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Abstract. Computation of the stabilizing solution pair of a system of nonlinear matrix equations is of great interest in calculating

the Green’s function of nanoparticles. By noting that each solution of the pair might have various sizes, an inversion-free iteration

with dynamical parameters is proposed in this paper. Under proper assumptions the convergence of the algorithm is established,

as well as the bound of the iteration sequence. Preliminary numerical experiments indicate that the dynamically parameterized

inversion-free iteration is very efficient to compute the stabilizing solution pair.
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1. INTRODUCTION

Consider a system of nonlinear matrix equations (SNME){
X +A�Y−αA = In,

Y +B�X−β B = Im
(1)

with X ∈ R
n×n, Y ∈ R

m×m, A,B ∈ R
m×n and 0 < α,β ≤ 1. Such a system has a special application to the

computation of the Green’s function of nanoparticles [1–3], which could be described by a semi-infinite

periodic Hamiltonian system

HB =

⎛
⎜⎜⎜⎜⎝

HP HPL
H �

PL HP HPL

H �
PL HP

. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠

with

HP =

⎛
⎜⎜⎜⎜⎝

Hb1
Hb1b2

H�
b1b2

Hb2

. . .

. . .
. . . Hbl−1bl

H�
bl−1bl

Hbl

⎞
⎟⎟⎟⎟⎠
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and

HPL =

⎛
⎝ . .

.

0

Hblb1

⎞
⎠ .

Here, for t = 1, ..., l, Hbt ∈ R
nt×nt stands for the t-th particle which contains interactions between all or-

bitals within identically adjacent layers and Hbt bt+1
∈R

nt×nt+1 represents the interactions between the nearest

neighbour particles Hbt and Hbt+1
. In particular, Hblbl+1

:= Hblb1
means the interactions between the neigh-

bour particles Hbl and Hb1
. Taking, for example, the period l = 2 (denoted by n1 = n and n2 = m), the

computation of the Green’s function [4,5] then requires determining of the most northwest block matrix of

the inverse of ⎛
⎜⎜⎜⎝

In −Hb1
−Hb1b2

−H�
b1b2

In −Hb2
−Hb2b1

−H�
b2b1

In −Hb1
−Hb1b2

. . .
. . .

. . .

⎞
⎟⎟⎟⎠

and ⎛
⎜⎜⎜⎝

Im −Hb2
−Hb2b1

−H�
b2b1

Im −Hb1
−Hb1b2

−H�
b1b2

Im −Hb2
−Hb2b1

. . .
. . .

. . .

⎞
⎟⎟⎟⎠ ,

which, denoted by Gb1
and Gb2

, respectively, fulfill the equations

Gb1
= (In −Hb1

−Hb1b2
Gb2

H�
b1b2

)−1,

Gb2
= (Im −Hb2

−Hb2b1
Gb1

H�
b2b1

)−1.
(2)

If only the interactive effects between different adjacent particles are considered (i.e. Hb1
= 0 and Hb2

= 0)

by setting

X = G−1
b1
, A = H�

b1b2
, Y = G−1

b2
, B = H�

b2b1
,

the equations (2) constitute a system of nonlinear matrix equations (1) with α = β = 1.

It is obvious in this case that the system (1) could be uniformed as

Z +C�Z−1C = In+m (3)

by incorporating matrices

C =

(
0 B
A 0

)
∈ R

(n+m)×(n+m), Z =

(
X 0

0 Y

)
∈ R

(n+m)×(n+m).

What physicists interested in real applications seek is the stabilizing solution (X ,Y ) satisfying ρ(X−1B)< 1

and ρ(Y−1A) < 1 with X and Y positive definite, the symbol ρ(·) being here the spectral radius. The

existence of the stabilizing solution for (3) could be widely studied [4–9]. For the generalized system (1),

readers are referred to [10–13] and their reference on the existence of a stabilizing solution.

Different iterative methods have been extensively applied to compute the stabilizing solution of the

uniformed Eq. (3). Engwerda et. al. employed a simple fixed-point iteration [7], which was subsequently

modified to an inversion-free version by Zhan [14]. Guo and Lancaster [15] accelerated the inversion-

free version and presented a detailed convergence analysis. Other inversion-free iteration formats could be

referred to [11,16] and a version of a convergent factor was added by [17]. Huang et. al [10] applied the

inversion-free scheme into SNME (1) and devised two kinds of fixed-point iterations. For iteration methods

with higher convergence of computing (3) including cyclic reduction, doubling algorithm, and Newton

.

Gb1
= (In −Hb1

−Hb1b2
Gb2

H�
b1b2

)−1,
1



N. Dong et al.: A dynamically parameterized inversion-free iteration for SNME 313

method, see [8,18–22] as well as references therein. In this paper, by noting that X and Y might be of

different sizes and the varying parameters (as iteration progresses) are helpful to accelerate the convergence,

a dynamically parameterized inversion-free iteration is proposed. Under proper conditions, the convergence

of the proposed algorithm is constructed and numerical experiments illustrate its effectiveness.

Throughout this paper, it is written A≥B (A>B) for symmetric matrices A and B if A−B is a symmetric

positive semidefinite (definite) matrix. ρ(A) denotes here the spectral radius of the matrix A. Several lemmas

are required in this paper.

Lemma 1 (Parodi [23]). If A > B > 0 (or A ≥ B > 0), then Aα > Bα > 0 (or Aα ≥ Bα > 0) for all 0 < α ≤ 1,
and 0 < Aα < Bα (or 0 < Aα ≤ Bα ) for all −1 ≤ α < 0.

Lemma 2 (Zhan [14]). If A and B are symmetric matrices of the same dimension with B > 0, then ABA+
B−1 ≥ 2A.

Lemma 3 (Bhatia [24]). If 0 < a ≤ 1, and A and B are positive definite matrices of the same dimension with
A, B ≥ bI > 0 and b is some positive constant, then

‖Aa −Ba‖ ≤ aba−1‖A−B‖, ‖A−a −B−a‖ ≤ ab−(a+1)‖A−B‖

with ‖ · ‖ being some matrix norm.

The rest of this paper is organized as follows. Several inversion-free iterations are reviewed and the

dynamically parameterized inversion-free iteration is proposed in Section 2. Under proper assumptions, the

convergence of the presented method is constructed in Section 3. Section 4 is devoted to the numerical

experiments to show the effectiveness of the dynamically parameterized inversion-free iteration and Section

5 presents the conclusion.

2. DYNAMICALLY PARAMETERIZED INVERSION-FREE ITERATION

The simplest fixed-point iterative algorithm for solving NME (3) is

Zk+1 = I −C�Z−1
k C, Z0 = I,

and its convergence was given in [7]. Zhan suggested an inversion-free version [14] with Z0 = W0 = I via

replacing Z−1
k with Wk {

Zk+1 = I −C�WkC,
Wk+1 = 2Wk −WkZkWk.

To accelerate the convergence, Guo and Lancaster [15] set the initial as 0 < W0 ≤ I, X0 = I and employed

the new-derived Wk as {
Wk+1 = 2Wk −WkZkWk,
Zk+1 = I −C�Wk+1C,

which could be further rewritten in a form of Wk as

Wk+1 = 2Wk −Wk(I −C�WkC)Wk. (4)

Another inversion-free iteration proposed by El-Sayed and Al-Dbiban [16] is

{
Wk+1 =Wk −ZkWk + I,
Zk+1 = I −C�Wk+1C

or

{
Wk+1 =Wk −WkZk + I,
Zk+1 = I −C�Wk+1C
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with W0 = Z0 = I. Similarly, this format could be implemented only with Wk as

Wk+1 = I +
1

2
(WkC�WkC+C�WkAWk). (5)

Huang et. al [10] applied the above formats (4) and (5) in SNME (1) and devised the iterations

{
Φk+1 = 2Φk −Φk(I −A�Ψα

k A)Φk,

Ψk+1 = 2Ψk −Ψk(I −B�Φβ
k+1B)Ψk

(6)

and {
Φk+1 = I + 1

2
(ΦkA�Ψα

k A+A�Ψα
k AΦk),

Ψk+1 = I + 1
2
(ΨkA�Φβ

k+1A+A�Φβ
k+1AΨk),

(7)

respectively, with Φ0 = Ψ0 = I. They also constructed the following monotone convergence.

Theorem 1. Let (X ,Y ) be the stabilizing solution pair of SNME (1). Then the sequence {Φk,Ψk} generated
by the iteration (6) with Φ0 = Ψ0 = I is well defined and satisfies Φ0 < Φ1 ≤ Φ2 ≤ ...≤ Φk ≤ ...≤ Φ, Ψ0 <
Ψ1 ≤ Ψ2 ≤ ...≤ Ψk ≤ ...≤ Ψ and

lim
k→∞

Φk = Φ, lim
k→∞

Ψk = Ψ

with Φ = X−1 and Ψ = Y−1.

Essentially, the two above inversion-free iterations are different fixed-point formats for the system

{
Φ+ΦA�ΨαAΦ = Φ2,

Ψ+ΨB�Φβ BΨ = Ψ2.
(8)

Note that the stabilizing solution pair (Φ,Ψ) might have various sizes and a dynamical factor might be

helpful to enhance the convergence rate. We generalize the iteration (6) to the scheme

{
Φk+1 = (1+ γk)Φk − γkΦk(I −A�Ψα

k A)Φk,

Ψk+1 = (1+δk)Ψk −δkΨk(I −B�Φβ
k+1B)Ψk

(9)

with Φ0 = Ψ0 = I, γk > 0 and δk > 0, referred to as the Dynamically Parameterized Inversion-free Iteration

(DPII).

Obviously, DPII (9) reduces to the iteration (6) when γk = δk = 1 and the iteration sequence (Φk,Ψk) will

be monotonically convergent as dictated by Theorem 1. Unfortunately, if both γk and δk are merely positively

selected, the monotonicity, even the convergence of the iteration sequence (Φk,Ψk) might not occur. It will

be seen from the analysis of the convergence in the next section that the appropriate γk and δk are supposed

to have a limit of 1. It means, if setting γk = 1+ εk and δk = 1+ ε̄k, then limk→∞εk = 0, limk→∞εk = 0.

This facilitates a required assumption about εi and ε̄i to obtain the bound and the convergence of the DPII

sequence.

Lemma 4. Let (Φk,Ψk) be the sequence generated by DPII for k ≥ 0. Let (Φ,Ψ) be the solution of the
system (8). Suppose for any k ≥ 0 that ∑k

i=0 O(εi) and ∑k
i=0 O(ε̄i) are sufficiently small, then Φ1 ≤Φ+O(ε0),

Ψ1 ≤ Ψ+O(ε0)+O(ε̄0) and for k ≥ 2

Φk ≤ Φ+∑k−1
i=0 O(εi)+∑k−2

i=0 O(ε̄i), Ψk ≤ Ψ+∑k−1
i=0 O(εi)+∑k−1

i=0 O(ε̄i),

where O(εi) and O(ε̄i) stand for some symmetric matrix of the order εi and ε̄i, respectively.
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Proof. Obviously, the system (8) has a solution pair satisfying Φ > I and Ψ > I by Theorem 1. Starting

with Φ0 = Ψ0 = I, it follows from the DPII iteration (9), Lemma 1 and Lemma 2 that

Φ1 = I + γ0A�A
= 2I − (I −A�A)+O(ε0)
≤ (I −A�A)−1 +O(ε0)
< (I −A�ΨαA)−1 +O(ε0)
= Φ+O(ε0)

and

Ψ1 = I +δ0B�Φβ
1 B

≤ I +δ0B�(Φ+O(ε0))
β B

= I +δ0B�Φβ B+O(ε0)

= 2I − (I −B�Ψβ B)+O(ε0)+O(ε̄0)
= Ψ+O(ε0)+O(ε̄0),

where we use a fact (1+ ε)a = 1+aε +o(ε) with sufficient small ε and a > 0.

Suppose the conclusion holds true for the integer j, i.e.

Φ j ≤ Φ+∑ j−1
i=0 O(εi)+∑ j−2

i=0 O(ε̄i), Ψ j ≤ Ψ+∑ j−1
i=0 O(εi)+∑ j−1

i=0 O(ε̄i).

It follows from the DPII iteration and the assumption that

Φ j+1 ≤ (1+ γ j)Φ j − γ jΦ j

(
I −A�

(
Ψ+∑ j−1

i=0 O(εi)+∑ j−1
i=0 O(ε̄i)

)α
A
)

Φ j

= (1+ γ j)Φ j − γ jΦ j(I −A�ΨαA)Φ j +∑ j−1
i=0 O(εi)+∑ j−1

i=0 O(ε̄i)

= (1− γ j)Φ j + γ j(2Φ j −Φ jΦ−1Φ j)+∑ j−1
i=0 O(εi)+∑ j−1

i=0 O(ε̄i)

≤ Φ+ ε j(Φ−Φ j)+∑ j−1
i=0 O(εi)+∑ j−1

i=0 O(ε̄i)

= Φ+∑ j
i=0 O(εi)+∑ j−1

i=0 O(ε̄i)

and

Ψ j+1 ≤ (1+δ j)Ψ j −δ jΨ j

(
I −B�

(
Φ+∑ j

i=0 O(εi)+∑ j−1
i=0 O(ε̄i)

)β
B
)

Ψ j

= (1+δ j)Ψ j −δ jΨ j(I −B�Φβ B)Ψ j +∑ j
i=0 O(εi)+∑ j−1

i=0 O(ε̄i)

= (1−δ j)Ψ j +δ j(2Ψ j −Ψ jΨ−1Ψ j)+∑ j
i=0 O(εi)+∑ j−1

i=0 O(ε̄i)

≤ Ψ+ ε̄ j(Ψ−Ψ j)+∑ j
i=0 O(εi)+∑ j−1

i=0 O(ε̄i)

= Ψ+∑ j
i=0 O(εi)+∑ j

i=0 O(ε̄i).

The proof is completed by induction.

The above theorem implies that the sequences {Φk} and {Φk} are bounded above if ∑∞
i=0 O(εi)< ∞ and

∑∞
i=0 O(ε̄i)< ∞. Moreover, we have the following corollary.

Corollary 1. For k ≥ 0, both I −A�Ψα
k A and I −B�Φβ

k B are positive definite.

Proof. We only show I −A�Ψα
k A is positive definite and the proof for I −B�Φβ

k B is similar. In fact, it

follows from Lemma 4 that

I −A�Ψα
k A > I −A�

(
Ψ+∑k−1

i=0 O(εi)+∑k−1
i=0 O(ε̄i)

)α
A

= I −A�ΨαA+∑k−1
i=0 O(εi)+∑k−1

i=0 O(ε̄i)

= Φ−1 +∑k−1
i=0 O(εi)+∑k−1

i=0 O(ε̄i).

Since ∑k−1
i=0 O(εi)+∑k−1

i=0 O(ε̄i) is sufficiently small by the assumption and Φ is positive definite, I−A�Ψα
k A

is positive definite.

≤ I +δ0B�(Φ+O(ε0))
β B

= I +δ0B�Φβ B+O(ε0)

= 2I − (I −B�Ψβ B)+O(ε0)+O(ε̄0)
= Ψ+O(ε0)+O(ε̄0),

( ( ) )
= (1+ γ j)Φ j − γ jΦ j(I −A�ΨαA)Φ j +∑ j−1

i=0 O(εi)+∑ j−1
i=0 O(ε̄i)

= (1− γ j)Φ j + γ j(2Φ j −Φ jΦ−1Φ j)+∑ j−1
i=0 O(εi)+∑ j−1

i=0 O(ε̄i)

≤ Φ+ ε j(Φ−Φ j)+∑ j−1
i=0 O(εi)+∑ j−1

i=0 O(ε̄i)

= Φ+∑ j
i=0 O(εi)+∑ j−1

i=0 O(ε̄i)

( ( ) )
= (1+δ j)Ψ j −δ jΨ j(I −B�Φβ B)Ψ j +∑ j

i=0 O(εi)+∑ j−1
i=0 O(ε̄i)

= (1−δ j)Ψ j +δ j(2Ψ j −Ψ jΨ−1Ψ j)+∑ j
i=0 O(εi)+∑ j−1

i=0 O(ε̄i)

≤ Ψ+ ε̄ j(Ψ−Ψ j)+∑ j
i=0 O(εi)+∑ j−1

i=0 O(ε̄i)

= Ψ+∑ j
i=0 O(εi)+∑ j

i=0 O(ε̄i).

( )
= I −A�ΨαA+∑k−1

i=0 O(εi)+∑k−1
i=0 O(ε̄i)

= Φ−1 +∑k−1
i=0 O(εi)+∑k−1

i=0 O(ε̄i).
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3. CONVERGENCE ANALYSIS

To show the convergence of DPII, a lemma is first required.

Lemma 5. Let (Φk,Ψk) be the sequence generated by DPII for k ≥ 0. Then, under the assumptions of
Lemma 4 we have Φ2 > Φ1 +O(ε0)+O(ε̄0) and Ψ2 > Ψ1 +O(ε0)+O(ε̄0) and for k ≥ 2

Φk+1 > Φk +∑k−1
i=0 O(εi)+∑k−2

i=0 O(ε̄i),

Ψk+1 > Ψk +∑k−1
i=0 O(εi)+∑k−1

i=0 O(ε̄i),

where O(ε0) and O(ε̄0) stand for some symmetric matrix of the order ε0 and ε̄0, respectively.

Proof. Starting with Φ0 = Ψ0 = I, it follows from DPII (9) that

Φ1 = I +(1+ ε0)A�A > Φ0 +O(ε0),

Ψ1 = I +(1+ ε̄0)B�Φβ
1 B > Ψ0 +O(ε0)+O(ε̄0).

For sufficiently small O(ε0)+O(ε̄0), it has

Φ1 = γ0

(
2Φ0 −Φ0(I −A�Ψα

0 A)Φ0

)
− ε0Φ0

≤ γ0(I −A�Ψα
0 A)−1 +O(ε0)

< γ0

(
I −A�Ψα

1 A+O(ε0)+O(ε̄0)
)−1

+O(ε0)

= γ0(I −A�Ψα
1 A)−1 +O(ε0)+O(ε̄0).

Since Ψ1 has an upper bound by Lemma 4, then Φ1 < (I −A�Ψα
1 A)−1 +O(ε0)+O(ε̄0) and thus

Φ−1
1 >

(
(I −A�Ψα

1 A)−1 +O(ε0)+O(ε̄0)
)−1

= I −A�Ψα
1 A+O(ε0)+O(ε̄0).

Therefore,

Φ2 −Φ1 = γ1Φ1

(
Φ−1

1 − (I −A�Ψα
1 A)

)
Φ1

> γ1Φ1

(
O(ε0)+O(ε̄0)

)
Φ1

= O(ε0)+O(ε̄0).

Analogously, it follows from DPII (9) again that

Ψ1 = δ0

(
2Ψ0 −Ψ0(I −B�Φβ

1 B)Ψ0

)
− ε̄0Ψ0,

≤ δ0(I −B�Φβ
1 B)−1 +O(ε̄0)

< δ0

(
I −B�Φβ

2 B+O(ε0)+O(ε̄0)
)−1

+O(ε̄0)

= δ0(I −B�Φβ
2 B)−1 +O(ε0)+O(ε̄0).

As Φ2 is bounded above by Lemma 4, then Ψ1 < (I −B�Φβ
2 B)−1 +O(ε0)+O(ε̄0) and thus

Ψ−1
1 >

(
(I −B�Φβ

2 B)−1 +O(ε0)+O(ε̄0)
)−1

= I −B�Φβ
2 B+O(ε0)+O(ε̄0).

( )
≤ δ0(I −B�Φβ

1 B)−1 +O(ε̄0)

< δ0

(
I −B�Φβ

2 B+O(ε0)+O(ε̄0)
)−1

+O(ε̄0)

= δ0(I −B�Φβ
2 B)−1 +O(ε0)+O(ε̄0).

( )
= I −B�Φβ

2 B+O(ε0)+O(ε̄0).

> γ1Φ1

(
O(ε0)+O(ε̄0)

)
Φ1

= O(ε0)+O(ε̄0).
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So,

Ψ2 −Ψ1 = δ1Ψ1

(
Ψ−1

1 − (I −B�Φ2B)
)

Ψ1

> δ1Ψ1

(
O(ε0)+O(ε̄0)

)
Ψ1

= O(ε0)+O(ε̄0).

Following the above process and noting that I −A�Ψα
2 A is nonsingular from Corollary 1, one can simi-

larly show

Φ2 > Φ1 +∑1
j=0 O(ε j)+O(ε̄0),

Ψ2 > Ψ1 +∑1
j=0 O(ε j)+∑1

j=0 O(ε̄ j).

Now suppose the conclusion holds true for k = i, i.e.

Φi+1 > Φi +∑i−1
j=0 O(ε j)+∑i−2

j=0 O(ε̄ j),

Ψi+1 > Ψi +∑i−1
j=0 O(ε j)+∑i−1

j=0 O(ε̄ j).

It follows from Corollary 1 that I −A�Ψα
i+1A is nonsingular and thus

Φi+1 = γi

(
2Φi −Φi(I −A�Ψα

i A)Φi

)
− εiΦi

< γi

(
I −A�

(
Ψi+1 +∑i−1

j=0 O(ε j)+∑i−1
j=0 O(ε̄ j)

)α
A
)−1

+O(εi)

< γi(I −A�Ψα
i+1A)−1 +∑i

j=0 O(ε j)+∑i−1
j=0 O(ε̄ j).

Then Φ−1
i+1 > I −A�Ψα

i+1A+∑i
j=0 O(ε j)+∑i−1

j=0 O(ε̄ j), which implies

Φi+2 −Φi+1 = γi+1Φi+1

(
Φ−1

i+1 − (I −A�Ψα
i+1A)

)
Φi+1

> γi+1Φi+1

(
∑i

j=0 O(ε j)+∑i−1
j=0 O(ε̄ j)

)
Φi+1.

Note that Φi+1 is bounded above, then Φi+2 >Φi+1+∑i
j=0 O(ε j)+∑i−1

j=0 O(ε̄ j). Repeating the above process

for Ψi+1 and using the induction assumption, it is not difficult to show

Ψ−1
i+1 > I −B�Φβ

i+2B+∑i
j=0 O(ε j)+∑i

j=0 O(ε̄ j).

Then one has

Ψi+2 −Ψi+1 = δi+1Ψi+1

(
Ψ−1

i+1 − (I −B�Φβ
i+2B)

)
Ψi+1

> δi+1Ψi+1

(
∑i

j=0 O(ε j)+∑i
j=0 O(ε̄ j)

)
Ψi+1

= ∑i
j=0 O(ε j)+∑i

j=0 O(ε̄ j),

completing the proof by induction.

Theorem 2. Let (Φk,Ψk) be the sequence generated by DPII (9) for k ≥ 0. Let (Φ,Ψ) be the symmetric
positive solution pair of the system (8). If ‖ΨαA‖‖Φβ B‖ are small enough and the selected γk and δk
such that ‖I − γkΦ−1Φk‖ and ‖I − δkΨ−1Ψk‖ are sufficiently small, then the sequence (Φk,Ψk) of DPII is
convergent to (Φ,Ψ).

( )
> δ1Ψ1

(
O(ε0)+O(ε̄0)

)
Ψ1

= O(ε0)+O(ε̄0).

( )
< γi

(
I −A�

(
Ψi+1 +∑i−1

j=0 O(ε j)+∑i−1
j=0 O(ε̄ j)

)α
A
)−1

+O(εi)

< γi(I −A�Ψα
i+1A)−1 +∑i

j=0 O(ε j)+∑i−1
j=0 O(ε̄ j).

> γi+1Φi+1

(
∑i

j=0 O(ε j)+∑i−1
j=0 O(ε̄ j)

)
Φi+1.

( )
> δi+1Ψi+1

(
∑i

j=0 O(ε j)+∑i
j=0 O(ε̄ j)

)
Ψi+1

= ∑i
j=0 O(ε j)+∑i

j=0 O(ε̄ j),
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Proof. For each k, it follows from Lemma 3 and Lemma 5 that there exits ak > 0 and bk > 0 such that

‖Ψ−αΨα
k Ψ−α −Ψ−α‖ ≤ αaα−1

k ‖Ψ−1ΨkΨ−1 −Ψ−1‖,
‖Φ−β Φβ

k Φ−β −Φ−β‖ ≤ βbβ−1
k ‖Φ−1ΦkΦ−1 −Φ−1‖.

From the DPII format, one has

‖Φ−1Φk+1Φ−1 −Φ−1‖
= ‖(1+ γk)Φ−1ΦkΦ−1 −Φ−1 − γkΦ−1Φk(Φ−1 +A�ΨαA−A�Ψα

k A)ΦkΦ−1‖
= ‖(I − γkΦ−1Φk)(Φ−1ΦkΦ−1 −Φ−1)+ γkΦ−1ΦkA�(Ψα

k −Ψα)AΦkΦ−1‖
≤ ‖I − γkΦ−1Φk‖ ‖Φ−1ΦkΦ−1 −Φ−1‖+αγkaα−1

k ‖Φ−1Φk‖2‖‖ΨαA‖2

·‖Ψ−1ΨkΨ−1 −Ψ−1‖.
Similarly,

‖Ψ−1Ψk+1Ψ−1 −Ψ−1‖
≤ ‖I −δkΨ−1Ψk‖ ‖Ψ−1ΨkΨ−1 −Ψ−1‖+βδkbβ−1

k ‖Ψ−1Ψk‖2‖Φβ B‖2

·‖Φ−1Φk+1Φ−1 −Φ−1‖
=
(

αβγkδkaα−1
k bβ−1

k ‖Φ−1Φk‖2‖Ψ−1Ψk‖2‖ΦαA‖2‖Ψβ B‖2 +‖I −δkΨ−1Ψk‖
)

·‖Ψ−1ΨkΨ−1 −Ψ−1‖
+ βδkbβ−1

k ‖I − γkΦ−1Φk‖‖Ψ−1Ψk‖2‖Φβ B‖2 ‖Φ−1ΦkΦ−1 −Φ−1‖.
Combining the above two inequalities yields(‖Φ−1Φk+1Φ−1 −Φ−1‖

‖Ψ−1Ψk+1Ψ−1 −Ψ−1‖
)
≤ Mk

(‖Φ−1ΦkΦ−1 −Φ−1‖
‖Ψ−1ΨkΨ−1 −Ψ−1‖

)

with Mk = (Mi j
k ), i, j = 1,2 and thus

M11
k = ‖I − γkΦ−1Φk‖,

M12
k = αγkaα−1

k ‖Φ−1Φk‖2‖ΨαA‖2,

M21
k = βδkbβ−1

k ‖I − γkΦ−1Φk‖‖Ψ−1Ψk‖2‖Φβ B‖2,

M22
k = αβγkδkaα−1

k bβ−1
k ‖Φ−1Φk‖2‖Ψ−1Ψk‖2‖ΦαA‖2‖Ψβ B‖2

+‖I −δkΨ−1Ψk‖.

Since Φk and Ψk are bounded above, if ‖ΦαA‖‖Ψβ B‖ is small enough and the selected γk and δk are such

that ‖I−γkΦ−1Φk‖ and ‖I−δkΨ−1Ψk‖ are sufficiently small, one has ρ(Mk)< 1, showing that the sequence

(Φk,Ψk) of DPII is convergent to (Φ,Ψ).

Remark. (i). The condition on small ‖ΦαA‖‖Ψβ B‖ for the convergence of DPII is similar to that (i.e.,

small ‖Z−1C‖) for the convergence of the fixed-point iteration in the uniformed Eq. (3) [4,5,14,18]. The

smaller than 1, the faster the convergence of iteration. The choice of γk and δk is another factor affecting the

convergence rate. It is seen that γk and δk are supposed to have the limit 1 when iteration converges, i.e., the

smaller are ‖I − γkΦ−1Φk‖ and ‖I −δkΨ−1Ψk‖, the faster is the convergence of DPII.

(ii). The best optimal parameters γk and δk might not be obtained as Φ and Ψ are unavailable before

iterations. There are several alternatives to an approximation: (1) γk = ρ(Φ−1
k Φk−1) and δk = ρ(Ψ−1

k Ψk−1);

(2) γk = ‖Φk−1‖/‖Φk‖ and δk = ‖Ψk−1‖/‖Ψk‖; (3) γk = ‖Φ−1
k Φk−1‖ and δk = ‖Ψ−1

k Ψk−1‖. As the compu-

tation of spectral radius in (1) is more expensive and the strategy (2) is observed to be prone to divergence

when it iterates, the strategy (3) is preferred in our experiments where a conservative rule is selected, i.e.,

γk = min{max{1,‖Φ−1
k Φk−1‖},ζ1} and δk = min{max{1,‖Ψ−1

k Ψk−1‖},ζ2} with ζ1 and ζ2 a little greater

than 1.

+ βδkbβ−1
k ‖I − γkΦ−1Φk‖‖Ψ−1Ψk‖2‖Φβ B‖2 ‖Φ−1ΦkΦ−1 −Φ−1‖.

+‖I −δkΨ−1Ψk‖.



4. NUMERICAL EXPERIMENTS

In this section, the effectiveness of the developed DPII is demonstrated for computing the stabilizing solution

pair. The numerical experiments reported in [10] indicate that the iteration (6) (denoted here by IFI) has

better performances than the iteration (7). So, the numerical comparison was merely conducted between

DPII and the inversion-free iteration (IFI) on a PC with Intel i3-3240 3.4GHz processor and 8GB RAM,

where both algorithms were coded by MATLAB 2014. Moreover, they were terminated when the relative

residual satisfied ‖Resx‖+‖Resy‖< tol with

Resx =
‖Φ−1

k +A�Ψα
k A− In‖

‖Φ−1
k | +‖A‖2‖Ψα

k ‖‖In‖
, Resy =

‖Ψ−1
k +B�Φβ

k B− Im‖
‖Ψ−1

k ‖+‖B‖2‖Φβ
k ‖‖Im‖

and the tolerance tol = 10−12. We employed ζ1 = ζ2 = 1.5 in the strategy (3) and recorded the iteration

number (It), iteration time (CPU), and the relative residual (Resx for the first equation and Resy for the

second equation in the system) in tables when the algorithms terminated. In particular, the obtained relative

residuals at each iteration were plotted as figures of residual history.

Example 1. This example is obtained from Example 2 in [10]. Consider SNME (1) with

A =
1

10

⎛
⎜⎜⎝

0 2 1 1

2 4 0 0

1 0 4 2

1 0 2 0

⎞
⎟⎟⎠ , B =

1

10

⎛
⎜⎜⎝

1 2 1 2

2 0 0 0

1 0 0 1

2 0 1 0

⎞
⎟⎟⎠

and α = 0.95, β = 0.9. When both algorithms are terminated, it is seen from Table 1 that DPII is able to

attain the prescribed accuracy with fewer iterations than IFI did. The residual history in Fig. 1 also revealed

that the residual level of DPII (red line) was nearly always below that of IFI (blue line) at each iteration,

showing that DPII tended to arrive at a lower residual level.

Example 2. This example is obtained from Example 1 in [10] with proper modification to various dimen-

sions of A and B. Consider SNME (1) with A = Q−1/2
1 ÃQ−1/2

2 ∈ R
r1×r2 , B = Q−1/2

2 B̃Q−1/2
1 ∈ R

r2×r1 , where

Q1 = I + ÃÃ� ∈ R
r1×r1 , Q2 = I + B̃�B̃ ∈ R

r2×r2 , and

(Ã)i j =
4

i+ j−1
∈ R

r1×r2 , (B̃)i j =
1

i+ j−1
∈ R

r1×r2 .

Positive constants α = 0.9, β = 0.9 as well as the dimension r1 = 10 and r2 = 100 were employed to run

IFI and DPII. Both algorithms stopped regularly and were able to derive the stabilizing solution pair. From

the numerical results listed in Table 2, one can see that DPII attained the prescribed residual level within

fewer iterations and less CPU time.

It is also interesting to observe from the residual history (i.e., Fig. 2) that the residual level of DPII

decreased slower than that of IFI at the first 9 iterations. However, it dropped much lower than IFI did for

the rest of the iterations.

Table 1. Numerical results for Example 1

Alg It. CPU Resx Resy

IFI 10 0.006 5.12e-13 8.95e-17

DPII 9 0.006 2.49e-13 1.01e-17
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Fig. 1. Residual history for Example 1.

Table 2. Numerical results for Example 2

Alg It. CPU Resx Resy

IFI 23 0.445 5.54e-13 1.64e-16

DPII 20 0.412 7.08e-13 2.43e-16
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DPII resy

Fig. 2. Residual history for Example 2.
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Table 3. Numerical results for Example 3

Alg It. CPU Resx Resy

IFI 13 0.259 3.67e-13 1.21e-16

DPII 12 0.234 2.95e-13 2.71e-16

1 2 3 4 5 6 7 8 9 10 11 12
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IFI resx
DPII resx
IFI resy
DPII resy

Fig. 3. Residual history for Example 3.

Example 3. Consider SNME with random-generated matrices Ra ∈ R
r1×r2 , Rb ∈ R

r1×r2 and r1 = 10, r2 =
100. Set Ã = 0.1∗Ra, B̃ = 0.1∗Rb and construct Q1, Q2, A and B as in Example 2 but α = β = 1, yielding

A =

⎛
⎜⎝

0.01167 . . . −0.02098
...

. . .
...

0.0358 . . . −0.02427

⎞
⎟⎠ , B =

⎛
⎜⎝
−0.0060 . . . −0.0031

...
. . .

...

0.00751 . . . 0.0149

⎞
⎟⎠.

Both algorithms were run and the derived results recorded in Table 3, which indicates that DPII cost fewer

iterations and less CPU time to arrive at the prescribed residual level. In addition, it can be seen from the

residual history in Fig. 3 that the residual line of DPII is inclined to lie below that of IFI, except for the last

several steps when computing “Resy”.

5. CONCLUSIONS

A dynamically parameterized inversion-free iteration (DPII) is proposed in this paper for computing the

stabilizing solution pair of a system of nonlinear matrix equations. The convergence of DPII is constructed

under proper assumptions. Several strategies of selecting dynamical parameters are presented and the nu-

merical experiments show that DPII is able to attain the prescribed residual level within fewer iterations and

less CPU time than the existing inversion-free iterations. For future line of research, the choice of the most

optimal dynamical parameters deserves more consideration.
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1

Dünaamiliselt parametriseeritud inversioonivaba iteratsioon mittelineaarse matriitsi
võrrandi süsteemi jaoks

Ning Dong, Bo Yu ja Zhaoyun Meng

Mittelineaarse süsteemi stabiliseerimislahenduste paari arvutamise maatriksvõrrandid pakuvad reaalsetes

rakendustes suurt huvi. Märkides, et paari kõik lahendused võivad olla erineva suurusega, on käesolevas ar-

tiklis välja pakutud dünaamiliste parameetritega inversioonivaba iteratsioon. Õigete eelduste korral tehakse

kindlaks algoritmi lähenemine ja iteratsioonijärjestuse seotus. Esialgsed arvkatsed näitavad, et dünaamiliselt

parametriseeritud inversioonivaba iteratsiooni abil on väga tõhus välja arvutada stabiliseeriva lahuse paar.
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