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Abstract. This paper addresses the equivalence under state transformation of a discrete-time nonlinear control system to observer

canonical form. Necessary and sufficient conditions for generic equivalence are given for the case when the state equations are not

necessarily reversible. The proof is constructive and shows how to find the state transformation if the conditions are satisfied. The

derived conditions are then compared with earlier conditions, obtained under more restrictive assumptions, to demonstrate that the

earlier result follows directly from our theory. Two examples illustrate the new theory.
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1. INTRODUCTION

The state transformation of nonlinear state equations into
the observer form (state equivalence to observer form)
is a recognized approach to state estimation since it al-
lows to construct observers with linear (estimation) error
dynamics, converging asymptotically to zero. In spite
of this the research area is still active, which is con-
firmed by numerous recent publications, see [1–6], both
for continuous- and discrete-time control systems. The
classical observer form is an observable system that is
linear up to nonlinear terms depending only on measured
inputs and outputs. Most recent papers address the ex-
tensions of the classical observer form, since the equiva-
lence conditions for the latter are very restrictive. How-
ever, in the discrete-time case there are still a number of
unsolved problems regarding the equivalence to the clas-
sical observer form. For instance, existing results assume
reversibility of state equations with respect to the state
variable [7].

In this paper the problem is studied within the new al-
gebraic framework [8] that allows to relax the reversibil-
ity assumption. Necessary and sufficient conditions are
provided for state equivalence to the classical observer
form. The proof is constructive and shows how to con-
struct the necessary state transformation. Moreover, un-
like [7], our results are not local but generic, i.e they hold
almost everywhere. More precisely, they are valid on an
open and dense subset of the state space. Since we look at
dimensions (or ranks) over the field of functions, not over
R, it is meaningless to speak about constant dimensional-
ity of the distributions. A generic rank is a maximal rank
on an open and dense set that may drop on some subset.
Reducing the set, one can always achieve a constant rank
over R.

Note that a number of results exist for the case when
one can easily find the input-output equations via state
elimination; see [1] and the references therein. Unfortu-
nately, symbolic state elimination can be sometimes im-
possible even locally. In a similar manner, the papers [2]
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and [3] do not give state equivalence conditions in terms
of the original state equations but characterize it through
a certain auxiliary system that is linked to the original
system. Unlike [1–3], the goal of this paper was to find
the equivalence conditions directly in terms of the origi-
nal state equations.

2. PRELIMINARIES

In this section we recall some preliminary results that
originate mostly from [8] and prove some lemmas. Con-
sider the discrete-time single-input single-output (SISO)
nonlinear control system

x〈1〉(t) = Φ(x(t),u(t)) , (1)

where x〈1〉(t) := x(t +1), t ∈ Z, the state variable x(t) ∈
X̄ ⊂ R

n, the control variable u(t) ∈ U ⊂ R, and the

state transition map Φ : X̄ ×U → X̄ is supposed to be
analytic. Both X̄ and U are assumed to be open sets.
We assume that the map Φ can be extended to the map

Φ = [ΦT
,χT ]T : X̄ ×U → X̄ ×R so that Φ has the global

analytic inverse [ΛT ,λ T ]T : Φ(X̄ ×U) → X̄ ×U . Intro-
duce the additional variable at time instant t, z(t) ∈ R,
by

z(t) = χ(x(t),u(t)). (2)

The system (1), (2) defines the inversive difference
field K of meromorphic functions in a finite number of

variables from the set C = {x,u〈k〉,z〈−l〉, k ≥ 0, l ≥ 1}.

Here u〈k〉 denotes the kth order forward shift of x and
z〈−l〉 the lth order backward shift of z. The 1st order for-
ward shift of the variable x is defined by equations (1)
and the 1st order backward shifts of x and u by

x〈−1〉 = Λ(x,z〈−1〉), u〈−1〉 = λ (x,z〈−1〉). (3)

The forward shift of a function ϕ(x,u,u〈1〉, ...,u〈k〉,
z〈−1〉, ...,z〈−l〉) ∈ K is defined as the composition

ϕ〈1〉 :=ϕ(Φ(x,u),u〈1〉,u〈2〉, ...,u〈k+1〉,χ(x,u), ...,z〈−l+1〉).
The higher order forward shifts of x are defined recur-
sively as

x〈1〉 = Φ1
(x,u) := Φ(x,u),

x〈k〉 = Φk
(x,u,u〈1〉, ...,u〈k−1〉) (4)

:= Φk−1
(Φ(x,u),u〈1〉, ...,u〈k−1〉), k ≥ 2.

The backward shift of ϕ is the composition ϕ〈−1〉 :=
ϕ(Λ(x,z〈−1〉),λ (x,z〈−1〉),u, ...,u〈k−1〉,z〈−2〉, ...,z〈−l−1〉).
The higher order backward shifts of x are defined recur-
sively as

x〈−1〉 = Λ1(x,z〈−1〉) := Λ(x,z〈−1〉),

x〈−k〉 = Λk(x,z〈−1〉,z〈−2〉, ...,z〈−k〉) (5)

:= Λk−1(Λ(x,z〈−1〉),z〈−2〉, ...,z〈−k〉), k ≥ 2.

Due to (2) and (4), the higher order forward shifts of z
can be computed as z〈k〉 = χ

(
Φk

(x,u, ...,u〈k−1〉),u〈k〉
)
,

and due to (3) and (5), the higher order backward shifts

of u as u〈−k〉 = λ
(
Λk−1(x,z〈−1〉, ...,z〈−k+1〉),z〈−k〉).

Consider the infinite set of symbols dC =
{dx,du〈k〉,dz〈−l〉,k ≥ 0, l ≥ 1} and let E := spanK {dC }
be the vector space spanned over K by the elements of
dC , called the 1-forms

ω =
n

∑
i=1

Aidxi + ∑
k≥0

Bkdu〈k〉+ ∑
l≥1

Cldz〈−l〉,

where only the finite number of coefficients dif-
fers from zero [9]. Define the space E ∗ =
spanK {∂/∂x, ∂/∂u〈k〉, k ≥ 0, ∂/∂ z〈−l〉, l ≥ 1}, dual to
E , whose elements are the vector fields

Ξ=
n

∑
i=1

ξi
∂

∂xi
+∑

k≥0

ξ k
∂

∂u〈k〉
+∑

l≥1

ξ̃l
∂

∂ z〈−l〉 . (6)

By duality between E and E ∗ the scalar products of 1-
forms and vector fields satisfy the following relations:

〈dxi,Ξ〉= ξi, 〈du〈k〉,Ξ〉= ξ k, 〈dz〈−l〉,Ξ〉= ξ̃l . (7)

The backward shift of the vector field Ξ in (6) is the
vector field

Ξ〈−1〉=
n

∑
i=1

ai
∂

∂xi
+∑

k≥0

bk
∂

∂u〈k〉
+∑

l≥1

cl
∂

∂ z〈−l〉 , (8)

where

ai=
〈

dx〈1〉i ,Ξ
〉〈−1〉

=
〈
dΦi,Ξ

〉〈−1〉
,

bk =
〈
du〈k+1〉,Ξ

〉〈−1〉
, cl =

〈
dz〈−l+1〉,Ξ

〉〈−1〉
.

(9)

The projection of Ξ in (6) is the vector field

Ξπ =
n

∑
i=1

ξi
∂

∂xi
. (10)

Note that the shift and projection operators do not com-
mute. A set of vector fields Ξ1, ...,Ξn is called linearly in-
dependent if no non-zero coefficients βi ∈K , i = 1, ...,n
exist, such that ∑n

i=1 βiΞi ≡ 0. The vector fields Ξ1 and
Ξ2 commute, if their Lie bracket [Ξ1,Ξ2] is identically
equal to zero. Moreover, the following holds [10]:

[Ξ1,Ξ2]
〈−1〉 =

[
Ξ〈−1〉

1 ,Ξ〈−1〉
2

]
≡ 0. (11)
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Lemma 1. If Ξ ∈ spanK {∂/∂x}, then for k = 1, ...,n,

Ξ〈−k〉 ∈ spanK

{
∂
∂x

,
∂

∂ z〈−1〉 , ...,
∂

∂ z〈−k〉

}
. (12)

Proof. The proof is by induction. Let k = 1. Compute the
first order backward shift of Ξ = ∑n

i=1 ξi∂/∂xi by (8) and
(9). Observe that the only non-zero coefficients in (9)

are ai =
〈
dΦi,Ξ

〉〈−1〉
, i = 1, ...,n, c1 =

〈
dz〈−1〉,Ξ

〉〈−1〉
,

resulting in

Ξ〈−1〉 =
n

∑
i=1

n

∑
j=1

(
∂Φi

∂x j
ξ j

)〈−1〉 ∂
∂xi

+
n

∑
j=1

(
∂ χ
∂x j

ξ j

)〈−1〉 ∂
∂ z〈−1〉 .

(13)

Suppose next that (12) holds for k,

Ξ〈−k〉 =
n

∑
i=1

ξ̂i
∂

∂xi
+

k

∑
l=1

ηl
∂

∂ z〈−l〉 .

The only non-zero coefficients of the backward shift

of the above vector field are ai = 〈dΦi,Ξ〈−k〉〉〈−1〉, i =
1, ...,n, c1 = 〈dz,Ξ〈−k〉〉〈−1〉, cl = 〈dz〈−l+1〉,Ξ〈−k〉〉〈−1〉 =
η〈−1〉

l−1 , l = 2, ...,k+1, yielding

Ξ〈−k−1〉 =
n

∑
i=1

n

∑
j=1

(
∂Φi

∂x j
ξ̂ j

)〈−1〉 ∂
∂xi

+
n

∑
j=1

(
∂ χ
∂x j

ξ̂ j

)〈−1〉 ∂
∂ z〈−1〉 +

k+1

∑
l=2

η〈−1〉
l−1

∂
∂ z〈−l〉 .

�
Due to (7) and (10)

Ξ〈−k〉 = Ξ〈−k〉π +
k

∑
q=1

〈
dz〈−q〉,Ξ〈−k〉

〉 ∂
∂ z〈−q〉 . (14)

Lemma 2. If Ξ ∈ spanK {∂/∂x}, then (Ξ〈−l〉π)〈−1〉π =

Ξ〈−l−1〉π .

Proof. Due to (14), Ξ〈−l〉π = Ξ〈−l〉 −
∑l

q=1〈dz〈−q〉,Ξ〈−l〉〉∂/∂ z〈−q〉. Shifting this equality

backward by (8) and (9) gives us (Ξ〈−l〉π)〈−1〉 =

Ξ〈−l−1〉 −∑l
q=1〈dz〈−q〉,Ξ〈−l〉〉〈−1〉∂/∂ z〈−q−1〉. Applying

the projection operator to the result proves the lemma. �
Finally recall the method to define the new variable

z in (2). Compute the Jacobi matrix of Φ in (1) as an
(n× (n+1))-matrix of generic rank n

T Φ =

(
∂Φ
∂x

∂Φ
∂u

)

and find its kernel as an 1-dimensional distribution

KerT Φ = spanK {K} ⊂ spanK

{
∂
∂x

,
∂
∂u

}
such that 〈dΦi,K〉 ≡ 0. Then the new variable z in (2)
can be computed as the canonical parameter of the vec-
tor field K according to

〈dχ,K〉 ≡ 1. (15)

3. PROBLEM STATEMENT AND THE MAIN
RESULT

Consider the system (1) together with the output function

x〈1〉 = Φ(x,u), y = h(x), (16)

where the output y(t) ∈ Y ⊆ R and Y is an open set.
The goal is to find, if possible, the state transformation
X = Ψ(x), such that the equations (16) in the new coor-
dinates are in the observer form

X 〈1〉
i = Xi+1 +ϕi(y,u), i = 1, ...,n−1,

X 〈1〉
n = ϕn(y,u), y = X1.

(17)

Denote y〈0〉 = h(x). Compute, using (4),

y〈l〉 = h(Φl
(x,u, ...,u〈l−1〉)), l = 1, ...,n−1.

Recall [11] the spaces Y := spanK {dy〈l〉, l ≥ 0}, U :=

spanK {du〈 j〉, j ≥ 0}, X := spanK {dx}. The subspace
O =X ∩(Y +U ) is called the observable space of sys-
tem (16).

Assumption 3. The system (16) satisfies the generic ob-
servability condition dimK O = n.

Define the set of 1-forms:

ωl :=
n

∑
i=1

∂y〈l〉

∂xi
dxi, l = 0, ...,n−1. (18)

Assumption 3 is equivalent to the condition that the 1-
forms ωl , l = 0, ...,n−1, are linearly independent:

dimK (spanK {ωl , l = 0, ...,n−1}) = n. (19)

Define the vector field Ξ ∈ spanK {∂/∂x} such that

〈ωl ,Ξ〉 ≡ δl,n−1, l = 0, ...,n−1. (20)

Since the system (20) defines Ξ in the n-dimensional
space spanK {∂/∂x} and under Assumption 3 the system
(20) consists of n independent equations, Ξ is uniquely
defined. Note that if Assumption 3 is not satisfied, for
instance, if the dimension is n− 1, then ωn−1 is a linear

 

 

    (13)
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combination of ωl , l = 0, ...,n− 2. Then from the equa-
tion 〈ωn−1,Ξ〉 ≡ 1 follows the contradiction 0 = 1 and
the system (20) is not solvable.

Recall that by the definition of Ξ and Lemma 1

the vector fields Ξ〈−k〉, k = 0, ...,n, belong

to spanK {∂/∂x, ∂/∂ z〈−1〉, ....∂/∂ z〈−k〉}. How-
ever, one can consider all such vector fields
as the elements of a larger dimensional space

spanK {∂/∂x, ∂/∂ z〈−1〉, ....∂/∂ z〈−n〉}. In a simi-
lar manner one can consider all the 1-forms ωl and
dy〈l〉, l = 0, ...,n − 1, as the elements of the space

spanK {dx,du, ....,du〈n−2〉} and write

dy = ω0,

dy〈l〉 = ωl +
l−1

∑
j=0

∂y〈l〉

∂u〈 j〉 du〈 j〉, l = 1, ...,n−1.

From (14) and (18) follows, for k=0, ...,n, l=0, ...,n−1,

〈
dy〈l〉,Ξ〈−k〉

〉
=

〈
ωl +

l−1

∑
j=0

∂y〈l〉

∂u〈 j〉 du〈 j〉,

Ξ〈−k〉π+
k

∑
q=1

〈
dz〈−q〉,Ξ〈−k〉

〉 ∂
∂ z〈−q〉

〉
.

(21)

Take into account that Ξ〈−k〉π is the linear combination of
∂/∂xi and ωl the linear combination of dxi, i = 1, ...,n.
Then (21) takes, for k = 0, ...,n, l = 0, ...,n−1, the form〈

dy〈l〉,Ξ〈−k〉
〉
=
〈

ωl ,Ξ〈−k〉π
〉
. (22)

Lemma 4. Under Assumption 3 the vector fields Ξ〈−k〉π ,
k = 0, ...,n−1, are linearly independent over K .

Proof. To prove the lemma, rewrite (20) according to
(22) as 〈

dy〈l〉,Ξ
〉
≡ δl,n−1, l = 0, ...,n−1. (23)

The proof is by contradiction. Show first that the vec-

tor fields Ξ and Ξ〈−1〉π are linearly independent. From

(23) we have
〈
dy〈n−2〉,Ξ

〉 ≡ 0. Compare this equality

with the formula
〈
dy〈n−2〉,Ξ〈−1〉〉≡ 1, which is obtained

via the backward shift of
〈
dy〈n−1〉,Ξ

〉 ≡ 1 and the fact
that the backward shift of a scalar product equals the
scalar product of the backward shifts of both factors. Due

to (14) and taking into account that y〈n−2〉 does not de-

pend on z〈−q〉, q > 0, the last formula can be rewritten

as
〈
dy〈n−2〉,Ξ〈−1〉π〉 ≡ 1. Consequently, dy〈n−2〉 anni-

hilates Ξ, but not Ξ〈−1〉π and so Ξ and Ξ〈−1〉π must be
linearly independent. The same proof works for Ξ〈−k〉π ,
k = 2, ...,n−1. �

Lemma 5. [10] Let the vector fields Ξ j =
∑n

i=1 ξi j(x)∂/∂xi ∈ spanK {∂/∂x}, j = 1, ...,n, be lin-
early independent over K . If the vector fields Ξ j com-
mute, then, generically, one can define the state transfor-
mation Xi = Ψi(x), Ψi ∈ K , i = 1, ...,n, such that〈

dΨi,Ξ j
〉
= δi j, i, j = 1, ...,n.

Moreover, in the new coordinates

Ψ∗Ξ j =
∂

∂Xj
.

Note that because the vector fields Ξ j, j = 1, ...,n, span
the vector space spanK {∂/∂x}, the functions Ψi(x) are
uniquely defined.

Theorem 6. (Main result) Under Assumption 3 the sys-
tem (16) can be transformed via state transformation into
the observer form (17) if and only if the following three
conditions are satisfied:

(i) the vector fields Ξ〈−l〉π commute:[
Ξ〈−l〉π ,Ξ〈− j〉π

]
≡ 0, l, j = 0, ...,n−1,

(ii) the coefficients of Ξ〈−l〉π , l = 0, ...,n−1, depend only
on the variable x,

(iii) the vector field Ξ〈−n〉π is the linear combination
of Ξ〈−l〉π , l = 0, ...,n−1,

Ξ〈−n〉π =
n

∑
l=1

al(y〈−1〉,u〈−1〉)Ξ〈−n+l〉π , (24)

where the coefficients al , l = 1, ...,n, depend only on the
first order backward shifts of y and u.

Proof. Sufficiency. Under Assumption 3, Ξ is defined by
(20). Then (i), (ii), Lemmas 4 and 5 guarantee the ex-
istence of a state transformation Xi = Ψi(x), i = 1, ...,n,
such that〈

dΨi,Ξ〈−n+l〉π
〉
≡ δil , i, l = 1, ...,n. (25)

Note that the 1-forms (as the differentials of state trans-
formation) dΨi, i = 1, ...,n, give a basis for spanK {dx}.

Moreover, from (Ψ(x))〈1〉 = Ψ(Φ(x,u)) one has dΨ〈1〉 ∈
spanK {dx,du}. Therefore, dΨ〈1〉

i , i = 1, ...,n, can be ex-
pressed as the linear combinations

dΨ〈1〉
i (x,u) =

n

∑
j=1

αi j(x,u)dΨ j +βi(x,u)du. (26)

The goal is to prove that if (iii) also holds, then the sys-
tem (16) has, in the new coordinates, the observer form
(17), resulting in

dΨ〈1〉
i = dΨi+1 +dϕi(y,u), i = 1, ...,n−1,

dΨ〈1〉
n = dϕn(y,u).

(27)
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Recall that Ψ1 = y = h(x). Thus, we have to show that
under (iii) the only non-zero coefficients α in (26) are

αi1(x,u) =ai(h(x),u), i = 1, ...,n,
αi,i+1 ≡1, i = 1, ...,n−1,

(28)

where ai(y,u) are the forward shifts of the coefficients of

Ξ〈−n〉π in (24). For this purpose compute first, using the
right hand side of (26), the scalar products〈

dΨ〈1〉
i ,Ξ〈−n+l〉π

〉
=

〈
n

∑
j=1

αi j(x,u)dΨ j +βi(x,u)du, Ξ〈−n+l〉π
〉
.

From (25) and the fact that 〈du,Ξ〈−n+l〉π〉 ≡ 0 we have

αil(x,u) =
〈

dΨ〈1〉
i ,Ξ〈−n+l〉π

〉
, i, l = 1, ...,n. (29)

Our next claim is that the coefficients αil in (29) have
the form (28). Prove this first for l = 1, whereby (29)
takes the form

αi1(x,u) =
〈

dΨ〈1〉
i ,Ξ〈−n+1〉π

〉
, i = 1, ...,n. (30)

Due to the first formula in (28) we need to show that

〈
dΨ〈1〉

1 ,Ξ〈−n+1〉π
〉
= ai(h(x),u). (31)

To this end compute the scalar product of Ξ〈−n〉π in (24)
with dΨ1, taking into account (25):〈

dΨi,Ξ〈−n〉π
〉
=

n

∑
l=1

al(y〈−1〉,u〈−1〉)
〈

dΨi,Ξ〈−n+l〉π
〉

=
n

∑
l=1

al(y〈−1〉,u〈−1〉)δil .

By the definition of the Kronecker delta〈
dΨi,Ξ〈−n〉π

〉
= ai(y〈−1〉,u〈−1〉). (32)

Note that (31) does not follow directly from (32) since
the forward shift and the projection operators do not
commute1. However, by (14), we can write

Ξ〈−n〉 =Ξ〈−n〉π+
n

∑
q=1

〈
dz〈−q〉,Ξ〈−n〉

〉 ∂
∂ z〈−q〉

and thus, for i = 1, ...,n,〈
dΨi,Ξ〈−n〉

〉
=
〈

dΨi,Ξ〈−n〉π
〉
,

since 〈dΨi,∂/∂ z〈−q〉〉 ≡ 0. By (32), the above results in

〈dΨi,Ξ〈−n〉〉= ai(y〈−1〉,u〈−1〉) and〈
dΨ〈1〉

i ,Ξ〈−n+1〉
〉
= ai(y,u) (33)

follow easily. Again, from (14) one has

Ξ〈−n+1〉 = Ξ〈−n+1〉π +
n−1

∑
q=1

〈
dz〈−q〉,Ξ〈−n+1〉

〉 ∂
∂ z〈−q〉 ,

which leads to 〈dΨ〈1〉
i ,Ξ〈−n+1〉〉 = 〈dΨ〈1〉

i ,Ξ〈−n+1〉π〉 =
ai(y,u). Replacing in the above relation y by h(x) and
taking into account (30), we have shown the validity of
the first relation in (28).

The second formula in (28) is, by the definition of the
Kronecker delta, equivalent to

αil = δi,l−1, i = 1, ...,n−1, l = 2, ...,n. (34)

Substituting αil from (29) into (34), we get, for i =
1, ...,n−1, l = 2, ...,n,〈

dΨ〈1〉
i ,Ξ〈−n+l〉π

〉
≡ δi,l−1. (35)

To prove (35), note that by (25), for i = 1, ...,n − 1,
l̄ = 1, ...,n−1, the following holds:〈

dΨi,Ξ〈−n+l̄〉π
〉
≡ δil̄ . (36)

Even though the shift and projection operators do not
commute in a similar manner as above, we can prove that
one gets from (36), for i = 1, ...,n−1, l̄ = 1, ...,n−1,〈

dΨ〈1〉
i ,Ξ〈−n+l̄+1〉π

〉
≡ δil̄ .

Denoting l := l̄+1, we obtain (35), i.e. the validity of the
second formula of (28) has been shown. Consequently,
(28) holds, and the relation (26) takes the following form:

dΨ〈1〉
i = dΨi+1 +ai(h(x),u)dΨ1 +βi(x,u)du,

i =1, ...,n−1,

dΨ〈1〉
n =an(h(x),u)dΨ1 +βn(x,u)du.

(37)

As the left hand sides of equalities in (37) are total dif-
ferentials, the 1-forms ai(h(x),u)dΨ1 + βi(x,u)du, i =
1, ...,n, must be also total differentials. This is possible
only if there exist functions ϕi(X1,u), i = 1, ...,n, such
that

ai(h(x),u) =
∂ϕi(X1,u)

∂X1

∣∣∣∣
X1=Ψ1(x)

,

βi(x,u) =
∂ϕi(X1,u)

∂u

∣∣∣∣
X1=Ψ1(x)

.

(38)

The first relation in (38) is valid if Ψ1(x) = σ(h(x)).
1 Lemma 2 is not applicable either since it addresses the backward shift and not the forward shift.
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Next we prove that σ is identity function.

Recall that by (20) one has
〈
dy〈n−1〉,Ξ

〉 ≡ 1
and shifting this backward n − 1 times, we get〈
dy,Ξ〈−n+1〉〉 = 〈dy,Ξ〈−n+1〉π〉 ≡ 1. Due to (25), one

has
〈
dΨ1,Ξ〈−n+1〉π〉≡ 1. Therefore, σ = Id, resulting in

X1 = y = h(x).
Form (38) it also follows that the functions βi(x,u)

depend only on u and X1 = y, i.e. βi(x,u) = bi(h(x),u)
and therefore (37) takes the form

dΨ〈1〉
i = dΨi+1 +ai(y,u)dy+bi(y,u)du,

i = 1, ...,n−1,

dΨ〈1〉
n = an(y,u)dy+bn(y,u)du.

(39)

Substituting (38) into (39) proves (27).

Necessity. Compute the forward shifts from (17):

y〈1〉 = X2 +ϕ1(X1,u),

y〈2〉 =X3+ϕ2(X1,u)+ϕ1(X2 +ϕ1(X1,u),u〈1〉),
...

resulting in

ω0 = dX1,

ω1 = dX2 +
∂ϕ1(X1,u)

∂X1
dX1,

ω2 = dX3 +
∂ϕ2(X1,u)

∂X1
dX1

+
∂ϕ1(X

〈1〉
1 ,u〈1〉)

∂X 〈1〉
1

∣∣∣∣∣
X〈1〉

1 =X2+ϕ1(X1,u)

×
(

dX2 +
∂ϕ1(X1,u)

∂X1
dX1

)
...

It means that the 1-forms ωk, k = 1, ...,n− 1, have the
form

ωk = dXk+1 +
k

∑
i=1

γk,idXi. (40)

Prove first that in the new coordinates Xi, i = 1, ...,n, the
vector field Ξ, defined by (20), has the form

Ξ =
∂

∂Xn
, (41)

or alternatively,

〈dXi,Ξ〉 ≡ 0, i = 1, ...,n−1, 〈dXn,Ξ〉 ≡ 1. (42)

The proof is by induction. Observe that 〈dX1,Ξ〉 ≡ 0
since dX1 = ω0. Assume next that

〈dXi,Ξ〉 ≡ 0, i = 1, ...,k ≤ n−2, (43)

and show that

〈dXk+1,Ξ〉 ≡ 0. (44)

Due to (40), 〈ωk,Ξ〉 = 〈dXk+1,Ξ〉 + ∑k
i=1 γk,i 〈dXi,Ξ〉.

The left hand side of this equality is identically equal
to zero due to (20) and the second term on the right
hand side is identically equal to zero by (43). There-
fore (44) holds. To prove that 〈dXn,Ξ〉 ≡ 1, note that

〈ωn−1,Ξ〉= 〈dXn,Ξ〉+∑n−1
i=1 γn−1,i 〈dXi,Ξ〉. The left hand

side is identically equal to 1 due to (20) and the second
term on the right hand side is identically equal to zero
due to the first equality of (42). That is, 〈dXn,Ξ〉 ≡ 1
and the validity of the second equality of (42) has been
proved.

Prove next that

Ξ〈−n+i〉π =
∂

∂Xi
, i = 1, ...,n−1. (45)

Compute, combining (8), (9) and (10),

(
∂

∂Xn

)〈−1〉π
=

n

∑
i=1

〈
dX 〈1〉

i ,Ξ
〉〈−1〉 ∂

∂Xi
. (46)

According to (17)

dX 〈1〉
i = dXi+1 +dϕi(X1,u), i = 1, ...,n−1,

dX 〈1〉
n = dϕn(X1,u).

(47)

Substituting (47) into (46), we see that the only non-zero

scalar product in (46) is 〈dX 〈1〉
n−1,∂/∂Xn〉 ≡ 1, and thus

Ξ〈−1〉π =
∂

∂Xn−1
.

Computing recursively the backward shifts of ∂/∂Xn−1

and so on, we prove (45). Since the partial derivative
operators commute, the conditions (i) and (ii) hold.

To prove (iii), observe that by (45), Ξ〈−n+1〉π =
(∂/∂Xn)

〈−n+1〉π = ∂/∂X1. Shift this vector field back-
ward and compute its projection, taking into account
Lemma 2:(

∂
∂Xn

)〈−n〉π
=

(
∂

∂X1

)〈−1〉π

=
n

∑
i=1

〈
dX 〈1〉

i ,
∂

∂X1

〉〈−1〉 ∂
∂Xi

.

(48)

Substituting dX 〈1〉
i from (47) into (48), and taking into

account that X1 = y, results in

(
∂

∂Xn

)〈−n〉π
=

n

∑
i=1

∂ϕi(y〈−1〉,u〈−1〉)
∂y〈−1〉

∂
∂Xi

.

 

 

    (48)
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By (41) and (45) above, we get

Ξ〈−n〉π =
n

∑
i=1

∂ϕi(y〈−1〉,u〈−1〉)
∂y〈−1〉 Ξ〈−n+i〉π ,

meaning that the condition (iii) also holds. �
If the conditions (i) and (ii) of Theorem 6 are satis-

fied, then the new coordinates X =Ψ(x) can be computed
using the method from [10], recalled below. Define an
(n× n)-matrix M, with columns being the vector fields

Ξ〈−n+i〉π , i = 1, ...,n:

M =
[
Ξ〈−n+1〉π ... Ξ〈−1〉π Ξ

]
, (49)

and compute its inverse M−1. Due to (25), the rows
of M−1 are total differentials of the new state variables
X = Ψ(x):

M〈−1〉 =
[
dΨT

1 ... dΨT
n−1 dΨT

n
]T

.

The condition (iii) of Theorem 6 is difficult to check di-
rectly if Ξ〈−n+i〉π , i = 0, ...,n, have complicated form. In
addition to checking the linear independence, the spe-
cial form of the coefficients ai in (24) has to be shown.
Below a formula is given to compute the coefficients ai.
Rewrite (24) in the matrix form, taking into account (49):

Ξ〈−n〉π = M [a1 ... an]
T . Under the conditions (i) and

(ii) M−1 exists and hence

[a1 ... an]
T = M−1Ξ〈−n〉π . (50)

4. THE CHOICE OF Z

In this section we discuss, for an observable system (16),
the possible choices of the new variable z in (2). If
rankK (∂Φ/∂x) = n, then the natural choice is z = u
[8]. Lemma 8 below shows the possible choice for non-
reversible system, i.e. when the choice z = u is impos-
sible. Moreover, we give a corollary from Theorem 6 for
reversible systems. The main difference is that in case
z = u, there is no need to use the projections of the vector
fields unlike in the general case. Hence, the vector field

Ξ〈−n〉 depends only on Ξ, resulting in that the condition
(iii) in Theorem 6 will be redundant.

As mentioned in Section 2, T Φ is an [n× (n+ 1)]-
matrix with the generic rank n, and thus the generic rank
of none of its (n×n)-submatrices can be less than n−1.

Assumption 7. rankK (∂Φ/∂x) = n−1.

Next consider the non-reversible system that satisfies As-
sumption 7.

Lemma 8. If the system (16) is transformable into the
observer form (17) and Assumption 7 holds, then one can
take z = y = h(x).

Proof. Under the assumption of the lemma, the system
(16) takes, in the new coordinates X = Ψ(x), the form
(17). Denote the right hand side of the state equations in

(17) by Φ̃(X ,u) and compute its Jacobi matrix as

T Φ̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ϕ1

∂X1
1 0 ... 0

∂ϕ1

∂u
...

...
...

...
...

...
∂ϕn−1

∂X1
0 0 ... 1

∂ϕn−1

∂u
∂ϕn

∂X1
0 0 ... 0

∂ϕn

∂u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (51)

In the new coordinates the state equations still satisfy the

submersivity assumption, i.e. rankK T Φ̃ = n. Assump-

tion 7 reads in the new coordinates as rankK (∂ Φ̃/∂X) =
n− 1. Due to (51), this is possible only if ∂ϕn/∂X1 ≡
0. The submersivity of the system (17) then yields
∂ϕn/∂u 
≡ 0. Find now in coordinates X the basis vec-

tor field of KerT Φ̃, denoted by K, from 〈T Φ̃,K〉 ≡ 0.
Though K is not uniquely defined, one can take

K=
∂

∂X1
−
(

∂ϕn

∂u

)−1 n

∑
i=2

(
∂ϕi−1

∂X1

∂ϕn

∂u
−∂ϕi−1

∂u
∂ϕn

∂X1

)
∂

∂Xi
.

Computing the variable z in the new coordinates from
(15), i.e. from 〈dχ,K〉 ≡ 1, one possible choice is z =
X1 = h(x). �

4.1. Corollary from Theorem 6: the case of
reversible systems

Assumption 9. The system (1) is generically reversible,
i.e.

rankK

(
∂Φ(x,u)

∂x

)
= n.

Under Assumption 9 one can always take z = u, though
some other options may be possible. In this subsection
we will present a corollary from Theorem 6 under As-
sumption 9 and the choice z = u. First, we will give some
simple lemmas.

Lemma 10. If z = u, then for the vector field Ξ̂ ∈
spanK {∂/∂x}, Ξ̂〈−1〉π = Ξ̂〈−1〉.

Proof. If z = u, then the formulae (8) and (9) give

Ξ̂〈−1〉 =
n

∑
i=1

〈
dΦi, Ξ̂

〉〈−1〉 ∂
∂xi

, (52)

from which the proof directly follows. �
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Lemma 11. If z = u, then(
∂
∂u

)〈−1〉

=
n

∑
i=1

∂Φi(x〈−1〉,u〈−1〉)
∂u〈−1〉

∣∣∣∣∣
x〈−1〉=Λ(x,u〈−1〉)

∂
∂xi

+
∂

∂u〈−1〉 .

Proof. The proof is the straightforward consequence of
the formulae (8) and (9). �

Corollary 12. Under Assumption 9, if z = u, the condi-
tions of Theorem 6 are equivalent to the conditions:

(i*)
[
Ξ,Ξ〈−l〉]≡ 0, l = 1, ...,n−1,

(ii*) the coefficients of Ξ〈−l〉, l = 0, ...,n − 1, depend
only on x.

Proof. Due to Lemma 10, the equivalence of (ii) and
(ii*) is obvious. Moreover, by this lemma we may omit
the projections, i.e. the condition (i) takes the form[

Ξ〈−l〉,Ξ〈− j〉
]
≡ 0, l, j = 0, ...,n−1. (53)

As (i*) is a direct consequence from (53), we have to
prove also the opposite. Actually it is sufficient to prove
that from (i*) follows for l̄=0, ...,n−2, j̄= l̄+1, ...,n−1,[

Ξ〈−l̄〉,Ξ〈− j̄〉
]
≡ 0, (54)

i.e. for each vector field Ξ〈−l̄〉 we do not have to show
its commutativity with all Ξ〈− j̄〉, but it is sufficient to
prove that it commutes with the higher order backward
shifts. The reason is that Lie bracket is anti-symmetric
and when equal to zero, its value does not depend on
the order of vector fields. One can easily get (54) if

we rewrite (i*) as [Ξ,Ξ〈− j̄+l̄〉]≡ 0 for j̄ = l̄ +1, ...n−1,
l̄ = 0, ...,n−2. Though the number of Lie brackets seems
to be here larger than in (i*), it is really not the case,
since most of them appear repeatedly. Taking into ac-
count (11), apply the l̄-th order backward shift to the last
equality to get (54).

Now we will show that in case z = u, unlike in the
general case, the validity of (iii) follows directly from (i)
and (ii). This will be performed in three steps. We will
show that if (i) and (ii) hold, then

(1) X1 = y,

(2) Ξ〈−n〉 = anΞ, an ∈ K , (55)

(3) an is a function of X 〈−1〉
1 and u〈−1〉 only.

Note that due to Theorem 6, if (i) and (ii) hold, the
state transformation X = Ψ(x) is defined by (25), where,
by Lemma 10, we may omit projections. The first step is
to show that the above yields y = X1, or equivalently,〈

dy,Ξ〈−l〉
〉
≡ δl,n−1, l = 0, ...,n−1. (56)

Observe that (56) follows from shifting back (23) l times.

At the second step we will show that (55) is true.
Note that Lemmas 4 and 10 give

dimK

(
spanK {Ξ〈−l〉, l = 0, ...,n−1}

)
= n. (57)

It means that the vector fields Ξ〈−l〉, l = 0, ...,n − 1,
provide the basis for spanK {∂/∂x}. By Lemma 10,

Ξ〈−n〉 ∈ spanK {∂/∂x}, and as such, can be expressed
as the linear combination of the basis vector fields. Now,
shifting (57) backward and denoting l̄ := l+1, we obtain

dimK

(
spanK {Ξ〈−l̄〉, l̄ = 1, ...,n}

)
= n,

i.e. Ξ〈−n〉 and Ξ〈−l̄〉, l̄ = 1, ...,n− 1, are linearly indepen-

dent. Therefore, Ξ〈−n〉 depends only on Ξ, i.e. (55) holds.

At the third step we will prove that an depends only

on X 〈−1〉
1 and u〈−1〉. First, we will show that it depends

on the variables x and u〈−1〉. Express Ξ〈−n〉, using (8) and
(9), as follows:

Ξ〈−n〉 =
n

∑
i=1

〈
dΦi,Ξ〈−n+1〉

〉〈−1〉 ∂
∂xi

.

Note that the coefficients of dΦi depend only on x and u,

and the coefficients of Ξ〈−n+1〉 depend, due to (ii), only
on x. Consequently, their scalar product depends only on
x and u and its backward shift is, according to (3), the

function of x and u〈−1〉 only. Consequently, the left hand

side of (55) depends only on the variables x and u〈−1〉.
Due to (ii), the coefficients of Ξ depend only on x and
therefore, the coefficient an can not depend on the other

variables except x and u〈−1〉.
Next, we will show that an depends only on X 〈−1〉

1 and

u〈−1〉, or equivalently, that its forward shift a〈1〉n (x,u) =
an(Φ(x,u),u) depends only on X1 = Ψ1(x) and u, yield-
ing

da〈1〉n (x,u) ∈ spanK {dΨ1,du}. (58)

Due to (25) and Lemma 10, in case z = u, one has〈
dΨ1,Ξ〈−l〉〉 ≡ 0 for l = 0, ...,n− 2, and obviously also〈
du,Ξ〈−l〉〉≡ 0 holds. Therefore, (58) is equivalent to〈

da〈1〉n ,Ξ〈−l〉
〉
≡ 0, l = 0, ...,n−2. (59)

In order to prove the validity of (59), note that from (53)
follows[

Ξ〈−l〉,Ξ〈−n+1〉
]
≡ 0, l = 0, ...,n−2. (60)

Shifting (60) backward according to (11) and denoting
l̄ := l +1, we obtain[

Ξ〈−l̄〉,Ξ〈−n〉
]
≡ 0, l̄ = 1, ...,n−1. (61)

(2) Ξ〈−n〉 = anΞ, an ∈ K , (55)

(3) an is a function of X 〈−1〉
1 and u〈−1〉 only.

Note that due to Theorem 6, if (i) and (ii) hold, the
state transformation X = Ψ(x) is defined by (25), where,
by Lemma 10, we may omit projections. The first step is
to show that the above yields y = X1, or equivalently,〈

dy,Ξ〈−l〉
〉
≡ δl,n−1, l = 0, ...,n−1. (56)

Observe that (56) follows from shifting back (23) l times.

At the second step we will show that (55) is true.
Note that Lemmas 4 and 10 give

dimK

(
spanK {Ξ〈−l〉, l = 0, ...,n−1}

)
= n. (57)

It means that the vector fields Ξ〈−l〉, l = 0, ...,n − 1,
provide the basis for spanK {∂/∂x}. By Lemma 10,

Ξ〈−n〉 ∈ spanK {∂/∂x}, and as such, can be expressed
as the linear combination of the basis vector fields. Now,
shifting (57) backward and denoting l̄ := l+1, we obtain

dimK

(
spanK {Ξ〈−l̄〉, l̄ = 1, ...,n}

)
= n,

i.e. Ξ〈−n〉 and Ξ〈−l̄〉, l̄ = 1, ...,n− 1, are linearly indepen-

dent. Therefore, Ξ〈−n〉 depends only on Ξ, i.e. (55) holds.

At the third step we will prove that an depends only

on X 〈−1〉
1 and u〈−1〉. First, we will show that it depends

on the variables x and u〈−1〉. Express Ξ〈−n〉, using (8) and
(9), as follows:

Ξ〈−n〉 =
n

∑
i=1

〈
dΦi,Ξ〈−n+1〉

〉〈−1〉 ∂
∂xi

.

Note that the coefficients of dΦi depend only on x and u,

and the coefficients of Ξ〈−n+1〉 depend, due to (ii), only
on x. Consequently, their scalar product depends only on
x and u and its backward shift is, according to (3), the

function of x and u〈−1〉 only. Consequently, the left hand

side of (55) depends only on the variables x and u〈−1〉.
Due to (ii), the coefficients of Ξ depend only on x and
therefore, the coefficient an can not depend on the other

variables except x and u〈−1〉.
Next, we will show that an depends only on X 〈−1〉

1 and

u〈−1〉, or equivalently, that its forward shift a〈1〉n (x,u) =
an(Φ(x,u),u) depends only on X1 = Ψ1(x) and u, yield-
ing

da〈1〉n (x,u) ∈ spanK {dΨ1,du}. (58)

Due to (25) and Lemma 10, in case z = u, one has〈
dΨ1,Ξ〈−l〉〉 ≡ 0 for l = 0, ...,n− 2, and obviously also〈
du,Ξ〈−l〉〉≡ 0 holds. Therefore, (58) is equivalent to〈

da〈1〉n ,Ξ〈−l〉
〉
≡ 0, l = 0, ...,n−2. (59)

In order to prove the validity of (59), note that from (53)
follows[

Ξ〈−l〉,Ξ〈−n+1〉
]
≡ 0, l = 0, ...,n−2. (60)

Shifting (60) backward according to (11) and denoting
l̄ := l +1, we obtain[

Ξ〈−l̄〉,Ξ〈−n〉
]
≡ 0, l̄ = 1, ...,n−1. (61)
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Substituting (55) into (61) and taking into account the

product derivative formula [Ξ〈−l〉,anΞ] = 〈dan,Ξ〈−l〉〉Ξ+

an[Ξ〈−l〉,Ξ] and (53), we can rewrite (61) as〈
dan,Ξ〈−l̄〉〉Ξ ≡ 0, l̄ = 1, ...,n−1.

This is possible iff
〈

dan,Ξ〈−l̄〉〉 ≡ 0 for l̄ = 1, ...,n− 1.

Shifting the last formula forward and taking again l =
l̄ −1, we get (59). �

5. EXAMPLES

Example 13. Consider the system

x〈1〉1 =
x2

1u+ x2

x1
, x〈1〉2 =

x3(x2
1u+ x2)

x2
,

x〈1〉3 =
x1x3u2

x2
, y = x1,

where xi > 0, i = 1,2,3, u > 0. The spaces X̄ and U are
defined by the above inequalities. Observe that

rankK
∂Φ
∂x

= rankK

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
1u− x2

x2
1

1

x1
0

2x1x3u
x2

−x2
1x3u
x2

2

x2
1u+ x2

x2

x3u2

x2
−x1x3u2

x2
2

x1u2

x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 2,

meaning that the system is non-reversible. Take z =
h(x) = x1, then

x〈−1〉
1 = z〈−1〉, x〈−1〉

2 = x1z〈−1〉 − (z〈−1〉)2

√
x1x3

x2
,

x〈−1〉
3 = x2 − z〈−1〉

√
x2x3

x1
, u〈−1〉 =

√
x1x3

x2
.

(62)
Find the vector field Ξ, defined by (20). Compute, ac-
cording to (18),

ω0 = dx1, ω1 =
x2

1u− x2

x2
1

dx1 +
1

x1
dx2,

ω2 =
x2

1(x2uu〈1〉+ x3)− x2
2u〈1〉

x2
1x2

dx1

+
x2

2u〈1〉 − x2
1x3

x1x2
2

dx2 +
x1

x2
dx3,

and solve (20) to obtain

Ξ =
x2

x1

∂
∂x3

.

Compute next the projections of the backward shifts of Ξ
up to the order n = 3. According to (8), (9) and (10) we
get

Ξ〈−1〉π = x1
∂

∂x2
+

x1x3

x2

∂
∂x3

,

Ξ〈−2〉π =
∂

∂x1
+

x2

x1

∂
∂x2

,

Ξ〈−3〉π =

√
x1x3

x2

∂
∂x1

+

√
x2x3

x1

∂
∂x2

.

(63)

Check the conditions of Theorem 6. Since the vector
fields Ξ, Ξ〈−1〉π and Ξ〈−2〉π commute, the condition (i)
of Theorem 6 is satisfied. Observe that the coefficients
of the above vector fields depend only on the variable x,
thus also (ii) holds. From (63)

Ξ〈−3〉π =

√
x1x3

x2
Ξ〈−2〉π , (64)

and from (62) one can see that
√

x1x3/x2 = u〈−1〉. Con-
sequently, also (iii) is valid and the system is trans-
formable into the observer form (17). Construct

M =
[
Ξ〈−2〉π Ξ〈−1〉π Ξ

]
=

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0

x2

x1
x1 0

0
x1x3

x2

x2

x1

⎞⎟⎟⎟⎟⎟⎟⎠
and find its inverse

M−1 =

[
dX1

dX2

dX3

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

−x2

x2
1

1

x1
0

x3

x2
−x1x3

x2
2

x1

x2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

leading to the state transformation X1 = x1, X2 = x2/x1,
X3 = x1x3/x2, y = X1. The new state equations in the
form (17) are

X 〈1〉
1 = X2 +uy, X 〈1〉

2 = X3, X 〈1〉
3 = u2, y = X1.

Instead of checking linear independence as in (64),
one may alternatively use the formula (50) and check
whether the elements of the resulting matrix depend only

on y〈−1〉 and u〈−1〉. Write Ξ〈−n〉π in the form of a column
vector

Ξ〈−n〉π =

(√
x1x3

x2

√
x2x3

x1
0

)T

.
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Then

M−1Ξ〈−n〉π =

(√
x1x3

x2
0 0

)T

=
(

u〈−1〉 0 0
)T

.

The elements of the obtained matrix depend only on

u〈−1〉 and therefore the condition (iii) of Theorem 6 real-
ly holds.

Example 14. Consider the system

x〈1〉1 = x2, x〈1〉2 = (1+ x3)u, x〈1〉3 = u, y = x1,

where X̄ = R
3\[(∅),(∅),(0)], U = R\(0). Observe that

the system is non-reversible since

rankK

(
∂Φ
∂x

)
= rankK

(
0 1 0
0 0 u
0 0 0

)
= 2.

The choice z = h(x) = x1 results in x〈−1〉
1 = z〈−1〉, x〈−1〉

2 =

x1, x〈−1〉
3 = (x2 − x3)/x3, u〈−1〉 = x3. Compute, according

to (18), ω0 = dx1, ω1 = udx3, ω2 = udx3. Find the vector
field Ξ from (20):

Ξ =
1

u
∂

∂x3
.

The condition (ii) of Theorem 6 is not satisfied since the
coefficient of Ξ depends on u. Therefore, the system
can not be transformed into the observer form. We will
demonstrate what will happen if we try to find the state
transformation and transformed equations. Of course, we

can still compute Ξ〈−1〉π = ∂/∂x2, Ξ〈−2〉π = ∂/∂x1. The

vector fields Ξ, Ξ〈−1〉π and Ξ〈−2〉π commute, but (25)
does no longer give us the state transformation (in n-
dimensional space):

X1 = x1u, X2 = x2, X3 = x3. (65)

If we defined, using (65), the coordinate transformation
in (n+m)-dimensional space with coordinates {x,u} and
take {X ,u} as the new coordinates, the transformed equa-
tions would take the form

X 〈1〉
1 = X2, X 〈1〉

2 = X3 +u, X 〈1〉
3 = uu〈1〉.

6. COMPARISON WITH EARLIER
CONDITIONS

In this section we compare the conditions of Corollary
12 with those from [6] under two restrictive assumptions
made in [6] and recalled below. Though, by Assumption
3, the dimension of the observable space O is generi-
cally equal to n, there may exist the so-called singular
(non-regular) points where the dimension drops, i.e. is
less than n. In such points the results of [6] cannot be

used. Denote u := {u, ...,u〈n−1〉} and ul−1 := {u〈i〉, i =
0, ..., l −1}.

Assumption 15. The point x = 0, u = 0 is the regular
point of the observable space.

Moreover, since the results of [6] hold locally around
x = 0, u = 0, for comparison, we have to assume that
the point (0,0) ∈ X̄ ×U .

Introduce the notation Φ0(x) := Φ(x,0). For i ≥ 0,

Φi+1
0 := Φi

0(Φ0(x)), where Φ0
0 = Id. Under Assumption

15, the generic observability condition (19) implies that
the so-called strong observability condition

dimR

(
spanR

{
dh,d(h◦Φ0), ...,d(h◦Φn−1

0 )
})

=n, (66)

made in [6], holds in the neighbourhood of x = 0, be-

cause ωl(x,ul−1)|ul−1=0 = d(h◦Φl
0(x)).

Assumption 16. In the neighbourhood of the point x= 0

rankR

(
∂Φ0(x)

∂x

)
= n.

Under Assumption 16 exists Φ−1
0 , which in our earlier

notation is Λ(x,0). To present Theorem 1 from [6], re-
call the vector field r1 ∈ spanR{∂/∂x}, defined by〈

d(h◦Φl
0),r1

〉
≡ δl,n−1, l = 0, ...,n−1, (67)

and the operator AdΦ0
, applicable to the vector fields

Ξ̂ = ∑n
i=1 âi(x)∂/∂xi ∈ spanK {∂/∂x} and defined by

AdΦ0
Ξ̂

=
n

∑
i, j=1

∂Φ0i(x〈−1〉)

∂x〈−1〉
j

â j(x〈−1〉)

∣∣∣∣∣∣
x〈−1〉=Φ0(x)

∂
∂xi

.
(68)

Moreover, recall that

ri := Adi−1
Φ0

r1, i = 2, ...,n, (69)

and the vector field G0(x,u〈−1〉) :=

(∂Φ(x〈−1〉,u〈−1〉)/∂u〈−1〉)
∣∣
x〈−1〉=Λ(x,u〈−1〉) and

G0(x,u〈−1〉):=
∂Φ(x〈−1〉,u〈−1〉)

∂u〈−1〉

∣∣∣∣∣
x〈−1〉=Λ(x,u〈−1〉)

= G0
1(x)+ ∑

k≥1

G0
k+1(x)

(u〈−1〉)k

k!
,

(70)

where

G0
1 = G0(x,0),

G0
k(x) :=

∂ k−1

∂ (u〈−1〉)k−1
G0(x,u〈−1〉)

∣∣∣∣
u〈−1〉=0

, k > 1.

 

 

    (70)

 

 

    (68)
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Lemma 17. G0 = (∂/∂u)〈−1〉π .

Proof. The proof follows directly from Lemma 11. �

Theorem 18. [6] Under Assumptions 15 and 16, the
system (16) is locally transformable into the observer
form (17) via a coordinate transformation X = Ψ(x) if
and only if the following conditions are satisfied:
(A) [r1,ri+1]≡ 0, i = 1, ...,n−1,

(B) [G0
k ,ri+1]≡ 0, i = 1, ...,n−1, k ≥ 0.

We will show that the conditions of Corollary 12, re-
stricted to a neighbourhood of the point x = 0, u = 0,
under Assumptions 15 and 16, yield to those of Theorem
18. First, we prove some lemmas.

Lemma 19. Under Assumption 15, if the condition (ii*)
of Corollary 12 is satisfied, then Ξ = r1.

Proof. We will show that under the assumptions of the
lemma the equations (20) that define the vector field Ξ
reduce to〈

d(h ·Φl
0),Ξ
〉
≡ δl,n−1, l = 0, ...,n−1, (71)

which are the same that define r1 in (67). By (ii*) the
coefficients of the 1-forms ωl , l = 0, ...,n−1, (and there-
fore also Ξ) in (20) depend only on the variable x. Ob-
serve next that under Assumption 15 one may take u = 0
in the coefficients of ωl because this does not affect the
result. This change, due to (66), gives (71). �

Proposition 20. In the neighbourhood of x = 0, under
the mild assumption that (0,0) ∈ X̄ ×U

∂Φ0(x)
∂x

=
∂Φ(x,u)

∂x

∣∣∣∣
u=0

. (72)

Proof. Since Φ is analytic, one can expand the function
into the Taylor series around u = 0 under the mild as-
sumption that 0 ∈U :

Φ(x,u) = Φ0(x)+ ∑
k>0

∂ kΦ(x,u)
∂uk

∣∣∣∣
u=0

uk

k!
.

Then

∂Φ(x,u)
∂x

=
Φ0(x)

∂x
+ ∑

k>0

∂
∂x

(
∂ kΦ(x,u)

∂uk

∣∣∣∣
u=0

)
uk

k!

and (72) is easily seen. �
Lemma 21. Under Assumption 16, if the condition (ii*)
of Corollary 12 is satisfied, then rl+1 = Ξ〈−l〉, l =
1, ...,n−1.

Proof. We begin by proving that

Ξ〈−l〉 = Adl
Φ0

Ξ, l = 0, ...,n−1. (73)

By (20), Ξ ∈ spanK {∂/∂x} and due to Lemma 10, this
is also true for all its backward shifts. Additionally, ac-
cording to (ii*) the coefficients of the vector field depend

only on x, i.e. Ξ〈−l〉 = ∑n
l=1 ξi,l(x)∂/∂xi, l = 0, ...,n−1.

If in (52) one takes Ξ̂ = Ξ〈−l+1〉, we get

Ξ〈−l〉 =
n

∑
i=1

〈
dΦi,Ξ〈−l+1〉

〉〈−1〉 ∂
∂xi

. (74)

Rewrite (74), using the definition of scalar product, as

Ξ〈−l〉 =
n

∑
i, j=1

∂Φi(x〈−1〉,u〈−1〉)

∂x〈−1〉
j

× ξ j,l−1(x〈−1〉)
∣∣∣
x〈−1〉=Λ(x,u〈−1〉)

∂
∂xi

.

(75)

On the right hand side of (75) the coefficients of the vec-

tor field do not depend on u〈−1〉, and so nothing will

change if we take u〈−1〉 = 0. Moreover, by Proposition 20
replace in (75) Φ by Φ0 and by Assumption 16, replace

Λ(x,0) by Φ−1
0 (x) to yield

Ξ〈−l〉 =
n

∑
i, j=1

∂Φ0i(x〈−1〉)

∂x〈−1〉
j

× ξ j,l−1(x〈−1〉)
∣∣∣
x〈−1〉=Φ−1

0 (x)

∂
∂xi

.

(76)

Comparing (76) with (68), one can conclude that

Ξ〈−l〉 = AdΦ0
Ξ〈−l+1〉. (77)

From (77) the validity of (73) follows. Finally, rl+1 =
Ξ〈−l〉 results from (69). �

The above lemmas allow to show that the results of
[6], recalled in this paper as Theorem 18, follow from our
results for reversible systems, as given in Corollary 12.

The condition (A) of Theorem 18 follows from the
condition (i*) of Corollary 12, due to Lemmas 19 and
21 if (ii*) holds. Next we will prove that the condition
(B) follows from (ii*). The condition (B) is, due to (70),
equivalent to[

G0,rl+1

]≡ 0, l = 1, ...,n−1. (78)

Rewrite (78), due to Lemmas 17, 19 and 21, in the form[(
∂

∂u

)〈−1〉π
,Ξ〈−l〉

]
≡ 0, l = 1, ...,n−1. (79)

That is, we have to show that from the validity of (ii*)
follows (79). Obviously (ii*) implies that[

∂
∂u

,Ξ〈−l̄〉
]
≡ 0, l̄ = 0, ...,n−2. (80)

 

 

    (76)

 

 

    (75)
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Shifting (80) backward and denoting l := l̄+1, we obtain
an equivalent formula

[(
∂

∂u

)〈−1〉
,Ξ〈−l〉

]
≡ 0, l = 1, ...,n−1. (81)

According to Lemma 11 one can rewrite (81), for l =
1, ...,n−1, as[(

∂
∂u

)〈−1〉π
,Ξ〈−l〉

]
+

[
∂

∂u〈−1〉 ,Ξ
〈−l〉
]
≡ 0, (82)

where

(
∂
∂u

)〈−1〉π
=

n

∑
i=1

∂Φi(x〈−1〉,u〈−1〉)
∂u〈−1〉

∣∣∣∣∣
x〈−1〉=Λ(x,u〈−1〉)

∂
∂xi

.

The second term on the left hand side of (82) equals
identically zero due to (ii*), therefore (79) holds.

7. CONCLUSIONS

The paper has studied the problem of transforming the
discrete-time state equations into the observer form. The
necessary and sufficient conditions for the existence of
the state transformation are formulated in terms of the
backward shifts of the vector fields, defined by the sys-
tem dynamics, for the case when the state equations are
not necessarily reversible (with respect to the state vari-
able). The method to find the required state transforma-
tion is also provided. The obtained conditions are then
compared with those obtained earlier under the more re-
strictive assumption of reversibility of the state dynamics
[6].

For simplicity of presentation, this paper has ad-
dressed only the single-input single-output case. Exten-
sion to the multi-input multi-output case does not include
difficulties but is, of course, technically much more in-
volved.However, the interesting research perspectives in-
clude extension of the results to find the conditions under
which the state equations can be transformed, using the
parametrized state transformation, into the extended ob-
server form. Such a form consists of linear equations up
to nonlinear terms that depend, besides inputs and out-
puts like in the case of classical observer form, also on
their backward shifts up to certain order.
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8. Mullari, T., Kotta, Ü., Bartosiewicz, Z., Pawluszewicz, E.

and Moog, C. H. Forward and backward shifts of vec-

tor fields: towards the dual algebraic framework. IEEE
Trans. Autom. Control, 2017, 62(6), 3029–3033.

9. Aranda-Bricaire, E., Kotta, Ü. and Moog, C. H. Lineariza-
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Mittelineaarsete diskreetsete olekuvõrrandite teisendamine vaatlejakujule: üldistus
mittepööratavale juhule

Tanel Mullari ja Ülle Kotta

On käsitletud diskreetajaga olekuvõrrandite teisendamist vaatlejakujule. Esmalt on tõestatud vaatlejakuju olemasolu
tarvilikud ja piisavad tingimused süsteemi dünaamika defineeritud vektorväljade tagasinihete kaudu. Antud tingimuste
eelis olemasolevate ees seisneb selles, et need ei eelda süsteemi pööratavust olekumuutujate suhtes. Seejärel on an-
tud meetod olekuteisenduse leidmiseks, mis võimaldab süsteemi vaatlejakujule viia. Saadud tingimusi on võrreldud
varasematega, mis on tuletatud süsteemi pööratavust eeldades. Artiklis esitatud teooria on illustreeritud kahe näitega.


