
1. INTRODUCTION
1

The healthcare industry is one of the largest service­oriented

sectors in India in terms of revenue and employment. Health

expenditure spent by the public sector is also on the rise.

Deloitte Touche Tohmatsu India has forecasted that the

Indian healthcare industry, worth about US$ 100 billion, is

expected to rise at a CAGR of 23 per cent to US$ 280 billion

by 2020 with increased digital adoption. The healthcare

market can increase threefold to US$ 372 billion by 2022

[1]. So, government and healthcare institutions are working

towards the innovative ways of delivering health care

services efficiently with easing the payment methods. Cloud

computing offers best solutions to address these challenges

through unlimited, on­demand services anytime, anywhere.

Cloud­based healthcare solutions also help hospitals and

health centres to decrease their investments in infrastructure

and also decrease maintenance costs. Health cloud environ ­

ment can be extended (scaled up) by adding resources (like

servers, storage) if the demand is increased or the resources

can be maintained at the same level or revoked if the demand

is lower (scaled­down), to fit a dynamic workload. Health ­

care solutions built over cloud can also have inbuilt

mechanisms like disaster recovery and redundancy to

mitigate the failures and reduce the impact of business

downtime. The health cloud acts as a central data repository

through which efficient access and information sharing is

achieved.
There are challenges that come along with the benefits

of cloud computing. As the patient’s data are sensitive

when moved to the cloud, the security and privacy of the

patient are in question. Privacy, in this paper, refers to the

Proceedings of the Estonian Academy of Sciences,
2020, 69, 3, 266–276

https://doi.org/10.3176/proc.2020.3.09

Available online at www.eap.ee/proceedings

Secure e­health cloud framework for patients’ EHR storage and sharing

for Indian Government healthcare model

Indra Priyadharshini Sa* and Vigilson Prem Mb

a Department of Computer Science and Engineering, R.M.K. College of Engineering and Technology, R.S.M. Nagar, Puduvoyal,
601206 Tiruvallur District, India
b Department of Computer Science and Engineering, R.M.D. Engineering College, R.S.M. Nagar, Kavaraipettai, 601206 Tiruvallur
District, India

Received 3 February 2020, accepted 28 March 2020, available online 16 July 2020

© 2020 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution­
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by­nc/4.0/).

Abstract. Medical field is experiencing a huge paradigm shift from traditional healthcare model to electronic healthcare model.
Cloud computing facilitates healthcare industry to provide continuous, on­demand services anytime, anywhere. Cloud computing
facilitates management but it is also challenging to provide privacy and security in cloud computing. In this paper we propose a
secure, privacy­preserving health cloud which allows data exchange between hospitals, healthcare centres, doctors and patients. To
accomplish security and privacy, we implement homomorphic encryption (HE), which allows computations to be carried out on
encrypted data without even decrypting them. To achieve secure sharing of data among authorized entities, proxy re­encryption
(PRE) scheme is combined with homomorphic encryption. Our secure e­health cloud framework achieves performance improvement
compared to the Paillier cryptosystem.

Key words: health cloud, homomorphic encryption, primary healthcare centre, health data analytics, health record exchange, cloud
security.

* Corresponding author, indra.priyadharshini@gmail.com

E­HEALTH

right of the individual [26] to know what kind of

information is disclosed about her/him in public, right to

know what kind of information about them is stored, with

whom the information is shared and how it is going to be

used. For example, the patient’s electronic health records

(EHRs) are moved to the cloud by the doctor, by the

hospital, or even by the patient itself. When these EHRs

are accessed by the data owner (the one who pushes the

EHRs to the cloud) or by other users for any computation,

the EHRs have to be decrypted. So, the data is in danger

while in transit. In case the computations are carried out

by the cloud service provider (CSP) itself, the data owner

has to trust the honest­but­curious CSP. Assuring secure

and private transfer of EHRs to the cloud under public

access is always a conundrum. The identity of the patients

must also be preserved in the public domain [27].

According to the Health Insurance Portability and

Accountability Act (HIPAA) [2], the Privacy Rule is to

assure that individuals’ health information is properly

protected while allowing the flow of health information

needed to provide and promote high quality healthcare

and to protect the public’s health and well being. The

India’s version of HIPAA act is proposed. It is called

Health Data Privacy and Security Act (HDPSA). HDPSA

is being worked out by the Health and Family Welfare

Department of the Indian Government and is likely to take

HIPAA of the USA as a model. Currently, ISO27799:2016

standard is the advisory standard for information security

management in healthcare solutions for the Information

Technology ACT 2000 (ITA­2000) and its amend ments.

Implementation of ISO 27799:2016 covers General Data

Protection Regulation (GDPR). ITA­2000 has adopted

several principles also from GDPR [25]. These laws and

legal regulations emphasize the fact that the technological

healthcare solutions must guarantee data privacy and

anonymity of the patients.
In this paper we intend to build a framework for the e­

health cloud which would securely store sensitive EHRs

in the cloud by encrypting them. We implement homomor ­

phic encryption (HE) to encrypt EHRs, which allows to

carry out computations with the encrypted data. The

computations made on the ciphertext produces an en ­

crypted output, which in turn can be decrypted by the user

or the data owner who holds the decryption keys.

Homomorphic encryption (HE) is a type of encryption that

allows computation on ciphertext, generating an encrypted

result, which, when decrypted, matches the outcome of the

operations as if they had been performed on the plaintext.

The purpose of homomorphic encryption is to allow

computation on encrypted data [3]. For secure sharing of

EHRs among trusted entities, proxy re­encryption is used.

Proxy re­encryption allows proxies to re­encrypt the

ciphertext in such a way that it can be decrypted by another

user without using the private key of the data owner [28].

2. RELATED WORKS

Cloud computing has gained much popularity and im ­

portance in recent years. It has become inevitable these

days in any business model. Healthcare is one of the largest

revenue generating industries in India. As the entire

country is on the verge of digitization, providing healthcare

services online is developing fast. This is easily achievable

with the advantages of cloud computing but it comes at the

cost of security and privacy as sensitive patient’s data need

to be shared on the public platform like the Internet.
There are plenty of schemes available to enforce

security of the cloud. One of those schemes is homo ­

morphic encryption (HE). Homomorphic encryption has

been in the field of cryptography since 1978, when Rivest

et al. first investigated the RSA algorithm. The concepts

of homomorphism have been investigated for a long time

to explore the homomorphic properties in various crypto ­

graphic algorithms and to find ways of designing any

algebraically homomorphic encryption schemes. The first

theoretical implementation of fully homomorphic en ­

cryption (FHE) [4] was built by Craig Gentry in 2009 in

his PhD thesis. Gentry’s homomorphic encryption

scheme allows user to perform any operations on the

ciphertext and output is also in the encrypted form. The en ­

crypted result is decrypted to plaintext output with relevant

key.
Acar et al. [5] discussed various homomorphic algo ­

rithms available in the literature. They also explained

somewhat homomorphic encryption (SHE) algorithms

and partial homomorphic encryption (PHE) which are

building blocks for achieving practical implementation of

HE.
Abbas et al. [6] described various privacy preserving

approaches for e­health clouds. The paper discussed

different cryptographic and non­cryptographic approaches

(access policies) to enforce privacy and security of the

e­health clouds.
IBM has been involved in constant research for several

years in the field of homomorphic encryption. It has

brought excellent solutions in the process of coupling

healthcare and machine learning. Bocu and Costache [7]

have invented a system for managing health record

metrics from local monitoring devices in IBM cloudlet

and used Apache Spark for processing the data and HE

for securing the data.
Li et al. [8] have introduced multi­hop identity­based

proxy re­encryption using HE, which can be utilized for

data forwarding, email forwarding or can be applied for

access control policies. The authors claim that HE is proven

secure under learning with errors (LWE) assumption.
A new parallel implementation of HE for securely

storing data in the cloud is done by Sethi et al. [9]. This paper

discusses the implementation of DGHV homomorphic

I. Priyadharshini and V. Prem: Secure e-health cloud framework for sharing EHRs 267

encryption scheme [9] and authors have also executed a new

procedure to reduce the noise generated by ciphertexts when

the data gets homomorphically encrypted.
Chen et al. [10] have utilized NTRU algorithm to

enforce privacy and avoid intrusion while sharing medical

data in cloudlets. They split and encrypt the data in many

ways to strengthen the security.
Zhang et al. [11] have invented an efficient privacy­

preserving disease prediction (PPDP) scheme in health

clouds. They have constructed the prediction models using

a single­layer perceptron algorithm. They have evaluated

breast cancer and heart disease dataset and tested error

rate of classifier.
Zhang et al. [12] stated that HE schemes are the

perfect solutions for securing outsourced data in the cloud.

But fully homomorphic encryption (FHE) algorithms are

prone to statistical analysis with some probability if an

intruder or malicious cloud deploys attacks by observing

user’s reactions to results.
Hassan [13] state that implementation of FHE needs

enormous computational power to process the encrypted

data.
Based on the above findings, we have decided to

implement SHE schemes which may not require boot ­

strapping technique. SHE is an optimized and less

functional encryption scheme which can be used for

securing outsourced computations in the cloud, which is

more efficient compared to the FHE.

3. OUR CONTRIBUTIONS

First and foremost amongst the public healthcare services

provided in India are primary health centres (PHC) and

community health centres (CHCs). The Declaration of

Alma­Ata [15] is the initiative for the Government of

India to enhance the services provided by the primary

health centres (PHCs). In this work we analyse the

working pattern of PHCs where health workers and health

assistants work on the fields to collect medical data from

the population, and they specially focus on the programs

like infant immunization, anti­epidemic programs, birth

control, parental care, emergency medical care in addition

to the regular medical treatment. All the data collected

from the patients are merely kept in ledgers or stand­alone

computers.
The EHRs or other health information exchange

between PHCs and government hospitals is a time­

consuming process through insecure medium. Sometimes

they just exchange documents using email. They store

data in simple excel sheets and share them without any

security procedures. Government healthcare institutions

are also using fax machines to share information as it is

less likely to be attacked compared to the Internet, but

communication through faxes is a slow process. Instead,

modern technologies like clouds [10] can be effectively

utilized to share the health information among hospitals,

medical researches, doctors and insurance companies.

Figure 1 depicts secure health cloud model, where the

cloud security is provided through homomorphic en ­

cryption.
Our idea is to regularize, format, collect and connect

the data collected from all primary health centres (PHCs)

via a secure, privacy­preserving health cloud. This secure

health cloud gives authorized access to the doctors and

researchers in the government hospitals (GHs). Moving

one step further, the GHs can analyse the EHRs to make

meaningful inferences and predictions. These results can

be used by the Department of Health and Family Welfare

(DoHFW) for accurate decision­making.
The way to accomplish our goal of constructing a secure

and privacy­preserving health cloud is the following –

primary health workers and health assistants (immediate

supervisors) are given a mobile application through which

they collect data from the patients. The data are collected

from patients during: i) periodic censuses; ii) visits to

primary health centres (unusual visits); iii) periodic visits

(e.g. infant immunization, parental care, etc.); iv)

vaccination in Polio Medical Camps or other medical

camps. Each health worker/health assistant is provided with

encryption keys after an authorization and validation

process by the key server. The collected data are encrypted

and moved to the health cloud. The doctors and researchers

of the government hospitals also hold the keys to access the

health cloud. In addition, they can perform predictive

analysis with the data stored in the health cloud. The

outcomes of the analysis are sent to the Department of

Health and Family Welfare (DoHFW) for further actions

Proceedings of the Estonian Academy of Sciences, 2020, 69, 3, 266–276268

"

Hospitals/health care organizations

Medical researchers

Patients

Health insurance providers

Doctors/clinicians

Fig. 1. Secure e­health cloud model using HE.

EHRs

and decisions. The following scenarios explain the usage

of this secure health cloud better. If a patient of the PHC

goes to the government hospital for further treatment,

patient’s EHRs can be retrieved quickly by the doctor for

analysing the patient’s history. For example, if a health

worker records dengue virus in particular area, the results

of predictive analytics can trigger the Department of Health

and Family Welfare to make quick decisions such as

ordering necessary drugs from pharmaceutical companies,

raising the awareness among people and cleaning the

sewage stagnations in the affected area by the municipal

corporation.
We have evaluated the performance of our system with

the dataset of 10,000 records from UCI machine learning

repository. For medical data analytics, 3000 records were

used as training dataset and 800 records as test dataset. To

summarize:
(1) encryption of EHRs uses Boneh, Goh, and Nissim

 (BGN) cryptosystem and stores data in the cloud –

 secure storage of data;
(2) re­encryption of EHRs is made by CSPs using AFGH

 algorithm – secure sharing of data;
(3) ticket generation by the data owner for granting access

 to EHRs – secure access to data;
(4) retrieval of EHRs by the trusted user of the e­health

 cloud – secure data retrieval.
The rest of the paper is organized as follows. Section 4

describes the crux of the entire system (homomorphic

encryption). Section 5 discusses the overview of the secure

privacy­preserving health cloud framework. Section 6

presents the BGN cryptosystem and AFGH re­encryption

algorithm which we have used to build our system. Section

7 discusses security analysis of our system through a threat

model. Section 8 presents the experimental results of our

system, and the paper ends with conclusions.

4. CRYPTOGRAPHICAL BACKGROUND

4.1. Homomorphic encryption

Homomorphic encryption (HE) [4] is the scheme that

allows convoluted calculations to be performed on

encrypted data without compromising the encryption. In

mathematics, HE describes the transformation of one

dataset into another while preserving the relationship

between elements in both sets. The term is derived from

the Greek words for “same structure”. Hence the records

contained in homomorphic encryption system remain the

similar schema and logical calculations, they are per ­

formed on encoded or decoded records.
Homomorphic encryption plays a major role in cloud

computing, allowing the users to store encrypted data in

public clouds and perform computations in the cloud by

CSPs with no fear of losing privacy or security. The

concept of Gentry’s breakthrough introduced computation

on convoluted computations to be performed on en ­

ciphered data without ever having to decrypt it or accord

the encryption. Such technique requires vast amounts of

computational power (up to a trillion times more com ­

pared to what is currently used). Confidential data need

to be analysed without fear of compromising. That could

make companies and agencies which now refuse to let

such data off their servers more comfortable outsourcing

high­value work.
Homomorphism is not a new word in the field of

cryptography. In 1978 Rivest, Adleman and Dertouzos

[16] published a paper which discussed how homo ­

morphic properties can be used for securing data and

allowing untrusted parties to work with the data. Later, in

1982, Rivest, Shamir and Adleman founded RSA Data

Security.
In mathematics, a homomorphisms are maps between

two algebraic objects (such as two rings, or two fields).

This means that homomorphism between two algebraic

objects A, B is a function f: A → B which preserves the

agebraic structure on A and B. If the operations on A and

B are both addition, then the homomorphism condition is

 f(a+b) = f(a) + f(b). If A and B are both rings, with

addition and multiplication, there is also a multiplicative

condition: f(ab) = f(a)f(b) [3].

To understand HE better, let us assume that encryption

is applied by multiplying the plaintext by 2, and decryption

operation is the reverse operation, dividing the ciphertext

by 2, it works as described below: y = Enc(a) = 2a, a =

Dec(b) = b/2, where a and b are plaintext and ciphertext,

respectively. The arithmetic operations can be applied on

the ciphertexts directly, the obtained result can be de ­

crypted to get the actual result.
The different types of HE schemes available are as

follows: fully homomorphic encryption (FHE), partial

homomorphic encryption (PHE) and somewhat homo ­

morphic encryption (SHE). A cryptosystem is said to be

partially homomorphic if it demonstrates either additive

or multiplicative homomorphism but not both. Some

examples of partially homomorphic encryption systems

are: RSA cryptosystem (exhibits multiplicative homo ­

morphism), ElGamal cryptosystem (exhibits multi plicative

and exponentiation homomorphism) and Paillier’s

cryptosystem (exhibits additive homomorphism).
A cryptographic system that promotes random calcu ­

lations on encrypted texts are said to be fully homo morphic

encryption and known to be much stronger. Such a scheme

allows to build programs for certain functions which can be

run on encrypted inputs to generate the result in encrypted

form. Homomorphic encryption system doesn’t need to

decrypt its inputs. It can be run by a entrusted party without

revealing its inputs and internal state. Fully homo morphic

I. Priyadharshini and V. Prem: Secure e-health cloud framework for sharing EHRs 269

cryptosystems have great practical impli cations in the

outsourcing of private computations, for instance, in the

context of cloud computing.
Gentry [4] used lattice­based cryptography for demon ­

strating the first FHE scheme announced by IBM on June

25, 2009. He started with the construction of a somewhat

homomorphic scheme where he limits the number of

operations that can be performed on the ciphertext which

is referred to as evaluation circuits. Then he introduced

bootstrapping where the system can evaluate its own

decryption algorithm circuit. Then he finally proved that

any bootstrappable SHE can be converted into a fully

homomorphic encryption by squashing the decryption

circuits and through recursive self­embedding.
Table 1 shows various homomorphic schemes available.

Halevi [17] has categorized the FHE constructions into

three generations. The first generation of FHE constructions

suffered from a problem of fast­increasing noise. The

second­generation FHE construc tions enable to control

noise growth in better ways. These techniques rely on

limiting the number of operations which result in ‘levelled’

schemes of partial homo morphism. This can be further

converted into FHE schemes through bootstrapping. The

third generation FHE schemes had asymmetric multi ­

plication, in the sense that the homomorphic multi plication

c1 ⊗ c2 results in a different ciphertext compared to c2 ⊗

c1 (both of which encrypt the same product b1·b2). The

important factor is that the noise growth is also asymmetric:

the noise in the left multiplicand has greater influence on

the result than the noise in the right multiplicand.

4.2. Re­encryption

Re­encryption allows proxy to convert ciphertexts of the

data owner’s key into ciphertexts of authorized user’s key,

without revealing the plaintext or using the data owner’s

private keys. Therefore, data owner can share EHRs to

any trusted users like other doctors or researchers, without

sharing the data owner’s private key. This method also

eliminates data owner’s need to perform any special

encryption for the trusted user whom he wishes to grant

access.
The concept of proxy re­encryption was proposed in

1998. It allows proxy (a semi­trusted entity) to transform

the ciphertext of one user (A) into a ciphertext of another

user (B). Now, user B can decrypt the ciphertext without

A’s private key. We have used the AFGH algorithm for

re­encryption. In addition to the standard functions like

key generation, encryption and decryption, we have also

defined re­encryption ticket generation and re­encryption.
Ticket generation is made by the data owner who

wishes to grant access to the trusted user. Tickets are

generated by the data owner with the public key of trusted

user and private key of the data owner. Now, the gen ­

erated ticket is used by the proxy to re­encrypt the EHRs

which can be decrypted using the private key of trusted

user.

5. FRAMEWORK OVERVIEW

The proposed secure e­health cloud framework mainly

focuses on the storage of patient’s EHRs, which are

sensitive in nature, and on the issue how to share EHRs

securely between various entities within the system. The

combination of homomorphic encryption and re­

encryption algorithms is used to securely store and share

EHRs in the cloud. Figure 2 shows the general archi ­

tecture of the system. The entities which comprise the

system are the following: (1) key authority (KA); (2)

cloud service provider (CSP); (3) primary health

centres/community health centres/sub­health centres

(PHCs/CHCs/SHCs); (4) government hospitals (GHs);

and (5) Department of Health and Family Welfare

(DoHFW).
(1) Key authority (KA) is a trusted entity which generates

and distributes key pairs for other entities involved in

the system. We assume that KA performs authentication

and checks roles and policies of the user.
(2) Cloud service provider (CSP) provides unlimited

storage space to other parties for outsourcing so that

they can store and manage their data. CSPs are able to

do computations with the stored data in addition to

offering storage features.
(3) PHCs/CHCs/SHCs are set up by the initiative of the

government to provide public healthcare services. It

generates medical data which are encrypted and can

be further used for health data analytics to bring out

significant references.
(4) Government hospitals (GHs) also provide healthcare

services and have more sophisticated facilities

compared to PHCs, CHCs or SHCs. Government

Proceedings of the Estonian Academy of Sciences, 2020, 69, 3, 266–276270

Q3E&01

&'+(3E.-0'$

6+,&4&2$)I)-*);*&$

$

>)(.-)*$

,04040(E,-+$

&'+(3E.-0'$

K5$R'E)@@&@$:6N$
L5$8*%)4)*$

!5$>)-**-&($

S5$G&')*0,$

T5$%0*@?)22&(FU-+)*-$+(3E.0232.&4$
V5$H)++)+,&F6.&('$

#5$WX)4).0FR+,-3)4)$+(3E.0232.&4$

J5$A)47)(@FY/(-X$+(3E.0232.&4$

B/**3$

,04040(E,-+$

&'+(3E.-0'$

K5$%&'.(3Z2$+(3E.0232.&4$
L5$A%9[$,04040(E,-+$&'+(3E.-0'$2+,&4&$

!5$G%[$,04040(E,-+$&'+(3E.-0'$2+,&4&$

S5$B[$,04040(E,-+$&'+(3E.-0'$2+,&4&$

T5$\N698$,04040(E,-+$&'+(3E.-0'$2+,&4&$

1 @ Z @ -

Table 1. List of homomorphic algorithms

>)(.-)*$

,04040(E,-+$

&'+(3E.-0'$

B/**3$

,04040(E,-+$

&'+(3E.-0'$

hospitals provide more advanced treatment and better

services, higher level of making diagnosis and

medication supply.
(5) Department of Health and Family Welfare (DoHFW)

is a department under the government of Tamil Nadu,

and is responsible for ensuring access to basic public

health services. It also instigates many family welfare

programs.
EHRs are generated in health centres in one of the

following ways:
● health worker or health assistant uses a mobile

application to collect information at patient’s home

during periodical visits or the census;
● when a patient visits HC;
● when patients are enrolled to medical camps, etc.

These EHRs are homomorphically encrypted and

moved to the cloud.
If the doctor wishes to share patient’s EHRs with other

HCs or GHs, the EHRs are re­encrypted using AFGH

scheme and then moved to the cloud. If the EHRs are not

meant for sharing, data are encrypted using BGN algo ­

rithm and stored in the cloud repository. The shared EHRs

can be used by GHs to quickly diagnose the patient.

Authorities in DoHFW can perform data analytics to

generate reports on the performance of HCS which can be

used for ranking the PHCs and issuing sensible commands

to the relevant government departments. For example,

drug stocks can be updated according to the requirements

of PHCs. Government hospitals can also perform secure

medical data analytics with EHRs to predict diseases or

to classify patients depending on the severity of disease,

frequency of visits, etc.

6. ALGORITHMS

This section explains the background of the encryption

process made in our system. Somewhat homomorphic

encryption (SHE) is used to encrypt the EHRs and then

the encrypted EHRs are moved to the cloud repository for

later access.

6.1. Storage of EHR

We have implemented the SHE using Boneh, Goh and

Nissim (BGN) homomorphic public key cryptosystem

[18]. This algorithm is built on the properties of a class of

subgroup decision problem. The strength of the algorithm

relies on the difficulty of deciding whether an element,

say ‘x’ belongs to a group G of some order p, where p =

n1n2, also belongs to a subgroup of order n1. The diagram

shown below (Fig. 3) explains how the EHRs from

primary health centres are stored securely through BGN

cryptosystem.
Key generation:

(1) Choose two random s­bit primes p1 and p2 and set n =

 p1p2 ∊ Z, where s is the security parameter.
(2) Let G be the bilinear group of order n with generator g.
(3) e: GXG → G1 is the bilinear map.
(4) Choose two random generators g, u ← G and set h = up2.
(5) Public key = (n,G,G1,e,g,h).
(6) Private key = p.

Encryption:
(1) Message space consists of integers in the set {0, 1, 2,

 ... X} with X < p2.
(2) Choose a random r, 0<r<n­1.

I. Priyadharshini and V. Prem: Secure e-health cloud framework for sharing EHRs 271

!

Fig. 2. General architecture of the system.

Key authority (KA)

Cloud service
providers (CSP)CHS/PHC/SC Government

hospitals (GH)

Dept. of Health
and Family

Welfare (DoHFW)

Primary
health centre

(3) encrypt (m) = C = gmhr ∈ G.
(4) Return C, the generated ciphertext.

Decryption:
(1) The plaintext can be generated by decrypting the cipher ­

 text using private key p.
(2) decrypt (C)= Cp = (gmhr)p = (Cp)m.
(3) Plaintext m is retrieved by computing the discrete log

 of Cp base ĝ, where ĝ = gp.
(4) Return m, the decrypted message.

6.2. Secure EHR sharing

To achieve the sharing of EHRs among various health

centres (HCs), government hospitals (GHs) and other

government organizations (e.g. DoHFW), Ateniese, Fu,

Green and Hohenberger (AFGH) [19,20] algorithm is

used. Figure 4 shows how secure sharing of EHRs is

accomplished among various entities of the secure e­

health cloud.
The construction of the AFGH system is also based on

bilinear groups similar to the BGN algorithm. This AFGH

cryptosystem is built on the nature of ciphertexts which

can be moved from one group to another group with

bilinear transformation. We make use of the AFGH

algorithm to share the encrypted EHRs to the authorized

user by CSPs without the need of revealing the owner’s

private key. CSPs re­encrypt [19] the encrypted EHRS

with the help of a ticket generated by the owner and public

key of the user requesting the EHR. This re­encrypted

EHR can be decrypted by the authorized user using his

private key. The algorithm description is as follows.
Key generation:

(1) Let G1 be a group of prime order q <g> = G1.
(2) Let α be the random number chosen from Zq

*.
(3) Private key = k1 =PrK1.

(4) Public key = gk1 = PuK1.
(5) For User2, Private key = k2 = PrK2.
 Public key = gk2 = PuK2.

Encryption (data owner):
(1) Message m ε G2, G2 is the group of prime order q.
(2) Let r is the random number, r ∈ Zq

*.
(3) encrypt (m) = C1 = (Zr ·m, grk1).

Ticket generation (data owner):

 T = (gk2)1/k1 = gk2/k1.

 Decryption (data owner):

 decrypt (c1) = m = Zr·m / e(grk1,g1/k2) = Zr·m / Zr.

Re­encryption (CSP):

C1 → CSP → C2.

C2 = (Zr·m, e(grk1,T)) = (Zr ·m, e(grk1,gk2/k1))

 = (Zr·m, Zrk2).

Decryption (authorized user accessing EHR – User2):

Decrypt (C2) = m = Zr·m (Zrk2)1/k2.

7. DISCUSSION

We assume that the CSP is honest­but­curious, as the same

assumption is made by many researchers according to the

literature [14,22,23]. CSP honestly follows a procedure to

store the data using a standard protocol but may curiously

deduce relevant sensitive private information belonging to

the patients from the stored data. Moreover, unauthorized

users or hackers may intrude to access the private information

without the necessary privileges by compromising the key.
The threat model is constructed based on the following

cases.
Case 1. The intruder may observe all ciphertexts stored

in the cloud. He can also observe the posted queries.
Case 2. The intruder may even arbitrarily construct

some random EHRs and push to the cloud for disease

Proceedings of the Estonian Academy of Sciences, 2020, 69, 3, 266–276272

!

Fig. 3. Storage of EHRs by CHC/PHC/SC.

health centre
Primary

Public key

Private key

CHS/PHC/SC

prediction. This is something similar to the chosen­

ciphertext attack (CCA).
Case 3. The intruder may know EHRs of few patients

before they are pushed to the cloud. So, this may lead to

known­plaintext attacks (KPA). But still, the intruder has

no knowledge about the corresponding ciphertext stored

in the cloud.
Our framework protects the confidentiality of EHRs

stored in the cloud by encrypting EHRs homomorphically.

The EHRs of particular clients may be lost only if the client’s

(data owner) device is compromised. Confidentiality of the

data is maintained, though it is shared in the public cloud. The

entities of the system may not leak any information as they

move only encrypted EHRs to the cloud. It is assumed that

key authority verifies and authenticates that all the participants

are legitimate trusted users. Our secure EHR storage and

sharing framework stands well against passive attacks

preserving the confidentiality of the patients’ sensitive EHRs.
Key generation.
Key generation takes some average setup time in the

data owner’s devices. BGN takes approximately 0.4 ms for

key generation in 80­bit security mode. Compared to

Paillier, it is much lower, as Paillier takes more than 1600

ms. However, BGN cryptosystem takes additional time to

find the prime numbers and congruences for CRT operation

to optimize the trade­off between the performance of

decryption operations.
Key revocation.
To grant access to the EHRs, the data owner generates

a ticket for the trusted user. Generation of this ticket is the

function of the data owner’s private key and trusted user’s

public key. Cloud on behalf of the data owner re­encrypts

the EHR with the generated ticket, which in turn is

decrypted by the trusted user. If the data owner wants to

revoke the granted access, he can simply change the key

and start using new keys for encryption. This key update

makes the already generated tickets obsolete and it can no

longer be accessed. If the valid sharing relationships need

to be maintained, new tickets have to be generated.

8. EXPERIMENTAL RESULTS

We have evaluated our framework in the Amazon Web

Service (AWS) environment with multiple clients. Client

systems are PCs configured with Intel Core i3­2120 3.30

I. Priyadharshini and V. Prem: Secure e-health cloud framework for sharing EHRs 273

!

Fig. 4. Secure EHR sharing between CHCs/PHCs/SCs and GHs/DoHFWs.

Public key
of GH/DoHFW

Private key
of

CHC/PHC/SC

Private key
of GH/DoHFW

Re­encryption

Re­encrypted
EHRSPublic key

of
CHC/PHC/SC

GHz CPU and 8 GB RAM running Fedora Linux or

Lenovo K8 with 2.3 GHz dual core processor and 4 GB

RAM running Android 5.1.1. Amazon T3 instances are

configured in cloud setup. The AWS accounts provide a

default amount of storage capacity and one instance of

Intel Xenon 3.3 GHZ with 8 GB RAM.
Plaintexts are generated uniformly at random for 16­

bit, 32­bit and 64­bit integers. We have run the encryption

and decryption operations several times repeatedly and

recorded the execution time. All the noted numbers are

calculated with a single running thread. Tables 2 and 3

show the execution time for encryption and decryption

operations in the data owner’s device (mobile devices or

personal computers) and cloud.
We have compared our framework with the standard

Paillier cryptosystem [24] and plotted the results. It is

visible that the BGN cryptosystem outperforms the standard

Paillier system. In case of Paillier cryptosystem, the time

for encryption increases exponentially when the size of the

plaintext increases. Though the BGN scheme also suffers

in the case of large plaintexts, the performance can still be

enhanced when we implement batch processing by splitting

up the plaintext into blocks using the CRT algorithm.
Figure 5 shows the execution time for encryption and

decryption operations with BGN vs. Paillier over 16­bit,

32­bit and 64­bit integers, with both 80­bit and 128­bit

security level. Paillier has huge computation time increase

due to its large byte stuffing. However, BGN cryptosystem

outperforms Paillier cryptosystem approximately 3 or

more times in case of smaller plaintexts. For decryption,

BGN has best running time in all settings except for 80­

bit security and 64­bit integers. Paillier has severe drop

down in performance with 128­bit security probably due

to big key sizes (from 1048­bit to 3064­bit) subsequently

resulting in big number of operations.
The size of the generated ciphertext after re­encryption

causes a huge impact on the storage capacity and network

communication constraints. In this regard, AFGH per forms

better than standard Paillier cryptosystem. The framework

supports 16­, 32­, and 64­bit integers in storage mode. In the

80­bit security mode, increasing integer size includes a

different number of congruences, leading to a ciphertext size

ranging between 48 and 128 bytes. Paillier, in comparison,

requires 256 bytes, no matter of the size of the integer. The

gap is even more noticeable as the protection level rises and

the network capacity and cloud have negative impact. Figure

6 shows the 16­bit, 32­bit and 64­bit ciphertext sizes in the

Paillier and AFGH cryptosystems, respectively.

Proceedings of the Estonian Academy of Sciences, 2020, 69, 3, 266–276274

%
Q3E&$ 6&+/(-.3$40@&$ A).)$0?'&(Z2$@&I-+&$

8'+(3E.-0'$]42^$ A&+(3E.-0'$]42^$:&_&'+(3E.-0'$]42^$

6.0()7&$01$89:2F(&E02-.0(3$]G%H^$ J"$ L5T$ L$ HN$
KLJ$ S5`$!5`$ HN$

6&+/(&$89:$2,)(-'7F]NB%9^$ J"$ `5#$ KK5`$ `5L$

KLJ$ KT5K$ K#5!$ K!5K$

Table 2. Performance summary – data owner’s device

Q3E&$ 6&+/(-.3$
40@&$

&_9&)*.,$+*0/@$

N@@-.-0'$

]a2^$

6,)(-'7$

]42^$

6.0()7&$ 01$ 89:2$ F$
(&E02-.0(3$]G%H^$

J"$ V"$ F$
KLJ$ `!$ F$

6&+/(&$89:$2,)(-'7F

]NB%9^$

J"$ VJ$ K5`$

KLJ$ #T$ L5T$

Table 3. Performance summary – cloud

!"# !"$ %"% %"&
'"%

("!

!

"

!#"

"#$

!#%

"#$

!

"

#

$

%

&!

&"

'
(
)*
+&
$
*,
(
-.

/
0
)*
+&
$
*,
(
-.

'
(
)*
+1
"
*,
(
-.

/
0
)*
+1
"
*,
(
-.

'
(
)*
+$
#
*,
(
-.

/
0
)*
+$
#
*,
(
-.

!"
#
$%
"&
%#
'

23

56,
Ti

m
e,

 m
s

!

%"! !"$ '"& %"$ # $"!

""&

"'

""'

"'

""'

"'

!

9!

&!!

&9!

"!!

"9!

'
(
)*
+&
$
*,
(
-.

/
0
)*
+&
$
*,
(
-.

'
(
)*
+1
"
*,
(
-.

/
0
)*
+1
"
*,
(
-.

'
(
)*
+$
#
*,
(
-.

/
0
)*
+$
#
*,
(
-.

!"
#
$%
"&
%#
'

234

56,77,08

Fig. 5. (a) Execution time comparison – BGN vs. Paillier – 80 bit;
(b) Execution time comparison – BGN vs. Paillier – 128 bit.

Ti
m

e,
 m

s

234

56,77,08

234

56,77,08

 (a)

 (b)

J"$
KLJ$

J"$

KLJ$

9 9.2
9.8

2.62.6
21.91.6

2.2 2.4
3.2

5.1

3.4
25

1.9 9.1
25 25

225225220

2.1 2.9

9. CONCLUSIONS

We have presented a secure framework for storing and

sharing EHRs in the cloud using homomorphic en ­

cryption algorithms. The results are shown and

com pared with standard Paillier algorithm. Our frame ­

work has shown better results. As we are moving only

encrypted data to the cloud, it guarantees the confiden ­

tiality of sensitive patient’s data. The curious CSP may

not meaningfully read the outsourced medical data as it

is encrypted before moving it to the third party’s CSPs.

Our secure framework stands well against the passive

attacks. For the future work, key authority must be

implemented with the additional capabilities of ensuring

the roles, policies and trust in the process of auth ­

orization. Various statistical methods and machine

learning approaches [21] can be applied on the health

data for disease prediction and to derive other meaning ­

ful inferences. Role­based access control (RBAC)

policies [24] may be introduced. Also, boot strapping

techniques can be explored for providing full homo ­

morphism.

ACKNOWLEDGEMENTS

The authors are grateful to the faculties and the

management of R.M.K. College of Engineering and

Technology for their support and guidance.The pub ­

lication costs of this article were partially covered by

the Estonian Academy of Sciences.

REFERENCES

1. Healthcare Industry in India. https://www.ibef.org/industry/

healthcare­india.aspx
2. Usage of HIPPA Act in US. https://en.wikipedia.org/wiki/

Health_Insurance_Portability_and_Accountability_Act
3. Fundamentals of the crux of our health cloud framework ­

Homomorphic Encryption. https://en.wikipedia.org/wiki/
Homomorphic_encryption

4. Gentry, C. A fully homomorphic encryption scheme. In
Proceedings of the 41st Annual ACM Symposium on
Symposium on Theory of Computing (STOC ’09), May 31–
June 2, 2009, Bethesda, Maryland, USA. Association for
Computing Machinery, New York, 2009, 169–178.
https://doi.org/10.1145/1536414.1536440

5. Acar, A., Aksu, H., Uluagac, A. S., and Conti, M. A Survey
on Homomorphic Encryption Schemes: Theory and
Implementation. 1–35. https://doi.org/10.1145/3214303

6. Abbas, A. and Khan, S. U. A review on the state­of­the­art
privacy­preserving approaches in the e­Health clouds. IEEE
J. Biomed. Health Inf., 2017, 18(4), 1431–1441. https://doi.
org/10.1109/JBHI.2014.2300846

7. Bocu, R. and Costache, C. A homomorphic encryption­based
system for securely managing personal health metrics data.
IBM J. Res. Dev., 2018, 62(1), 1:1–1:10. https://doi.org/10.
1147/jrd.2017.2755524

8. Li, Z., Ma, C., and Wang, D. Towards Multi­Hop Homo ­
morphic Identity­Based Proxy Re­Encryption via Branching
Program. IEEE Access, 2017, 5, 16214–16228. https://doi.
org/10.1109/ACCESS.2017.2740720

9. Sethi, K., Majumdar, A., and Bera, P. 2017. A novel
implementation of parallel homomorphic encryption for secure
data storage in cloud. In Proceedings of the International
Conference on Cyber Security and Protection of Digital
Services (Cyber Security 2017), June 19–20, 2017, London,
UK. https://doi.org/10.1109/CyberSecPODS.2017.8074851

10. Chen, M., Qian, Y., Chen, J., Hwang, K., Mao, S., and Hu, L.
Privacy Protection and Intrusion Avoidance for Cloudlet­
based Medical Data Sharing. IEEE Trans. Cloud Comput.,
2016, 1. https://doi.org/10.1109/TCC.2016.2617382

11. Zhang, C., Zhu, L., Xu, C., and Lu, R. PPDP: An efficient
and privacy­preserving disease prediction scheme in cloud­
based e­Healthcare system. Future Generation Computer
Systems, 2018, 79(1), 16–25. https://doi.org/10.1016/j.fu
ture.2017.09.002

12. Zhang, Z., Plantard, T., and Susilo, W. Reaction attack on
Outsourced Computing with Fully Homomorphic
Encryption Schemes. In Proceedings of the International
Conference on Information Security and Cryptology (ICISC
2011), November 30 – December 2, 2011, Seoul, Korea.
Springer­Verlag, Berlin, Heidelberg, 2012, 419–436. https://
doi.org/10.1007/978­3­642­31912­9_28

13. Hassan. N. A. Data Hiding Techniques in Windows OS: A
Practical Approach to Investigation and Defense, 1st ed.
Syngress, Rockland, 2016.

14. Chen, M., Hao, Y., Hwang, K., Wang, L., and Wang, L.
Disease prediction by machine learning over Big Data from
healthcare communities. IEEE Access, 2017, 5, 8869–8879.
https://doi.org/10.1109/ACCESS.2017.2694446

15. https://en.wikipedia.org/wiki/Primary_Health_Centre_(India)
16. Paar, C., Pelzl, J., Paar, C., and Pelzl, J. The RSA

Cryptosystem. In Understanding Cryptography. Springer,

I. Priyadharshini and V. Prem: Secure e-health cloud framework for sharing EHRs 275

!

"!!

#!!

$!!

%!!

&!!

'!!

(!!

)!!

*!!

!"
#$

%&
'%
()
*%)
+*

!"
#$

%,
-%
()
*%)
+*

!"
#$

%'
.%
()
*%)
+*

/0
)11
)2
3

4)
56
23
%7
28
*%9
):
2%
)+
%(
;*
2< =>?()* &&-?%()* &-=%?%()*

Fig. 6. Ciphertext size – Paillier vs. AFGH algorithm. Healthcare
industry in India.

900
800
700
600
500
400
300
200
100

0

Ci
ph

er
 te

xt
 si

ze
, b

yt
es

AF
GH

 1
6

bi
t i

nt

AF
GH

 3
2

bi
t i

nt

AF
GH

 1
6

bi
t i

nt

Pa
ill

ie
r

 80­bit 112­bit 128­bit

Berlin, Heidelberg, 2009, 173–204. https://doi.org/10.1007/
978­3­642­04101­3_7

17. Halevi, S. Homomorphic Encryption. In Tutorials on the
Foundations of Cryptography. Information Security and
Cryptography (Lindell, Y., ed.). Springer, Cham, 2017, 219–
276. https://doi.org/10.1007/978­3­319­57048­8_5

18. Freeman, D. M. Homomorphic Encryption and the BGN
Cryptosystem. 2011. http://theory.stanford.edu/~dfreeman
/cs259c­f11/lectures/bgn

19. Ateniese, G., Fu, K., Green, M., and Hohenberger, S.
Improved proxy re­encryption schemes with applications to
secure distributed storage. ACM Trans. Inf. Syst. Secur.,
2006, 9(1), 1–30. https://doi.org/10.1145/1127345.1127346

20. Shao, J., Lu, R., Lin, X., and Liang, K. Secure bidirectional
proxy re­encryption for cryptographic cloud storage.
Pervasive Mob. Comput., 2016, 28, 113–121. https://doi.org/
10.1016/j.pmcj.2015.06.016

21. Aslett, L. J. M., Esperança, P. M., and Holmes, C. C. A
review of homomorphic encryption and software tools for
encrypted statistical machine learning. arXiv:1508.06574,
2015.

22. Premarathne, U., Abuadbba, A., Alabdulatif, A., Khalil, I.,
Tari, Z., Zomaya, A., and Buyya, R. Hybrid cryptographic

access control for cloud­based EHR systems. IEEE Cloud
Comput., 2016, 3(4), 58–64. https://doi.org/10.1109/MCC.
2016.76

23. Liu, X., Lu, R., Ma, J., Chen, L., and Qin, B. Privacy­
preserving patient­centric clinical decision support system
on naïve Bayesian classification. IEEE J. Biomed. Health
Inf., 2016, 20(2), 655–668. https://doi.org/10.1109/JBHI.
2015.2407157

24. Galbraith, S. D. Elliptic curve Paillier schemes. J. Cryptol.,
2002, 15, 129–138. https://doi.org/10.1007/s00145­001­001
5­6

25. Electronic health record standards for India. https://www.
nhp.gov.in/data­privacy­and­security_mtl

26. Privacy in Cloud Computing. ITU­T Technology Watch
Report. ITU Telecommunication Standardization Bureau,
2012. https://www.itu.int/dms_pub/itu­t/oth/23/01/T230100
00160001PDFE.pdf

27. Health and Privacy. Privacy India. https://cis­india.org/inter
net­governance/health­privacy.pdf/view

28. Shen, J., Deng, X., and Xu, Z. Multi­security­level cloud
storage system based on improved proxy re­encryption.
EURASIP J. Wireless Commun. Networking, 2019, 277.
https://doi.org/10.1186/s13638­019­1614­y

Proceedings of the Estonian Academy of Sciences, 2020, 69, 3, 266–276276

