
1. INTRODUCTION 
1 

The healthcare industry is one of the largest service­oriented 

sectors in India in terms of revenue and employment. Health 

expenditure spent by the public sector is also on the rise. 

Deloitte Touche Tohmatsu India has forecasted that the 

Indian healthcare industry, worth about US$ 100 billion, is 

expected to rise at a CAGR of 23 per cent to US$ 280 billion 

by 2020 with increased digital adoption. The healthcare 

market can increase threefold to US$ 372 billion by 2022 

[1]. So, government and healthcare institutions are working 

towards the innovative ways of delivering health care 

services efficiently with easing the payment methods. Cloud 

computing offers best solutions to address these challenges 

through unlimited, on­demand services anytime, anywhere. 

Cloud­based healthcare solutions also help hospitals and 

health centres to decrease their investments in infrastructure 

and also decrease maintenance costs. Health cloud environ ­

ment can be extended (scaled up) by adding resources (like 

servers, storage) if the demand is increased or the resources 

can be maintained at the same level or revoked if the demand 

is lower (scaled­down), to fit a dynamic workload. Health ­

care solutions built over cloud can also have inbuilt 

mechanisms like disaster recovery and redundancy to 

mitigate the failures and reduce the impact of business 

downtime. The health cloud acts as a central data repository 

through which efficient access and information sharing is 

achieved. 
There are challenges that come along with the benefits 

of cloud computing. As the patient’s data are sensitive 

when moved to the cloud, the security and privacy of the 

patient are in question. Privacy, in this paper, refers to the 
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right of the individual [26] to know what kind of 

information is disclosed about her/him in public, right to 

know what kind of information about them is stored, with 

whom the information is shared and how it is going to be 

used. For example, the patient’s electronic health records 

(EHRs) are moved to the cloud by the doctor, by the 

hospital, or even by the patient itself. When these EHRs 

are accessed by the data owner (the one who pushes the 

EHRs to the cloud) or by other users for any computation, 

the EHRs have to be decrypted. So, the data is in danger 

while in transit. In case the computations are carried out 

by the cloud service provider (CSP) itself, the data owner 

has to trust the honest­but­curious CSP. Assuring secure 

and private transfer of EHRs to the cloud under public 

access is always a conundrum. The identity of the patients 

must also be preserved in the public domain [27]. 

According to the Health Insurance Portability and 

Accountability Act (HIPAA) [2], the Privacy Rule is to 

assure that individuals’ health information is properly 

protected while allowing the flow of health information 

needed to provide and promote high quality healthcare 

and to protect the public’s health and well being. The 

India’s version of HIPAA act is proposed. It is called 

Health Data Privacy and Security Act (HDPSA). HDPSA 

is being worked out by the Health and Family Welfare 

Department of the Indian Government and is likely to take 

HIPAA of the USA as a model. Currently, ISO27799:2016 

standard is the advisory standard for information security 

management in healthcare solutions for the Information 

Technology ACT 2000 (ITA­2000) and its amend ments. 

Implementation of ISO 27799:2016 covers General Data 

Protection Regulation (GDPR). ITA­2000 has adopted 

several principles also from GDPR [25]. These laws and 

legal regulations emphasize the fact that the technological 

healthcare solutions must guarantee data privacy and 

anonymity of the patients. 
In this paper we intend to build a framework for the e­

health cloud which would securely store sensitive EHRs 

in the cloud by encrypting them. We implement homomor ­

phic encryption (HE) to encrypt EHRs, which allows to 

carry out computations with the encrypted data. The 

computations made on the ciphertext produces an en ­

crypted output, which in turn can be decrypted by the user 

or the data owner who holds the decryption keys. 

Homomorphic encryption (HE) is a type of encryption that 

allows computation on ciphertext, generating an encrypted 

result, which, when decrypted, matches the outcome of the 

operations as if they had been performed on the plaintext. 

The purpose of homomorphic encryption is to allow 

computation on encrypted data [3]. For secure sharing of 

EHRs among trusted entities, proxy re­encryption is used. 

Proxy re­encryption allows proxies to re­encrypt the 

ciphertext in such a way that it can be decrypted by another 

user without using the private key of the data owner [28]. 

2. RELATED  WORKS 

 
Cloud computing has gained much popularity and im ­

portance in recent years. It has become inevitable these 

days in any business model. Healthcare is one of the largest 

revenue generating industries in India. As the entire 

country is on the verge of digitization, providing healthcare 

services online is developing fast. This is easily achievable 

with the advantages of cloud computing but it comes at the 

cost of security and privacy as sensitive patient’s data need 

to be shared on the public platform like the Internet. 
There are plenty of schemes available to enforce 

security of the cloud. One of those schemes is homo ­

morphic encryption (HE). Homomorphic encryption has 

been in the field of cryptography since 1978, when Rivest 

et al. first investigated the RSA algorithm. The concepts 

of homomorphism have been investigated for a long time 

to explore the homomorphic properties in various crypto ­

graphic algorithms and to find ways of designing any 

algebraically homomorphic encryption schemes. The first 

theoretical implementation of fully homomorphic en ­

cryption (FHE) [4] was built by Craig Gentry in 2009 in 

his PhD thesis. Gentry’s homomorphic encryption 

scheme allows user to perform any operations on the 

ciphertext and output is also in the encrypted form. The en ­

crypted result is decrypted to plaintext output with relevant 

key. 
Acar et al. [5] discussed various homomorphic algo ­

rithms available in the literature. They also explained  

somewhat homomorphic encryption (SHE) algorithms 

and partial homomorphic encryption (PHE) which are 

building blocks for achieving practical implementation of 

HE. 
Abbas et al. [6] described various privacy preserving 

approaches for e­health clouds. The paper discussed 

different cryptographic and non­cryptographic approaches 

(access policies) to enforce privacy and security of the 

e­health clouds. 
IBM has been involved in constant research for several 

years in the field of homomorphic encryption. It has 

brought excellent solutions in the process of coupling 

healthcare and machine learning. Bocu and Costache [7] 

have invented a system for managing health record 

metrics from local monitoring devices in IBM cloudlet 

and used Apache Spark for processing the data and HE 

for securing the data. 
Li et al. [8] have introduced multi­hop identity­based 

proxy re­encryption using HE, which can be utilized for 

data forwarding, email forwarding or can be applied for 

access control policies. The authors claim that HE is proven 

secure under learning with errors (LWE) assumption. 
A new parallel implementation of HE for securely 

storing data in the cloud is done by Sethi et al. [9]. This paper 

discusses the implementation of DGHV homomorphic 
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encryption scheme [9] and authors have also executed a new 

procedure to reduce the noise generated by ciphertexts when 

the data gets homomorphically encrypted. 
Chen et al. [10] have utilized NTRU algorithm to 

enforce privacy and avoid intrusion while sharing medical 

data in cloudlets. They split and encrypt the data in many 

ways to strengthen the security. 
Zhang et al. [11] have invented an efficient privacy­

preserving disease prediction (PPDP) scheme in health 

clouds. They have constructed the prediction models using 

a single­layer perceptron algorithm. They have evaluated 

breast cancer and heart disease dataset and tested error 

rate of classifier. 
Zhang et al. [12] stated that HE schemes are the 

perfect solutions for securing outsourced data in the cloud. 

But fully homomorphic encryption (FHE) algorithms are 

prone to statistical analysis with some probability if an 

intruder or malicious cloud deploys attacks by observing 

user’s reactions to results. 
Hassan [13] state that implementation of FHE needs 

enormous computational power to process the encrypted 

data. 
Based on the above findings, we have decided to 

implement SHE schemes which may not require boot ­

strapping technique. SHE is an optimized and less 

functional encryption scheme which can be used for 

securing outsourced computations in the cloud, which is 

more efficient compared to the FHE. 
 
 
3. OUR  CONTRIBUTIONS 

 
First and foremost amongst the public healthcare services 

provided in India are primary health centres (PHC) and 

community health centres (CHCs). The Declaration of 

Alma­Ata [15] is the initiative for the Government of 

India to enhance the services provided by the primary 

health centres (PHCs). In this work we analyse the 

working pattern of PHCs where health workers and health 

assistants work on the fields to collect medical data from 

the population, and they specially focus on the programs 

like infant immunization, anti­epidemic programs, birth 

control, parental care, emergency medical care in addition 

to the regular medical treatment. All the data collected 

from the patients are merely kept in ledgers or stand­alone 

computers. 
The EHRs or other health information exchange 

between PHCs and government hospitals is a time­

consuming process through insecure medium. Sometimes 

they just exchange documents using email. They store 

data in simple excel sheets and share them without any 

security procedures. Government healthcare institutions 

are also using fax machines to share information as it is 

less likely to be attacked compared to the Internet, but 

communication through faxes is a slow process. Instead, 

modern technologies like clouds [10] can be effectively 

utilized to share the health information among hospitals, 

medical researches, doctors and insurance companies. 

Figure 1 depicts secure health cloud model, where the 

cloud security is provided through homomorphic en ­

cryption.  
Our idea is to regularize, format, collect and connect 

the data collected from all primary health centres (PHCs) 

via a secure, privacy­preserving health cloud. This secure 

health cloud gives authorized access to the doctors and 

researchers in the government hospitals (GHs). Moving 

one step further, the GHs can analyse the EHRs to make 

meaningful inferences and predictions. These results can 

be used by the Department of Health and Family Welfare 

(DoHFW) for accurate decision­making. 
The way to accomplish our goal of constructing a secure 

and privacy­preserving health cloud is the following – 

primary health workers and health assistants (immediate 

supervisors) are given a mobile application through which 

they collect data from the patients. The data are collected 

from patients during: i) periodic censuses; ii) visits to 

primary health centres (unusual visits); iii) periodic visits 

(e.g. infant immunization, parental care, etc.); iv) 

vaccination in Polio Medical Camps or other medical 

camps. Each health worker/health assistant is provided with 

encryption keys after an authorization and validation 

process by the key server. The collected data are encrypted 

and moved to the health cloud. The doctors and researchers 

of the government hospitals also hold the keys to access the 

health cloud. In addition, they can perform predictive 

analysis  with the data stored in the health cloud. The 

outcomes of the analysis are sent to the Department of 

Health and Family Welfare (DoHFW) for further actions 
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and decisions. The following scenarios explain the usage 

of this secure health cloud better. If a patient of the PHC 

goes to the government hospital for further treatment, 

patient’s EHRs can be retrieved quickly by the doctor for 

analysing the patient’s history. For example, if a health 

worker records dengue virus in particular area, the results 

of predictive analytics can trigger the Department of Health 

and Family Welfare to make quick decisions such as 

ordering necessary drugs from pharmaceutical companies, 

raising the awareness among people and cleaning the 

sewage stagnations in the affected area by the municipal 

corporation. 
We have evaluated the performance of our system with 

the dataset of 10,000 records from UCI machine learning 

repository. For medical data analytics, 3000 records were 

used as training dataset and 800 records as test dataset. To 

summarize: 
(1) encryption of EHRs uses Boneh, Goh, and Nissim 

   (BGN) cryptosystem and stores data in the cloud – 

     secure storage of data; 
(2) re­encryption of EHRs is made by CSPs using AFGH 

     algorithm – secure sharing of data; 
(3) ticket generation by the data owner for granting access 

     to EHRs – secure access to data; 
(4)  retrieval of EHRs by the trusted user of the e­health 

     cloud – secure  data retrieval.  
The rest of the paper is organized as follows. Section 4 

describes the crux of the entire system (homomorphic 

encryption). Section 5 discusses the overview of the secure 

privacy­preserving health cloud framework. Section 6 

presents the BGN cryptosystem and AFGH re­encryption 

algorithm which we have used to build our system. Section 

7 discusses security analysis of our system through a threat 

model. Section 8 presents the experimental results of our 

system, and the paper ends with conclusions. 
 
 
4. CRYPTOGRAPHICAL  BACKGROUND 

 
4.1. Homomorphic  encryption 

 
Homomorphic encryption (HE) [4] is the scheme that 

allows convoluted calculations to be performed on 

encrypted data without compromising the encryption. In 

mathematics, HE describes the transformation of one 

dataset into another while preserving the relationship 

between elements in both sets. The term is derived from 

the Greek words for “same structure”. Hence the records 

contained in homomorphic encryption system remain the 

similar schema and logical calculations, they are per ­

formed on encoded or decoded records. 
Homomorphic encryption plays a major role in cloud 

computing, allowing the users to store encrypted data in 

public clouds and perform computations in the cloud by 

CSPs with no fear of losing privacy or security. The 

concept of Gentry’s breakthrough introduced computation 

on convoluted computations to be performed on en ­

ciphered data without ever having to decrypt it or accord 

the encryption. Such technique requires vast amounts of 

computational power (up to a trillion times more com ­

pared to what is currently used). Confidential data need 

to be analysed without fear of compromising. That could 

make companies and agencies which now refuse to let 

such data off their servers more comfortable outsourcing 

high­value work. 
Homomorphism is not a new word in the field of 

cryptography. In 1978 Rivest, Adleman and Dertouzos 

[16] published a paper which discussed how homo ­

morphic properties can be used for securing data and 

allowing untrusted parties to work with the data. Later, in 

1982, Rivest, Shamir and Adleman founded RSA Data 

Security. 
In mathematics, a homomorphisms are maps between 

two algebraic objects (such as two rings, or two fields).  

This means that homomorphism between two algebraic 

objects A, B is a function f: A → B which preserves the 

agebraic structure on A and B. If the operations on A and 

B are both addition, then the homomorphism condition is 

 f(a+b) = f(a) + f(b). If A and B are both rings, with 

addition and multiplication, there is also a multiplicative 

condition: f(ab) = f(a)f(b) [3]. 

To understand HE better, let us assume that encryption 

is applied by multiplying the plaintext by 2, and decryption 

operation is the reverse operation, dividing the ciphertext 

by 2, it works as described below: y = Enc(a) = 2a, a = 

Dec(b) = b/2, where a and b are plaintext and ciphertext, 

respectively. The arithmetic operations can be applied on 

the ciphertexts directly, the obtained result can be de ­

crypted to get the actual result.  
The different types of HE schemes available are as 

follows: fully homomorphic encryption (FHE), partial 

homomorphic encryption (PHE) and somewhat homo ­

morphic encryption (SHE). A cryptosystem is said to be 

partially homomorphic if it demonstrates either additive 

or multiplicative homomorphism but not both. Some 

examples of partially homomorphic encryption systems 

are: RSA cryptosystem (exhibits multiplicative homo ­

morphism), ElGamal cryptosystem (exhibits multi plicative 

and exponentiation homomorphism) and Paillier’s 

cryptosystem (exhibits additive homomorphism).  
A cryptographic system that promotes random calcu ­

lations on encrypted texts are said to be fully homo morphic 

encryption and known to be much stronger. Such a scheme 

allows to build programs for certain functions which can be 

run on encrypted inputs to generate the result in encrypted 

form. Homomorphic encryption system doesn’t need to 

decrypt  its inputs. It can be run by a entrusted party without 

revealing its inputs and internal state. Fully homo morphic 
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cryptosystems have great practical impli cations in the 

outsourcing of private computations, for instance, in the 

context of cloud computing. 
Gentry [4] used lattice­based cryptography for demon ­

strating the first FHE scheme announced by IBM on June 

25, 2009. He started with the construction of a somewhat 

homomorphic scheme where he limits the number of 

operations that can be performed on the ciphertext which 

is referred to as evaluation circuits. Then he introduced 

bootstrapping where the system can evaluate its own 

decryption algorithm circuit. Then he finally proved that 

any bootstrappable SHE can be converted into a fully 

homomorphic encryption by squashing the decryption 

circuits and through recursive self­embedding.  
Table 1 shows various homomorphic schemes available. 

Halevi [17] has categorized the FHE constructions into 

three generations. The first generation of FHE constructions 

suffered from a problem of fast­increasing noise. The 

second­generation FHE construc tions enable to control 

noise growth in better ways. These techniques rely on 

limiting the number of operations which result in ‘levelled’ 

schemes of partial homo morphism. This can be further 

converted into FHE schemes through bootstrapping. The 

third generation FHE schemes had asymmetric multi ­

plication, in the sense that the homomorphic multi plication 

c1 ⊗ c2 results in a different ciphertext compared to c2 ⊗ 

c1 (both of which encrypt the same product b1·b2). The 

important factor is that the noise growth is also asymmetric: 

the noise in the left multiplicand has greater influence on 

the result than the noise in the right multiplicand. 
 
4.2. Re­encryption 

 
Re­encryption allows proxy to convert ciphertexts of the 

data owner’s key into ciphertexts of authorized user’s key, 

without revealing the plaintext or using the data owner’s 

private keys. Therefore, data owner can share EHRs to 

any trusted users like other doctors or researchers, without 

sharing the data owner’s private key. This method also 

eliminates data owner’s need to perform any special 

encryption for the trusted user whom he wishes to grant 

access.  
The concept of proxy re­encryption was proposed in 

1998. It allows proxy (a semi­trusted entity) to transform 

the ciphertext of one user (A) into a ciphertext of another 

user (B). Now, user B can decrypt the ciphertext without 

A’s private key. We have used the AFGH algorithm for 

re­encryption. In addition to the standard functions like 

key generation, encryption and decryption, we have also 

defined re­encryption ticket generation and re­encryption.  
Ticket generation is made by the data owner who 

wishes to grant access to the trusted user. Tickets are 

generated by the data owner with the public key of trusted 

user and private key of the data owner. Now, the gen ­

erated ticket is used by the proxy to re­encrypt the EHRs 

which can be decrypted using the private key of trusted 

user.   
 
 
5. FRAMEWORK  OVERVIEW 

 
The proposed secure e­health cloud framework mainly 

focuses on the storage of patient’s EHRs, which are 

sensitive in nature, and on the issue how to share EHRs 

securely between various entities within the system. The 

combination of homomorphic encryption and re­

encryption algorithms is used to securely store and share 

EHRs in the cloud. Figure 2 shows the general archi ­

tecture of the system. The entities which comprise the 

system are the following: (1) key authority (KA); (2) 

cloud service provider (CSP); (3) primary health 

centres/community health centres/sub­health centres 

(PHCs/CHCs/SHCs); (4) government hospitals (GHs); 

and (5) Department of Health and Family Welfare 

(DoHFW). 
(1) Key authority (KA) is a trusted entity which generates 

and distributes key pairs for other entities involved in 

the system. We assume that KA performs authentication 

and checks roles and policies of the user. 
(2) Cloud service provider (CSP) provides unlimited 

storage space to other parties for outsourcing so that 

they can store and manage their data. CSPs are able to 

do computations with the stored data in addition to 

offering storage features. 
(3) PHCs/CHCs/SHCs are set up by the initiative of the 

government to provide public healthcare services. It 

generates medical data which are encrypted and can 

be further used for health data analytics to bring out 

significant references.  
(4) Government hospitals (GHs) also provide healthcare 

services and have more sophisticated facilities 

compared to PHCs, CHCs or SHCs. Government 

Proceedings of the Estonian Academy of Sciences, 2020, 69, 3, 266–276270

Q3E&$01$

&'+(3E.-0'$

6+,&4&2$)I)-*);*&$

$

>)(.-)*$

,04040(E,-+$

&'+(3E.-0'$

K5$R'E)@@&@$:6N$
L5$8*%)4)*$

!5$>)-**-&($

S5$G&')*0,$

T5$%0*@?)22&(FU-+)*-$+(3E.0232.&4$
V5$H)++)+,&F6.&('$

#5$WX)4).0FR+,-3)4)$+(3E.0232.&4$

J5$A)47)(@FY/(-X$+(3E.0232.&4$

B/**3$

,04040(E,-+$

&'+(3E.-0'$

K5$%&'.(3Z2$+(3E.0232.&4$
L5$A%9[$,04040(E,-+$&'+(3E.-0'$2+,&4&$

!5$G%[$,04040(E,-+$&'+(3E.-0'$2+,&4&$

S5$B[$,04040(E,-+$&'+(3E.-0'$2+,&4&$

T5$\N698$,04040(E,-+$&'+(3E.-0'$2+,&4&$

1 @ Z @ -

 

Table 1. List of homomorphic algorithms 

>)(.-)*$

,04040(E,-+$

&'+(3E.-0'$

B/**3$

,04040(E,-+$

&'+(3E.-0'$



hospitals provide more advanced treatment and better 

services, higher level of making diagnosis and 

medication supply. 
(5)   Department of Health and Family Welfare (DoHFW)  

is a department under the government of Tamil Nadu,  

and is responsible for ensuring access to basic public  

health services. It also instigates many family welfare  

programs. 
EHRs are generated in health centres in one of the 

following ways: 
● health worker or health assistant uses a mobile 

application to collect information at patient’s home 

during periodical visits or the census; 
● when a patient visits HC; 
● when patients are enrolled to medical camps, etc.  

These EHRs are homomorphically encrypted and 

moved to the cloud.  
If the doctor wishes to share patient’s EHRs with other 

HCs or GHs, the EHRs are re­encrypted using AFGH 

scheme and then moved to the cloud. If the EHRs are not 

meant for sharing, data are encrypted using BGN algo ­

rithm and stored in the cloud repository. The shared EHRs 

can be used by GHs to quickly diagnose the patient. 

Authorities in DoHFW can perform data analytics to 

generate reports on the performance of HCS which can be 

used for ranking the PHCs and issuing sensible commands 

to the relevant government departments. For example, 

drug stocks can be updated according to the requirements 

of PHCs. Government hospitals can also perform secure 

medical data analytics with EHRs to predict diseases or 

to classify patients depending on the severity of disease, 

frequency of visits, etc. 

6. ALGORITHMS 

 
This section explains the background of the encryption 

process made in our system. Somewhat homomorphic 

encryption (SHE) is used to encrypt the EHRs and then 

the encrypted EHRs are moved to the cloud repository for 

later access.  
 
6.1. Storage  of  EHR 

 
We have implemented the SHE using Boneh, Goh and 

Nissim (BGN) homomorphic public key cryptosystem 

[18]. This algorithm is built on the properties of a class of 

subgroup decision problem. The strength of the algorithm 

relies on the difficulty of deciding whether an element, 

say ‘x’ belongs to a group G of some order p, where p = 

n1n2, also belongs to a subgroup of order n1. The diagram 

shown below (Fig. 3) explains how the EHRs from 

primary health centres are stored securely through BGN 

cryptosystem. 
Key generation: 

(1) Choose two random s­bit primes p1 and p2 and set n = 

      p1p2 ∊ Z, where s is the security parameter. 
(2) Let G be the bilinear group of order n with generator g. 
(3) e: GXG → G1 is the bilinear map.  
(4) Choose two random generators g, u ← G and set h = up2. 
(5) Public key = (n,G,G1,e,g,h). 
(6) Private key = p. 

Encryption: 
(1) Message space consists of integers in the set {0, 1, 2, 

      ... X} with X < p2.  
(2) Choose a random r, 0<r<n­1. 
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(3) encrypt (m) = C = gmhr ∈ G. 
(4) Return C, the generated ciphertext. 

Decryption: 
(1) The plaintext can be generated by decrypting the cipher ­ 

     text using private key p. 
(2) decrypt (C)= Cp = (gmhr)p = (Cp)m.  
(3) Plaintext m is retrieved by computing the discrete log 

     of Cp base ĝ, where ĝ  = gp. 
(4) Return m, the decrypted message. 
 
6.2. Secure  EHR  sharing 

 
To achieve the sharing of EHRs among various health 

centres (HCs), government hospitals (GHs) and other 

government organizations (e.g. DoHFW), Ateniese, Fu, 

Green and Hohenberger (AFGH) [19,20] algorithm is 

used. Figure 4 shows how secure sharing of EHRs is 

accomplished among various entities of the secure e­

health cloud. 
The construction of the AFGH system is also based on 

bilinear groups similar to the BGN algorithm. This AFGH 

cryptosystem is built on the nature of ciphertexts which 

can be moved from one group to another group with 

bilinear transformation. We make use of the AFGH 

algorithm to share the encrypted EHRs to the authorized 

user by CSPs without the need of revealing the owner’s 

private key. CSPs re­encrypt [19] the encrypted EHRS 

with the help of a ticket generated by the owner and public 

key of the user requesting the EHR. This re­encrypted 

EHR can be decrypted by the authorized user using his 

private key. The algorithm description is as follows. 
Key generation:  

(1) Let G1 be a group of prime order q <g> = G1. 
(2) Let α be the random number chosen from Zq

*. 
(3) Private key = k1 =PrK1. 

(4) Public key = gk1 = PuK1. 
(5) For User2, Private key = k2 = PrK2. 
                        Public key = gk2 = PuK2. 

Encryption (data owner): 
(1) Message m ε G2, G2 is the group of prime order q. 
(2) Let r is the random number, r ∈ Zq

*. 
(3) encrypt (m) = C1 = (Zr ·m, grk1). 

Ticket generation (data owner): 

      T = (gk2)1/k1 = gk2/k1. 

      Decryption (data owner):  

      decrypt (c1) = m = Zr·m / e(grk1,g1/k2) = Zr·m / Zr. 

Re­encryption (CSP): 

C1 → CSP → C2. 

C2 = (Zr·m, e(grk1,T)) = (Zr ·m, e(grk1,gk2/k1))  

      = (Zr·m, Zrk2).  

Decryption (authorized user accessing EHR – User2): 

Decrypt (C2) = m = Zr·m (Zrk2)1/k2. 
 
 

7. DISCUSSION 

 
We assume that the CSP is honest­but­curious, as the same 

assumption is made by many researchers according to the 

literature [14,22,23]. CSP honestly follows a procedure to 

store the data using a standard protocol but may curiously 

deduce relevant sensitive private information belonging to 

the patients from the stored data. Moreover, unauthorized 

users or hackers may intrude to access the private information 

without the necessary privileges by compromising the key. 
The threat model is constructed based on the following 

cases. 
Case 1. The intruder may observe all ciphertexts stored 

in the cloud. He can also observe the posted queries. 
Case 2. The intruder may even arbitrarily construct 

some random EHRs and push to the cloud for disease 
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Fig. 3. Storage of EHRs by CHC/PHC/SC. 
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prediction. This is something similar to the chosen­

ciphertext attack (CCA). 
Case 3. The intruder may know EHRs of few patients 

before they are pushed to the cloud. So, this may lead to 

known­plaintext attacks (KPA). But still, the intruder has 

no knowledge about the corresponding ciphertext stored 

in the cloud. 
Our framework protects the confidentiality of EHRs 

stored in the cloud by encrypting EHRs homomorphically. 

The EHRs of particular clients may be lost only if the client’s 

(data owner) device is compromised. Confidentiality of the 

data is maintained, though it is shared in the public cloud. The 

entities of the system may not leak any information as they 

move only encrypted EHRs to the cloud. It is assumed that 

key authority verifies and authenticates that all the participants 

are legitimate trusted users. Our secure EHR storage and 

sharing framework stands well against passive attacks 

preserving the confidentiality of the patients’ sensitive EHRs.  
Key generation. 
Key generation takes some average setup time in the 

data owner’s devices. BGN takes approximately 0.4 ms for 

key generation in 80­bit security mode. Compared to 

Paillier, it is much lower, as Paillier takes more than 1600 

ms. However, BGN cryptosystem takes additional time to 

find the prime numbers and congruences for CRT operation 

to optimize the trade­off between the performance of 

decryption operations.    
Key revocation. 
To grant access to the EHRs, the data owner generates 

a ticket for the trusted user. Generation of this ticket is the 

function of the data owner’s private key and trusted user’s 

public key. Cloud on behalf of the data owner re­encrypts 

the EHR with the generated ticket, which in turn is 

decrypted by the trusted user. If the data owner wants to 

revoke the granted access, he can simply change the key 

and start using new keys for encryption. This key update 

makes the already generated tickets obsolete and it can no 

longer be accessed. If the valid sharing relationships need 

to be maintained, new tickets have to be generated.  
 
 
8. EXPERIMENTAL  RESULTS 

 
We have evaluated our framework in the Amazon Web 

Service (AWS) environment with multiple clients. Client 

systems are PCs configured with Intel Core i3­2120 3.30 
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Fig. 4. Secure EHR sharing between CHCs/PHCs/SCs and GHs/DoHFWs. 
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GHz CPU and 8 GB RAM running Fedora Linux or 

Lenovo K8 with 2.3 GHz dual core processor and 4 GB 

RAM running Android 5.1.1. Amazon T3 instances are 

configured in cloud setup. The AWS accounts provide a 

default amount of storage capacity and one instance of 

Intel Xenon 3.3 GHZ with 8 GB RAM. 
Plaintexts are generated uniformly at random for 16­

bit, 32­bit and 64­bit integers. We have run the encryption 

and decryption operations several times repeatedly and 

recorded the execution time. All the noted numbers are 

calculated with a single running thread. Tables 2 and 3 

show the execution time for encryption and decryption 

operations in the data owner’s device (mobile devices or 

personal computers) and cloud. 
We have compared our framework with the standard 

Paillier cryptosystem [24] and plotted the results. It is 

visible that the BGN cryptosystem outperforms the standard 

Paillier system. In case of Paillier cryptosystem, the time 

for encryption increases exponentially when the size of the 

plaintext increases. Though the BGN scheme also suffers 

in the case of large plaintexts, the performance can still be 

enhanced when we implement batch processing by splitting 

up the plaintext into blocks using the CRT algorithm.  
Figure 5 shows the execution time for encryption and 

decryption operations with BGN vs. Paillier over 16­bit, 

32­bit and 64­bit integers, with both 80­bit and 128­bit 

security level. Paillier has huge computation time increase 

due to its large byte stuffing. However, BGN cryptosystem 

outperforms Paillier cryptosystem approximately 3 or 

more times in case of smaller plaintexts. For decryption, 

BGN has best running time in all settings except for 80­

bit security and 64­bit integers. Paillier has severe drop 

down in performance with 128­bit security probably due 

to big key sizes (from 1048­bit to 3064­bit) subsequently 

resulting in big number of operations. 
The size of the generated ciphertext after re­encryption 

causes a huge impact on the storage capacity and network 

communication constraints. In this regard, AFGH per forms 

better than standard Paillier cryptosystem. The framework 

supports 16­, 32­, and 64­bit integers in storage mode. In the 

80­bit security mode, increasing integer size includes a 

different number of congruences, leading to a ciphertext size 

ranging between 48 and 128 bytes. Paillier, in comparison, 

requires 256 bytes, no matter of the size of the integer. The 

gap is even more noticeable as the protection level rises and 

the network capacity and cloud have negative impact. Figure 

6 shows the 16­bit, 32­bit and 64­bit ciphertext sizes in the 

Paillier and AFGH cryptosystems, respectively. 
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Table 2. Performance summary – data owner’s device 
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Table 3. Performance summary – cloud 
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Fig. 5. (a) Execution time comparison – BGN vs. Paillier – 80 bit;  
(b) Execution time comparison – BGN vs. Paillier – 128 bit. 
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9. CONCLUSIONS 

 
We have presented a secure framework for storing and 

sharing EHRs in the cloud using homomorphic en ­

cryption algorithms. The results are shown and 

com pared with standard Paillier algorithm. Our frame ­

work has shown better results. As we are moving only 

encrypted data to the cloud, it guarantees the confiden ­

tiality of sensitive patient’s data. The curious CSP may 

not meaningfully read the outsourced medical data as it 

is encrypted before moving it to the third party’s CSPs. 

Our secure framework stands well against the passive 

attacks. For the future work, key authority must be 

implemented with the additional capabilities of ensuring 

the roles, policies and trust in the process of auth ­

orization. Various statistical methods and machine 

learning approaches [21] can be applied on the health 

data for disease prediction and to derive other meaning ­

ful inferences. Role­based access control (RBAC) 

policies [24] may be introduced. Also, boot strapping 

techniques can be explored for providing full homo ­

morphism.  
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Fig. 6. Ciphertext size – Paillier vs. AFGH algorithm. Healthcare 
industry in India.
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