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ABSTRACT  
Elastic manipulators are commonly used in industrial applications. Therefore, understanding 
their dynamics is one of the most important engineering challenges. Vibration is a crucial 
phenomenon due to the elastic nature of the manipulators. The accurate positioning and tra -
jectory tracking of elastic manipulators is achieved through vibration control. In this study, 
boundary control of an axially exponentially graded flexible manipulator with exponential 
convergence was investigated. The manipulator was modeled using Euler–Bernoulli beam 
theory. Boundary control inputs were applied at the boundaries of the manipulator. A pro -
portional-derivative boundary controller was designed, and exponential convergence was  
achieved. A Lyapunov function was designed for the stability of the system. Equations were 
solved using the finite difference discretization method. Angle tracking and boundary control 
inputs were obtained.   

1. Introduction
Elastic manipulators are mechanical systems that are frequently used in mod ­
ern industry. Especially over the last 50 years, with the increasing use of 
robotics  in continuous production systems, the control and dynamic behavior 
of mechanical elements have gained importance in engineering applications. 
In this context, controlling the dynamic behavior of rotating elastic manipu ­
lators is one of the subjects examined in detail. There are many studies in the 
literature on the vibration control of rotating manipulators. In the literature, 
manipulators are examined as flexible, rigid, and flexible­rigid structures 
(Dwivedy and Eberhard 2006; Kiang et al. 2015; Liu and He 2018; Lee and 
Alandoli 2020; Subedi et al. 2020). It is known in the control theory that 
modeling manipulators as a rigid body is insufficient in terms of sensitivity. 
In recent years, incorporating the elasticity of manipulators has been the pre ­
ferred approach. Euler–Bernoulli beam theory is mostly used in the modeling 
of elastic manipulators (Wen et al. 2011; Zhang and Liu 2013; Jiang et al. 
2015; Jiang et al. 2017; Liu and Liu 2017; Liu et al. 2017). Manipulator arms 
can be linked as single, double, or multiple. In the literature, it is observed 
that many methods are used in flexible manipulator control, including model­
dependent and model­free methods. There are some studies where boundary 
control methods are preferred because inputs are applied only at the bound ­
aries. 

Exponential convergence (Jiang et al. 2015), LaSalle analysis (Jiang et al. 
2015), state constraints (Jiang et al. 2017), input constraints (Liu et al. 2017) 
and guaranteed temporal performance as boundary control methods (Liu and 
Liu 2017) were used. Previous studies have shown that axially functionally 
graded elastic manipulators have not been examined using the boundary 
control method. The main contribution of this study is that, to the best of the 
authors’ knowledge, it is the first to examine the controls of axially func ­
tionally graded elastic manipulators in the literature. The use of these manipu ­
lators has the potential to provide weight and energy savings both in theory 
and in practice. 
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In this study, the controls of elastic manipulators with axially graded material properties were 
examined using the boundary control method. The beam was modeled as an Euler–Bernoulli beam. 
First, the equations of motion and the boundary conditions for a beam with a mass added at its end 
point were obtained. Then, control and stability conditions  were established using the exponential 
convergence method. 

2. Analysis 
Elastic manipulators are widely used in modern industry. In general, they are moved by applying a 
torque connected to a motor from one end, and they reach a certain position by rotating a pre ­
determined amount. Vibrations occur in the elastic arm due to inertial forces during the initial 
movement and deceleration at the reached position. Properly reducing and eliminating these vi ­
brations is one of the most important robotic control challenges today. Many methods are used to 
control elastic manipulator vibrations. In this study, the boundary control method was used. In this 
method, the vibration control of the elastic manipulator was examined by applying a moment 
determined by the boundary control method from the fixed end of the manipulator and a force from 
the free end. In this study, the elastic manipulator was modeled as a rotating clamped elastic beam. 

Now, consider a rotating elastic manipulator with length L (Fig.1). Here, XOY and xOy cor ­
respond to the global inertia coordinate system and the body­fixed coordinate system attached to 
the manipulator, respectively. F is the control force provided by the actuator, τ(t) is the control 
torque generated by the motor at the shoulder, and θ(t) is the angular position of the motor. A point 
mass payload m is attached at the free end of the manipulator.  

It was assumed that the material properties (Young modulus E and density ρ) were changing 
along the length of the beam. The equations of motion and the boundary conditions of the ma ­
nipulator were obtained using Hamilton’s principle (Meirovitch 2001) as follows:  

 
 
 
 
 
 
 
 

where w is the total displacement of the beam, the sub­index denotes the derivative with respect to 
x and the dot is the time derivative. Ih is the hub inertia. Also, the offset of the robot arm w(x,t) can 
be written as: 

 
 

where y is the elastic deformation of the manipulator. The following equations can be obtained 
using Eqs (4) and (5): wxx(x) = yxx(x), wx(0) = θ, wxx(0) = yxx(0), wxx(L,t) = yxx(L,t), wxxx(L,t) = 
yxxx(L,t). The control goal is:  
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Fig. 1.  Rotating elastic manipulator. 
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In order to achieve the control goal, the following control torque and control force were used: 
 
 
 
 

where Kp (proportional constant), Kd (derivative constant), k are constants, and ua is an auxiliary 
vari able. The tracking error is defined as e = θ – θd. For stability analysis, the following Lyapunov 
function was assumed: 

 

 
where E1 is the sum of the kinetic and potential energy of the manipulator (the first two terms in 
Eq. (9)), E2 is the angle tracking error (the third–fifth terms in Eq. (9)), and Ea is the auxiliary 
function (the last two terms in Eq. (9)). 

The positive definiteness of the function V(t) was shown; however, it is not given here due to  
limited space. Using the time derivative of the Lyapunov function, the following differential 
equations were obtained: 

 
 
The solution of Eq. (10) leads to 
 
 
Since V(0) is limited, V(t) converges to 0 exponentially. The solution of the equation of motion 

was obtained using the finite difference method, and the angular position and deflection equations 
were obtained. The domain of the beam was divided into ten parts and the time interval was divided 
into 10 000 steps.  

3. Results 
In this section, the numerical results for a rotating manipulator are given. The used parameters are 
θd = 0.7 (desired angle in radians), Kp = 50, Kd = 30, k = 20, m = 0.1, L = 1, Ih = 1, ρR = 1, ρL = 1.5. 
The elasticity modulus and the density variations are assumed as 

 

 
where the sub­indices L and R are the material properties at the left and right ends, respectively, 
and βi are the constants. The angular position, angular speed, deflection and deflection rate of the 
manipulator without control are shown in Fig. 2. At t =1 s, a 100 Nm torque is applied. The vibration 
of the manipulator can be observed.  

The deflection and deflection rate of the manipulator are presented in Fig. 3 for various EL and 
ER values. It is observed that the deflection of the beam is higher near the free end (x = 1) for the 
first two seconds. After two seconds, control is applied to the beam, and the vibrations cease. The 
present results are in good agreement with the results by Liu and He (2018). 

Figure 4 shows the deformation at L (free end of the beam). It is observed that the deflection 
y(L, t) is  suppressed to zero within three seconds. The highest deflection is obtained for the uniform 
beam.  

The input torque and end force variations are given in Fig. 5. The time interval was chosen as 
0.3 seconds in order to observe the effect of the material properties. The initial torque values reach 
20 Nm, then decrease to the 0–2 Nm range. The control torque for the EL = 6, ER = 3 beam is the 
highest for the examined materials. The control force initially shows a sharp variation between 
positive and negative values, then settles into the 0–2 Nm range. The beam with ER = 6 has the 
highest control force. This is due to high stiffness at the free end, and high force is required in order 
to decrease vibrations. The use of axially graded beam may decrease the required control torque, 
and this leads to energy saving in applications. 
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Fig. 2.  Deflection and deflection rate (a) and angular tracking, angular speed response (b) of the beam (EL = 3, ER = 6).  
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Fig. 3.  Deflection and 
deflection rate of the beam. 
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4. Conclusion 
The boundary control of an exponentially axially graded flexible manipulator with exponential 
convergence was investigated. The beam was modeled using Euler–Bernoulli beam theory. Force 
and torque boundary control inputs were applied at the boundaries of the manipulator. A 
proportional­derivative boundary controller was designed and the exponential convergence method 
was  applied. A Lyapunov function was designed for the stability of the system. The equations of 
motion were solved using the finite difference method. It was found that the deflection of the axially 
graded beam can be smaller than that of a homogeneous beam, which may provide new design 
opportunities. Using the present formulation, the control of an axially graded elastic manipulator 
can be achieved. This study can be extended to other beam theories and multilink manipulators.  
 
Data availability statement  
All data are available in the article. 
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Fig. 4.  End point displacement of the manipulator. 

 
Fig. 5.  Boundary control input torque and force. 
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Telje suunas eksponentsiaalselt gradueeritud pöörleva tala vibratsiooni 
juhtimine 

Feza Eralp Aydogdu ja Bahar Uymaz 

Elastseid manipulaatoreid kasutatakse sageli tööstuslikes rakendustes. Seetõttu on nende dünaamika mõist-
mine inseneriteaduse üks võtmeküsimusi. Vibratsioon on oluline nähtus, mis tuleneb manipulaatorite pain-
duvusest ehk elastsusest. Elastsete manipulaatorite positsiooni ja trajektoori täpne jälgimine saavutatakse 
vibratsioonijuhtimise abil. Töös uuriti telje suunas eksponentsiaalselt gradueeritud painduva manipulaatori 
piirijuhtimist. Manipulaator modelleeriti, rakendades Euleri-Bernoulli talade teooriat. Manipulaatori piiridele 
lisati piirikontrolli sisendid. Koostati eksponentsiaalse koonduvusega proportsionaaltuletise (vastab vea muu-
tumise kiirusele) piirijuhtimisseade. Süsteemi stabiilsuse tagamiseks kasutati Lapunovi funktsiooni. Diferent-
siaalvõrrandite süsteem lahendati lõplike vahede meetodi abil. Tulemusena saadi nurga jälgimine ja piirijuh-
timise sisendite väärtused.  

 


