t3, ..., tk−1)),

...,

(GLk−2(t1, ..., tk−2))◦ (FL1(tk−1)), MLk−1(t1, ..., tk−1)]

for k > 3. The following theorem reveals that the reachability Gramian matrix is the solution to a QBEH.
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Theorem 1. Let A be the stable matrix in the QBSH (6). Define the reachability Gramian matrix

X =
∞

∑
i=1

(∫ ∞

0
...
∫

∞

0
Li(t1, ..., ti)Li(t1, ..., ti)>dt1...dti

)
.

Then X satisfies the QBEH

Q(X) = AX +XA>+D+MXM>+(GXG>)◦ (FXF>) = 0. (12)

Proof. Let

X1 =
∫

∞

0
L1(t1)L1(t1)>dt1 :=

∫
∞

0
eAt1BB>eA>t1dt1.

It follows from Lemma 1 that X1 is the solution to the Lyapunov equation

AX1 +X1A>+D = 0 (13)

with D = BB>. Next, consider the integration of order-2

X2 =
∫

∞

0

∫
∞

0
L2(t1, t2)L2(t1, t2)>dt1dt2

=
∫

∞

0

∫
∞

0
eAt2ML1(t1)L1(t1)>M>eA>t1dt1dt2

=
∫

∞

0
eAt2M

(∫ ∞

0
L1(t1)L1(t1)>dt1

)
M>eA>t1dt2

=
∫

∞

0
eAt2MX1M>eA>t1dt2.

By using Lemma 1 again, X2 is the solution to the following equation

AX2 +X2A>+MX1M> = 0. (14)

Proceeding with the integration for i≥ 3, one can get

Xi =
∫

∞

0
...
∫

∞

0
Li(t1, ...ti)Li(t1, ..., ti)>dt1...dti

=
∫

∞

0
eAti
[(∫ ∞

0
GL1L>1 G>dt1

)
◦
(∫ ∞

0
...
∫

∞

0
FLi−2L>i−2F>dt2...dti−2

)
+...+

(∫ ∞

0
...
∫

∞

0
GLi−2L>i−2G>dt1...dti−2

)
◦
(∫ ∞

0
FL1L>1 F>dti−1

)
+M

(∫ ∞

0
...
∫

∞

0
Li−1L>i−1dt1...dti−1

)
M>
]
eA>tidti

=
∫

∞

0
eAti
[
(GX1G>)◦ (FXi−2F>)+ ...+(GXi−2G>)◦ (FX1F>)+MXiM>

]
eA>tidti,

in which we used the property (v◦u)(v◦u)> = (vv>)◦(uu>) with vectors u and v. By Lemma 1, Xi satisfies
the equation

AXi +XiA>+(GX1G>)◦ (FXi−2F>)+ ...+(GXi−2G>)◦ (FX1F>)+MXiM> = 0. (15)

Now, sum up the equations (13), (14) and (15) for i≥ 3. One has

A
( ∞

∑
i=1

Xi

)
+
( ∞

∑
i=1

Xi

)
A>+BB>+M

( ∞

∑
i=1

Xi

)
M>+

(
G
( ∞

∑
i=1

Xi

)
G>
)
◦
(

F
( ∞

∑
i=1

Xi

)
F>
)
= 0,

which takes the form of the QBEH (12) by letting X = ∑
∞
i=1 Xi.
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Remark. (1) As mentioned before, the computational complexity of the Hadamard product in the equa-
tion (12) is O(N2), compared with O(N4) of the Kronecker product in the equation (5). Even though the
truncation and compression [17] or the tensor matrization technique [4,19] can reduce the complexity for
large-scale sparse matrices in the case of the Kronecker product, the Hadamard product is still more effective
in saving the flops counts, especially for dense and structured matrices (for example, the diagonal-plus-low-
rank structure).

(2) As the Hadamard product can be represented as the sum of rank-one matrices (see Sec. 3.6 of [11]),
the derived equation (12) can also be rewritten as a generalized stochastic or rational Riccati equation in
[4,8,10,20]. Here we always use the Hadamard product for the convenience of describing the existence of
the solution.

3. EXISTENCE OF THE SOLUTION TO QBEH

In this section, we will show the existence of the solution to the QBEH (12). Let L be a linear operator
RN×N → RN×N given by

L (X) = AX +XA>.

Consider the iteration scheme

L (Xk+1) =−(GXkG>)◦ (FXkF>)−MXkM>−D (16)

with an initial X0. The following theorem shows the existence of the solution.

Theorem 2. Let A be a stable matrix. Suppose that there is a positive (semi-)definite matrix Z to the
inequality Q(Z)≥ 0 and an initial matrix X0 such that X0 ≥ Z and Q(X0)≤ 0. Then the fixed-point iteration
(16) produces a matrix sequence {Xk} such that for k ≥ 0
(1) Xk ≥ Xk+1, Xk ≥ Z, Q(Xk)≤ 0;
(2) limk→∞ Xk = X∗ is a positive (semi-)definite solution to the QBEH (12). Especially, X∗ is the maximal
solution if X0 is an upper bound for all solutions.

Proof. The theorem is proved by induction applied to

Xi ≥ Xi+1, Xi ≥ Z, Q(Xi)≤ 0, i≥ 0. (17)

For i = 0, the assumption admits X0 ≥ Z and Q(X0)≤ 0. It follows from (16) that

A(X1−X0)+(X1−X0)A>

= −(GX0G>)◦ (FX0F>)−MX0M>−D−AX0−X0A>

= −Q(X0),

implying X0 ≥ X1 by the assumption and Lemma 2. Thus, (17) holds for i = 0.
Now, suppose that (17) is true for i = k. We next show that it is valid for i = k+ 1. In fact, it follows

from the iteration (16) that

A(Xk+1−Z)+(Xk+1−Z)A>

= −(GXkG>)◦ (FXkF>)−MXkM>−D−AZ−ZA>

= −(G(Xk−Z)G>)◦ (FXkF>)− (GXkG>)◦ (F(Xk−Z)F>)−M(Xk−Z)M>−Q(Z).

As Q(Z)≥ 0, Xk−Z ≥ 0 and Xk is positive (semi-)definite from the induction assumption, it follows from
Lemma 2 that the solution Xk+1−Z of the above equation is unique and positive (semi-)definite, i.e. Xk+1 ≥
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Z. Moreover, the iteration (16) also indicates

A(Xk+1−Xk+2)+(Xk+1−Xk+2)A>

= −(GXkG>)◦ (FXkF>)−MXkM>+(GXk+1G>)◦ (FXk+1F>)+MXk+1M>

= −(G(Xk−Xk+1)G>)◦ (F(Xk−Xk+1)F>)
−(GXkG>)◦ (FXk+1F>)− (GXk+1G>)◦ (FXkF>)−M(Xk−Xk+1)M>

≤ −(G(Xk−Xk+1)G>)◦ (F(Xk−Xk+1)F>)−2(GZG>)◦ (FZF>)−M(Xk−Z)M>,

where the inequality follows from the induction Xk ≥ Z and the proved fact Xk+1 ≥ Z. Consequently, the
right hand side of the inequality is negative semi-definite and the inequality Xk+1 ≥ Xk+2 holds true by
Lemma 3. Finally, the inequality

Q(Xk+1)

= AXk+1 +Xk+1A>+(GXk+1G>)◦ (FXk+1F>)+MXkM>+D
= A(Xk+1−Xk+2)+(Xk+1−Xk+2)A>

≤ 0

shows that the induction assumption (17) holds for i = k+1. Then the sequence {Xk} is well defined and has
a limit limk→∞ Xk = X∗. Moreover, X∗ ≥ Z. Taking the limit from both sides of the iteration (16) indicates
that X∗ is the solution to the QBEH (12). Furthermore, X∗ is the maximal solution when X0 is the upper
bound of all solutions.

Remark. For the rational Riccati equations in [10,14,20], the stochastic term generally forms a positive
operator, pushing against the stability. Then the condition of the stochastic stability is required to guarantee
the existence of the solution. However, in the QBEH (12), the nonlinear item will form a negative operator
when shifted to the right of the equation. Then Lemma 2 is applicable by the assumption on the stability of
A. The following theorem further indicates the linear convergence of the sequence {Xk} in the fixed-point
iteration (16).

Theorem 3. Let X∗ be the solution to the QBEH and the sequence {Xk} be produced by the iteration (16).
Let

MX∗(·) = M(·)M>+(GX∗G>)◦ (F(·)F>)+(G(·)G>)◦ (FX∗F>)

be a linear operator at the solution X∗. If ρ(L −1MX∗)< 1, then

limsup
k→∞

k
√
‖Xk−X∗‖ ≤ ρ(L −1MX∗)< 1

with ‖ · ‖ any matrix norm.

Proof. Rewrite the iteration (16) as Xk+1 = F (Xk) with the operator

F (·) = L −1(−M(·)M>− (G(·)G>)◦ (F(·)F>)−D).

Then the Fréchet derivative of F at the solution X∗ is

F ′
X∗(∆) = L −1(−M∆M>− (G∆G>)◦ (FX∗F>)− (GX∗G>)◦ (F∆F>)).

The conclusion is readily drawn from a classic theorem of fixed-point iteration such as in [21].
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Remark. (1) The solver of the QBEH (12) determines the effectiveness of the balancing type MOR. Theo-
rem 3 indicates that the convergence rate of the fixed-point iteration (16) is linear when ρ(L −1MX∗) < 1.
If ρ(L −1MX∗) = 1, the convergence of the iteration (16) will degenerate to be sub-linear. In any case,
acceleration of the iteration (16) should be further considered.

(2) The initial X0 ≥ Z in Theorem 2 is similar to the one in [9]. Usually, it is not easy to validate the
condition Q(X0) ≤ 0. However, there is another easier way to select the initial matrix and this will be
discussed in future work.

(3) The condition of the convergence in Theorem 3 is somewhat equivalent to the stochastic stability for
stochastic rational Riccati equations. See [8,10,14,20] as well as references therein for more details.

4. NUMERICAL EXPERIMENTS

In this section, the existence of the solution to the QBEH (12) is validated by numerical experiments. The
fixed-point iteration scheme (16) was coded by MATLAB 2014 and all examples were run on a laptop with
Intel i3-3240 3.4GHz processor and 8GB RAM. The terminated condition for the fixed-point iteration was
ReQX < tol with

ReQX =
‖AX +XA>+D+MXM>+(GXG>)◦ (FXF>)‖
2‖A‖‖Xk‖+‖G‖2‖F‖2‖Xk‖2 +‖M‖2‖Xk‖+‖D‖

and the tolerance tol=10−12. After termination, Xk was taken as the approximated solution to the QBEH (12).

Example 1. Consider the QBEH with

A =

(
−2 1
1 −2

)
, G = I2, F =

(
0 0
0 1

)
,

M =

(√
5/2 0
0 0

)
, D =

(
3 −3
−3 3

)
.

The initial iteration matrix is

X0 =

(
2.75 0.40
0.40 2.00

)
and

Q(X0) =

(
−0.3245 0.1500
0.1500 −0.2000

)
is a negative definite matrix. Then the iteration sequence {Xk}, dictated by Theorem 2, is monotonically
decreasing and converges to the positive definite solution

X∗ =
(

2 0
0 1

)
.

The history of the residual and the minimal eigenvalue of the difference Xk −Xk+1 (MESD) are plotted
in Fig.1. It can be seen that the convergence rate is linear and {Xk} is monotonically decreasing. In this
example, X99 attains the prescribed residual level and can be regarded as an approximated solution to the
QBEH (12).

Example 2. This example is a proper modification of the transmission line circuit in [4,12] as the original
system is not stable. The coefficient matrices of the QBEH (12) are adapted to
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Fig. 1. Residual history for Example 1.

A =



−18 0 0 0 −3 −1 0 0
0 −18 0 0 −1 −3 1 0
0 0 −18 0 0 1 −3 1
0 0 0 −18 0 0 1 −3
−3 −1 0 0 −18 0 0 0
−1 −3 1 0 0 −18 0 0
0 1 −3 1 0 0 −18 0
0 0 1 −3 0 0 0 −1


,

D =



0.0034 0 0 0 −0.0137 0 0 0
0 0.0034 0 0 0 −0.0137 0 0
0 0 0.0034 0 0 0 −0.0137 0
0 0 0 0.0034 0 0 0 −0.0137

−0.0137 0 0 0 0.0549 0 0 0
0 −0.0137 0 0 0 0.0549 0 0
0 0 −0.0137 0 0 0 0.0549 0
0 0 0 −0.0137 0 0 0 0.0549


,

M =

(
15.9107I4 04×4

04×4 04×4

)
, G = I8, F =

(
04×4 04×4
−3I4 −3I4

)
.

Starting with

X0 = 10−3



8.5488 3.7695 −1.3582 0.4268 −1.3538 −0.6580 0.2428 −0.0778
3.7695 9.9071 −4.1963 1.3582 −0.6580 −1.5967 0.7358 −0.2428
−1.3582 −4.1963 9.9071 −3.7695 0.2428 0.7358 −1.5967 0.6580
0.4268 1.3582 −3.7695 8.5488 −0.0778 −0.2428 0.6580 −1.3538
−1.3538 −0.6580 0.2428 −0.0778 1.7955 0.1985 −0.0813 0.0264
−0.6580 −1.5967 0.7358 −0.2428 0.1985 1.8779 −0.2246 0.0814
0.2428 0.7358 −1.5967 0.6580 −0.0813 −0.2246 1.8779 −0.1982
−0.0778 −0.2428 0.6580 −1.3538 0.0264 0.0814 −0.1982 1.7955


,
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Fig. 2. Residual history for Example 2.

it is not difficult to see that Q(X0) ≤ 0. Similarly to the first example, the history of the residual and the
minimal eigenvalue difference (MESD) are plotted in Fig. 2, indicating that the iteration sequence {Xk} is
monotonically decreasing and stops at k = 798 with the given tolerance tol = 10−12. Accordingly,

X798 = 10−3



4.3682 1.9044 −0.6809 0.2135 −0.9439 −0.3574 0.1228 −0.0390
1.9044 5.0492 −2.1179 0.6809 −0.3574 −1.0667 0.3964 −0.1228
−0.6809 −2.1179 5.0491 −1.9044 0.1228 0.3964 −1.0667 0.3574
0.2135 0.6809 −1.9044 4.3681 −0.0390 −0.1228 0.3574 −0.9439
−0.9439 −0.3574 0.1228 −0.0390 1.7052 0.1189 −0.0425 0.0133
−0.3574 −1.0667 0.3964 −0.1228 0.1189 1.7479 −0.1321 0.0425
0.1228 0.3964 −1.0667 0.3574 −0.0425 −0.1321 1.7479 −0.1188
−0.0390 −0.1228 0.3574 −0.9439 0.0133 0.0425 −0.1188 1.7052


can be taken as an approximation of X∗. It was also observed in our experiments that the residual level was
dictated by Theorem 2 before the first 740 iterations, but fluctuated at subsequent iterations. Especially, the
minimal eigenvalue of Xk−Xk+1 became negative at the steps of 745, 756, 765, 770, 774, 777, 778, 780,
782, 784, 785, 786, 790, 793 and 794. The reason might be that the current computational accuracy of
the MESD possibly exceeds the machinery unit error O(2−53). On the other hand, it also reflects that the
fixed-point iteration (16) converges slowly at the neighbour of the true solution.

5. CONCLUSIONS

The quadratic bilinear system associated with the Kronecker product is rewritten as another system related
to the Hadamard product according to the implicit matrix structure. The corresponding quadratic bilinear
equation is subsequently obtained via the Volterra series and the existence of the solution is established
by a fixed-point iteration. Several numerical experiments validate the proposed theoretical results. As the
balancing type MOR method depends heavily on the solution to the QBEH (12), more efficient solvers might
be developed in future research.
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Dünaamilisest ruutsüsteemist tulenev bilineaarne ruutvõrrand

Bo Yu, Ning Dong ja Qiong Tang

On vaadeldud praktilisi rakendusi omavat bilineaarsete ruutsüsteemide klassi. Esialgne süsteem on teisenda-
tud Hadamardi korrutistega bilineaarseks süsteemiks ilmutamata maatriksstruktuuri abil. Vastav bilineaarne
ruutvõrrand on arendatud ritta. Püsipunktiprintsiibi abil on tõestatud lahendi olemasolu ja esitatud numb-
riliste eksperimentide tulemusi.


