
INTRODUCTION 

 

Coronavirus SARS­CoV­2, responsible for the COVID­
19 pandemic, enters human cells through the interaction 
of the virus surface spike protein S1 with the human an­
giotensin­converting enzyme 2 (ACE2) on the host cell 
membrane [1,2]. The initial binding step of the virus par­
ticle on the surface of the host cell is followed by the 
fusion of the viral and cell membranes and entry of the 
viral RNA into the host cell [2–4]. This mechanism of the 
virus entry suggests that inhibition of the interaction be­
tween the S1 protein and ACE2 may be a promising op­
tion to combat the infection. A rather straightforward way 
to achieve this goal is inhibiting one of the binding sites 
involved in this interaction by using peptides that mimic 
the counterpart protein. As ACE2 is physiologically im­
portant for the functioning of the host cell, inhibition of 
the virus binding site on this enzyme by using peptides 

derived from the S­protein structure, as proposed in [5], 
has understandable shortcomings. However, these do not 
apply in the case of peptides that mimic the ACE2 struc­
ture and inhibit the virus–receptor interaction by binding 
with the receptor­binding domain (RBD) on the S1 protein 
[6,7]. Therefore, this study, as well as our previous work 
[7], was focused on the design of such inhibitory peptides 
by using computational methods. 

It can be suggested that the most straightforward de­
sign of effective peptide inhibitors that target the binding 
site on the S1 protein can be made proceeding from the 
peptide sequence of the virus binding domain of the 
ACE2 molecule [7]. The viability of this approach is 
based on the availability of structural data for proteins S1 
and ACE2 and their complex [3,5], published as ‘6LZG’ 
in the Worldwide Protein Data Bank (PDB) database 
(www.pdb.org). Using these data, we modelled the struc­
ture of the S1 and ACE2 complex as illustrated in Fig. 1. 

Initially, these structural data were used for com ­
putational analysis of the interaction of RBD on the S1 
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Abstract. Coronavirus SARS­CoV­2 enters the host cell via binding with the angiotensin­converting enzyme 2 (ACE2), and here 
we used computational modelling to study the molecular recognition pattern of this interaction. The fragment of the N­terminal part 
of the enzyme containing amino acids 19–45 was used as the lead peptide in this study. The structure of this peptide was systematically 
modified by successive replacement of its amino acids with alanine, serine, glycine, and phenylalanine. Then docking energies were 
calculated for all these mutant peptides. These docking energies were correlated with physical descriptors, proposed for the modelling 
of peptide–protein interactions, characterizing hydrophilicity and volume­related properties of amino acid side chains. From these 
correlations the corresponding specificity factors were obtained for all amino acid positions, and thus the full description of the 
molecular recognition pattern of the ACE2 α1 domain by the virus S1 protein binding site was obtained. 
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protein with ACE2 and its fragments [6]. That study 
demonstrated effective interaction of the peptides derived 
from the ACE2 structure with the SARS­CoV­2 S1 protein, 
as already a single α1­helix domain peptide that contains 
amino acids 21–55 of the ACE2 N­terminal sequence binds 
with the S1 protein with almost the same effectiveness as 
the full­size protein [6]. It was also revealed that this 
sequence includes 12 amino acid residues of ACE2 that 
seem to interact with the RBD of SARS­CoV­2, whereas 
10 other amino acid residues participating in the virus 
binding process come from other parts of the ACE2 
molecule [6]. Thus, the interaction of the spike protein with 
its receptor site on the ACE2 molecule is clearly focused 
on binding the α1 domain with the S1 protein (Fig. 1). 

Following [6], in our earlier study [7] we mapped the 
α1 domain binding site on the S1 protein using com ­
putational docking analysis; in that study the peptide 
sequence 19–45 of the N­terminal part of ACE2 (STIEEQ 
AKTFLDKFNHEAEDLFYQSS) was truncated from 
both ends, and the docking of 200 peptide fragments at 
the binding site on the S1 protein was analysed. We found 
that the α1 domain sequence can be shortened to a certain 
extent without significant reduction of the docking energy, 
which is ‘good news’ for therapeutic peptide development 
[8]. This conclusion about the influence of peptide length 
was confirmed by results published in [9], where the 
binding of three peptides, also derived from the same 
ACE2 α1 domain and containing 26, 23, and 20 amino 
acids, was computationally investigated with the S1 protein.  

Thereafter, similar docking analysis of peptides derived 
from the α1 domain of ACE2 and containing 23 and 19 
amino acids was reported [10]. These results demonstrated 
that alteration of peptide length from 19 to 23 amino acids 

has practically no effect on the positioning of these 
compounds in the binding site on the S1 protein, although 
the binding effectiveness is somewhat reduced by peptide 
shortening. In conclusion, all these results support the idea 
that short peptides can effectively bind with the S1 protein 
and therefore can be used for developing antiviral drugs. 
To achieve this goal, it seems to be important to improve 
the effectiveness of peptide binding, first and foremost, 
through directed modification of the peptide primary 
structure. Therefore, we continued mapping the S1 binding 
site for ACE2­derived peptides. In this paper we analyse 
the molecular recognition pattern of this interaction 
interface by combining computational docking calculations 
with methods of quantitative structure–activity analysis. 
 
 
METHODS 

 

The input files used for modelling an ACE2 and the 
receptor binding domain of theCoV­2 spike protein S1 
(amino acids from 333 to 527) as well as the complex 
formed between these proteins were built starting from 
data about the spatial structure of these proteins, obtained 
by X­ray structure analysis [3,5] and listed as ‘6LZG’ in 
the PDB database (www.pdb.org). 

The peptides used for the docking study were derived 
proceeding from the α1 domain of the ACE2 protein. The lead 
peptide sequence STIEEQAKTFLDKFNHEAEDLFYQSSL 
was systematically modified by gradually altering all amino 
acids by alanine, serine, glycine, and phenylalanine. Thus, 
the recognized procedure of alanine scanning [11] was 
extended to describe binding properties of mutants of serine, 
glycine, and phenylalanine by using computational data. 
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Fig. 1. Computer modelling of the complex formed between the SARS­CoV­2 spike protein S1  (right molecule, cyan) and human 
angiotensin­converting enzyme 2 (left molecule, green) by using structure data listed at ‘6LZG’ in the PDB database (www.pdb.org). 



The conventional software for ligand docking AutoDock 
Vina version 1.1.2 [12] and molecular dynamics (MD) simu ­
lation GROMACS version 4.6.1 package [13] were used. The 
mutated peptides were constructed by PyMOL version 1.8.0.4 
software package [14]. The graphical represen tation of pro ­
tein structures was made by VMD version 1.9 package [15]. 

The lead peptide was mutated in each position of amino 
acids with conserved main scaffold of the peptide chain. 
The best scoring results of peptide positioning were picked 
for the peptide–S1 complex. The docking energy values 
were calculated and further processed by using con ­
ventional quantitative structure–activity analysis methods. 
The para meters and the procedure of the MD simulations 
were described in detail in our previous work [7]. 

  

 

RESULTS  AND  DISCUSSION 

 

Lead  peptide  docking 

 

The docking of the lead peptide STIEEQAKTFLDKF 
NHEAEDLFYQSSL, which includes amino acids 19–45 
of the ACE2 α1 domain sequence, with the S1 protein was 
modelled computationally in our previous study [7]. The 
structure of this complex is illustrated in Fig. 2. The 
docking energy –12.6 kcal/mol was obtained from these 
calculations. The peptide–protein interaction interface 
includes several amino acids whose involvement in the 
hydrogen bond formation can be suggested from structural 
studies. This list includes from 7 amino acids listed in [16] 

(Q24, D30, E35, E37, D38, Y41, Q42) up to 13 amino 
acids listed in [3] (S19, Q24, T27, F28, D30, K31, H34, 
E35, E37, D38, Y41, Q42, L45).  

Recently one more computational analysis of this 
interaction interface was published [17]; there par ­
ticipation of other ‘contact interactions’ is mentioned in 
addition to hydrogen bonds. The list of contact inter ­
actions includes van der Waals and hydrophobic bonds as 
well as �/� and �/cation interactions. Based on [17], 
formation of hydrogen bonds with participation of amino 
acids Q24, K31, E35, E37, D38, Y41, and Q42 can be 
expected in the case of the lead peptide, while contact 
interactions can be suggested in the case of amino acids 
Q24, T27, D30, K31, H34, D38, Y41, and Q42. As can be 
seen, these lists significantly overlap, demonstrating that 
the actual specificity pattern that governs the interaction 
interface can be rather complex. This is a good justifi ­
cation of the following analysis. 

 
Computational  site­directed  mutagenesis  of  the  lead 

peptide 

 

The contribution of individual amino acid residues into the 
effectiveness of peptide binding was studied by combining 
the site­directed mutagenesis method with computational 
docking analysis as suggested in [11]. Firstly, we made 
consecutive replacement of all amino acids with alanine, 
as the methyl group of this amino acid cannot be involved 
in polar interactions and therefore this method is often used 
for the determination of ‘hot spots’ of the protein–peptide 
interaction interface. Secondly, we also mapped polar and 
hydrophobic properties of the binding site by scanning the 
lead peptide with serine, glycine, and phenylalanine. 
Results of this analysis are summarized in Fig. 3, where 
the docking energies for alanine, serine, glycine, and 
phenyl alanine mutants of the lead peptide are compared. 
As can be seen in Fig. 3, in many cases the docking 
effectiveness of the lead peptide, Edock = –12.6 kcal/mol, 
is not affected by the replacement of the initial amino acid. 
This means that these amino acids are probably not 
involved in the peptide interaction with the S1 protein.  

On the other hand, however, Fig. 3 also reveals 
several hot­spot positions as the alanine scan caused a 
weakening of the peptide binding in the following 
positions: Q24, T27, F28, D30, K31, E35, D38, Y41, and 
L45. Importantly, interaction of all these amino acids 
with the S1 protein has been suggested in structural 
studies cited above. Therefore, it can be concluded that 
the computational docking study describes adequately the 
peptide–protein interactions in the case of the formation 
of the ACE2–S1 complex.  

However, the influence of alanine mutations on the 
docking energy is rather different along the peptide chain; 
moreover, these effects are not similar to the changes 
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Fig. 2. Computer modelling of the complex between the SARS­
CoV­2 spike protein S1 (right molecule, cyan) and the peptide 
STIEEQAKTFLDKFNHEAEDLFYQSS (left molecule, magenta), 
corresponding to the sequence 19–45 of the N­terminal α1 domain 
of the human angiotensin­converting enzyme 2 and serving as the 
main docking partner for virus binding with the host cell. The 
complex structure was built computationally by using the 
molecular dynamics method and structural data listed in the PDB 
database (www.pdb.org) as ‘6LZG’. 



caused by other mutations. This means that the interplay 
of different specificity factors governs, indeed, the binding 
process, as was suggested in [17].  

It is interesting to note that all hot­spot amino acids are 
located on the same side of the spiral structure of the α1 
domain, facing the S1 protein. This situation is illustrated 
in Fig. 4, where mutual positioning of the hot­spot amino 
acids in the α1 domain and its binding site on the S1 
protein are shown.  

 
Molecular  recognition  pattern  

 

The molecular recognition pattern of the peptide binding 
interface can be characterized in terms of structure–
activity relationships, assuming that the contribution of 
each amino acid can be presented as the sum of 

interactions quantified by certain specificity descriptors 
[18]. The possibility of encoding these interactions in 
terms of two orthogonal sets of descriptors, which 
characterize the volume­related (ϖ) and hydrophilicity­
related (η) effects of amino acid side groups [19], 
simplifies this analysis and opens new perspectives for 
converting structural data to the property space. These 
descriptors, listed in Table 1, demonstrate that the 
hydrophilicity parameter η has a negative value for alkyl 
and non­polar groups and a positive value for polar and 
ionic groups, independently of the sign of the net charge 
on the group. The volume descriptors ϖ vary from –4.04 
for glycine, which has the side group of minimal size, up 
to 4.28 in the case of tryptophan, which is the bulkiest.   

It is important to mention that the parameters ϖ are 
well correlated with the conventional scale of the molar 
refractivity (MR) values (R2 = 0.9634), commonly used 
for the characterization of the volume­related properties 
of amino acid side chains [20]. At the same time, the 
correlation between the hydrophilicity parameters η and 
the classical hydrophobicity parameters � [21] is weaker 
(R2= 0.7153); still these values show obvious similari ties.  

The systematic scans of peptide binding properties by 
using alanine, serine, glycine, and phenylalanine together 
with the amino acid in the parent peptide structure 
provide five data points for most amino acid positions. 
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Fig. 4. Mutual positioning of the hot­spot amino acids in the α1 
domain of the human angiotensin­converting enzyme 2 (green) 
and its binding site on the S1 protein (cyan). 

 
Amino acid 

 

 
Volume 

 

 
Hydro-philicity 

 
 A −2.90 −1.03 
 R    2.41   1.31 
 N −0.68   0.79 
 D −0.92   1.23 
 C −1.89   0.15 
 Q   0.36   1.09 
 E   0.16   1.28 
 G −4.04   0.01 
 H   0.83   1.15 
 I   0.51 −1.32 
 L   0.52 −1.40 
 K   0.92   1.23 
 M   0.92 −1.42 
 F   2.22 −1.47 
 P −1.25 −0.64 
 S −2.36   0.38 
 T −1.19   0.28 
 W   4.28 −0.18 
 Y   2.75 −0.18 
 V −0.65 −1.27 

Table 1. Descriptors characterizing volume­related properties 
and hydrophilicity of amino acid side groups. The values were 
compiled from [19] 

   ϖ    η
 Hydrophilicity

 

Fig. 3. Influence of the scanning of the lead peptide sequence 
STIEEQAKTFLDKFNHEAEDLFYQSSL with alanine (red), 
serine (light green), glycine (blue), and phenylalanine (dark green) 
on the docking energy Edock. The docking energy of the lead 
peptide was –12.6 kcal/mol; this level is denoted by the dotted line. 
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This is sufficient for structure–activity correlation using 
the descriptors in Table 1. For example, in the case of 
mutants Q24A, Q24S, Q24G, and Q24F the Edock 
values were –12.0, –12.2, –11.8, and –10.9 kcal/mol, 
respectively. Together with the Edock value –12.6 kcal/mol 
for Q24, the following correlation was obtained: 

 
 Edock = (–11.9 ± 0.22) + (0.06 ± 0.08)ϖ + (–0.49 ± 0.21)η. (1) 

 
This interrelationship describes the influence of the 

amino acid side group on the docking energy in terms of 
two specificity factors, ϖ and η. In this case the volume­
related effects, characterized by ϖ, play no statistically 
relevant role, whereas the docking energy is governed by 
the hydrophilicity (η) of the amino acid side group, 
quantified by the specificity factor –0.49.  

Similar correlations were obtained for all positions of 
the peptide sequence. Therefore, we suggest that these 
data characterize the molecular recognition pattern of the 
binding interface. All results of this analysis are sum ­
marized in Fig. 5. It is important to emphasize that the 
physical meaning of the interactions depends on the 
selection of the descriptor sets. 

Hydrophilicity is revealed in the case of most polar 
amino acids in the lead peptide (Fig. 5). At the same time 
the contribution of this specificity factor varies significantly 
in different positions. On the other hand, there are also 
volume­related effects (see Fig. 5), and these interactions 
are also distributed throughout the peptide. In most cases 
these effects support peptide binding. 
 
Hot  spots  and  the  molecular  recognition  pattern 

 

The location of the hot­spot amino acids in the lead 
peptide was identified by structural studies as described 

above as well as by alanine scan as shown in Fig. 2. In 
summary, this list of amino acids includes S19, Q24, T27, 
D30, K31, E35, E37, D38, Y41, and L45. As Fig. 5 shows, 
these positions are indeed important for peptide binding 
because at least one specificity factor makes a significant 
contribution in these cases. Therefore, the molecular 
recognition pattern provides the same information as other 
approaches. On the other hand, however, the recognition 
pattern characterizes these interactions also quantitatively. 

In this study computational docking energy values 
were used for analysing the peptide–protein interaction 
interface; therefore, the effects of entropy on the rec og ­
nition pattern were not analysed. Irrespective of this draw­ 
back, we believe that the presented results may still be 
useful for further optimization of the peptide structure and 
will enable improving its binding properties. Most interest ­
ingly, already the scan results reveal some point mutations 
that increased the peptide binding effectiveness (Fig. 3). 
 

 

CONCLUSIONS 

 

Docking of 108 peptides derived from the ACE2 binding 
domain sequence (19–45) STIEEQAKTFLDKFNHEAE 
DLFYQSSL with the receptor binding site of the CoV­2 
virus S1 protein was analysed and the molecular recog ­
nition pattern of the peptide–protein interaction interface 
was mapped quantitatively. The studied peptides were 
obtained by systematic scanning of the lead peptide 
sequence with alanine, serine, glycine, and phenylalanine. 
The results revealed that replacement of amino acids in 
the lead peptide reduced its binding effectiveness in 
certain critical positions (Q24, T27, D30, K31, E35, E37, 
D38, Y41, and L45), which agree with the sites where the 
formation of hydrogen bonds and a salt bridge can be 
predicted proceeding from structural data. The scanning 
results were used for correlation analysis of the influence 
of the amino acid side chain structure on peptide binding, 
and the contributions of distinct interactions were 
quantified at each amino acid position. The set of ortho ­
gonal descriptors that characterize volume­related and 
hydrophilic properties of the amino acid side groups was 
used for this analysis. The set of these correlations was used 
to char acterize quantitatively the molecular recognition 
pattern of the peptide binding site on the CoV­2 virus S1 
protein. 
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Fig. 5. Intensity factors of hydrophilicity (red bars) and volume 
effects (blue bars) in different amino acid positions for the binding 
of the lead peptide, STIEEQAKTFLDKFNHEAEDLFYQSSL, 
with the spike protein S1 binding site. The specificity factors 
were calculated by correlating the docking energies for alanine, 
serine, and phenylalanine mutants of the peptide with the cor ­
responding physical descriptors. Standard errors of the specificity 
factors are shown. 
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ACE2  sidumistsenter  viiruse  SARS­CoV­2  teravikvalgul  S1:   

sidumiskoha  spetsiifilisuse  mustri uuring  
 

Aleksei Kuznetsov ja Jaak Järv 
 
SARS­CoV­2 teravikvalgul S1 asuv sidumistsenter seostub raku pinnal asuva retseptorvalguga ACE2, millele järgneb 
viiruse RNA tungimine peremeesrakku. Seetõttu pakub huvi selle sidumistsenri omaduste detailsem uurimine, milleks 
käesolevas töös konstrueeriti retseptorvalgu struktuurist lähtudes peptiidi analoogid ja arvutati nende jaoks dokkimis­
energia väärtused. Saadud tulemustest lähtudes kirjeldati S1 teravikvalgu sidumistsentri spetsiifilisuse mustrit. Uuritavad 
ühendid saadi lähtepeptiidi järjestuse STIEEQAKTFLDKFNHEAEDLFYQSSL skaneerimisel alaniini, seriini, glütsiini 
ja fenüülalaniiniga. Arvutustulemused näitavad, millised aminohapped vastutavad viiruse ja retseptorvalgu seostumise 
eest ning need punktmuteerimise andmed on kooskõlas ACE2–S1 kompleksi struktuuri uuringute tulemustega. Kasutatud 
aminohapete külgrühmade struktuuri ja nende mõju vahelise sõltuvuse analüüs lubab aga sidumiskoha spetiifilisust ka 
kvantitatiivselt kirjeldada. Saadud andmetest lähtudes saab otsida võimalusi peptiidide sidumise efektiivsuse paranda­
miseks, mis on oluline viiruse toimet inhibeerivate peptiidide loomise seisukohast. 
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