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ABSTRACT  
From smart factories to service applications, human-robot interaction is crucial to the 
development of collaborative settings in which humans and robots operate side by side. Since 
robots in shared spaces must take into consideration variables such as human motion 
unpredictability and potential workplace risks, effective risk management is essential. When 
building these systems, striking a balance between factors such as safety, ergonomics, and 
operational flexibility becomes crucial. Misalignment between human purpose and robot 
behaviors might result in accidents or increased injury risks, especially in environments with 
high physical demands. One of the key challenges in human-robot interaction is handling 
uncertainty. 

The main aim of the current study is to introduce a conceptual framework for safety/risk 
analysis, including a hierarchy tree of the risk criteria and risks. Both human- and robot-related 
factors are considered. The multi-criteria decision-making procedure developed for autono -
mous vehicle systems is adapted for risk analysis in human-robot interaction. As a final result, 
the prioritized risk criteria and risks are identified. These results lay the foundation for reducing 
risks in the future. 
 

1. Introduction
Industry 5.0 seeks to surpass traditional manufacturing methods by devel ­
oping interconnected systems that seamlessly integrate machinery, robots, 
workers, products, and consumers. Human centricity, personalization, sus ­
tainability, and trust are among the primary contrasts between Industry 4.0 
and Industry 5.0 [1]. A comprehensive review of human­robot collaboration 
(HRC) within the context of Industry 4.0 is given in [2], identifying key trends 
and challenges. The advantages and limitations of collaborative robots are 
discussed, pointing out flexibility and productivity on the positive side, and 
complexity of integration and safety concerns on the negative side. In [3], 
dynamic risk assessment is performed by applying active response strategies 
in HRC. This approach dynamically assesses the risks associated with human­
robot interactions (HRI) and highlights the critical role of adaptive systems 
in mitigating the risks. A multi­criteria approach to designing HRC systems, 
which balances human and robot capabilities and incorporates ergonomic, 
eco nomic, and operational factors, was introduced in [4]. In [5], multi­criteria 
decision­making (MCDM) is used to analyze factors influencing HRI. By 
leveraging MCDM, this study provides a structured approach to facilitating 
decision­making in complex industrial scenarios. In [6], an approach based 
on a Fuzzy AHP (ana lytical hierarchy process) and Fuzzy TOPSIS (technique 
for order of pref erence by similarity to ideal solution) is developed for 
safety/risk analysis for an automated vehicle shuttle. In [7], a survey is given 
on human behavior modeling techniques within HRC con texts. In [8,9], the 
advancements in HRC are studied, covering safety, ergono mics, efficiency, 
and adaptability. The relationship between lighting and human performance, 
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comfort, and well­being in HRI is explored in [10], while the integration of ergonomics into business 
processes is discussed in [11]. The challenges in aligning vocational training with rapidly evolving 
technologies are discussed in [12]. The complexities of HRI are studied in [13], with focus on trust, 
reliability, and adaptability. The ethical challenges and implications of emerging technologies in 
HRI are explored in [14,15]. A conceptual framework for task performance analysis is given in [16], 
where the main focus is on productivity, time, and accuracy. Obviously, one possible approach is 
to handle task performance and risks simultaneously. 

However, herein, a different approach is proposed, which is based on a decompositon method. 
According to  this approach, first, safety assessment is performed, determining the most critical 
risks. Subsequently, risk mitigation actions are implemented for critical risks, and as the last step, 
performance analysis/optimization is executed. The current study is focused on the first step – safety 
assessment in HRI. A conceptual framework for safety/risk analysis is introduced, including a 
hierarchy tree of the risk criteria and risks. To ensure consistent human safety in HRI, human­ and 
robot­related factors are considered. The current workgroup has long­term experience with the 
development and application of MCDM methods and artificial intelligence (AI)­based optimization 
methods for a wide class of engineering design problems [17–21]. In [18], Fuzzy AHP (FAHP) was 
utilized for environmental, social, and governance risk assessment in phosphorite mining. In the 
following, the FAHP and Fuzzy TOPSIS methods are combined for evaluating the risk criteria and 
risks in HRI. The selection of MCDM is justified by its lower implementation and computational 
complexities compared to other powerful multi­criteria risk analysis methods, such as Monte Carlo 
and global optimization methods. 

2. Conceptual framework for safety/risk analysis 
Obviously, safety is the most critical or one of the most critical issues in any form of HRI. Based 
on the literature introduced above and on the previous experience of the workgroup on safety 
analysis of robotic systems, herein, the conceptual framework for safety/risk analysis is introduced 
(see Fig. 1). 

The description of the human­ and robot­related factors is introduced and discussed in [6,16]. 
The main components of the safety/risk analysis framework are discussed below. 

3. Risk criteria and risks 
The risk criteria and risks are introduced in a number of papers for robotic systems [4–6]. In [16], 
the human­related factors are introduced and analyzed for task performance analysis in HRI. Below, 
risk criteria (Table 1) and risks (Fig. 2) are introduced, proceeding from safety/risk issues in HRI. 

For the sake of conciseness, the risks corresponding to the above criteria are summarized in a 
decision hierarchy tree shown in Fig. 2. 

The risks considered in Fig. 2 are the following: R11 – tiredness and fatigue, R12 – particular 
health problems, R13 – stress, R21 – insufficient skills, R22 – insufficient know­how, R31 – safety 
control system failure, R32 – speed limit exceedance, R33 – minimum distance violation, 
R34 – force/power limits violation, R35 – emergency stop not working, R41 – bad previous 
experience, R42 – negative prejudice, R43 – lack of trust,  R44 – vigilance, R45 – unpredictable 

                                                                                                                                                                                           

 
Fig. 1.  Conceptual framework for safety/risk analysis. 
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robot motion, R46 – misplaced trust, R47 – overreliance on robots, R51 – privacy violations, and 
R52 – data misuse, non­compliance with regulations. 

4. Evaluation of criteria and risks 
Herein, powerful AI­based MCDM methods are utilized for the prioritization of the criteria and 
risks. Particularly, FAHP with triangular fuzzy numbers (TFN) is utilized for the prioritization of 
the criteria, and Fuzzy TOPSIS is used for the prioritization of the risks. In the following, the 
evaluation procedure introduced in [6] for the prioritization of the risks of an automated vehicle 
shuttle is adapted for risk analysis in HRI. 
 
4.1. Evaluation of the risk criteria 
The evaluation of the risk criteria is based on the pairwise comparison of the criteria using linguistic 
variables. Implementing fuzzy numbers fundamentally simplifies the work of decision­makers 

Risk criterion Description 
Occupational safety and health (C1) 
[8,9,22,23] 

Occupational safety and health (OSH) in HRI covers the mental and physical safety and 
the ergonomic suitability of robots for operators who interact in common workplace 
environments. This criterion helps to prevent workplace injuries and reduce health risks. 
These standards provide a framework for improving workplace safety, including  
interactions with robots. 

Professional preparation (C2) 
[9] 

Professional preparation covers continuous learning and skill development in order to 
keep employees qualified and competitive as robotic systems and AI are in continuous 
development. Employees must learn how to work collaboratively with robots and 
understand robotic behaviors. 

Physical issues (C3) 
[8,10,11] 

Physical issues in HRI cover physical safety and comfort of humans working in a 
common workplace. Particularly, collision or maximum speed avoidance, force 
limitations violations, etc., are considered. The environmental factors are included as  
well (noise, lighting). The workplace design should allow for smooth HRC. 

Psychological issues and trust (C4) 
[12,13] 

Trust in HRI mirrors the acceptance of robots in human environments, particularly in a 
common workplace. Here, a lack of trust can lead to limited cooperation in HRI, but 
excessive trust  may lead to unnecessary safety risks. Psychological issues in HRI are 
related to mental stress, human acceptance of robotic systems, the influence of robotic  
systems, and uncertainty in the robot’s actions. 

Ethical and legal issues (C5) 
[14,15] 

Ethical and legal issues in HRI address moral principles and legal frameworks covering 
the development and application of robotic systems. The risks related to ethical and legal 
issues include privacy violations, data misuse, and non-compliance with legal standards. 

Table 1. Human-robot interaction: risk criteria 

 
Fig. 2.  Decision hierarchy tree for safety/risk analysis in HRI. 



(a group of seven industry and academic experts), replacing fixed­point estimates with interval 
estimates. A sample of one decision­maker’s estimates is given in Table 2 (a detailed description of 
the linguistic variables used is given in [18]). 

According to the FAHP procedure introduced in [6], the estimates given in Table 2 are converted 
to fuzzy numbers and aggregated by utilizing the geometric mean (see Table 3). 

Next, the fuzzy comparison values ri and fuzzy weigths wi are computed: 
 
 
 

where ɛ and ⊗ stand for the addition and multiplication operators with triangular fuzzy numbers, 
rij and Ncrit are the fuzzy comparison matrix elements and the number of criteria, respectively. The 
centroid method is utilized for defuzzification. The ranking is performed based on crisp weights. 
The results are given in Table 4. 
 
4.2. Evaluation of the risks 
In the following, the Fuzzy TOPSIS approach introduced by the authors in [6] is utilized for risk 
evaluation. In compact form, the main steps of the risk evaluation procedure can be given as follows: 
● Pairwise comparison of risks vs. criteria in terms of linguistic variables 
● Transforming linguistic values to fuzzy numbers and computing the aggregated matrix using 

the arithmetic mean 
● Computing the weighted normalized decision matrix using the fuzzy weights of the criteria 
● Computing the distances of each risk to the positive and negative ideal solutions, and the 

similarity index 
● Ranking risks based on the similarity index 

The distances to the positive and negative ideal solutions, the similarity index, and the ranks of 
the risks are presented in Table 5 as the final results. 
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 C1 C2 C3 C4 C5 
Occupational safety and health (C1) EqP MP 1/M-SP SP SP-VSP 
Professional preparation (C2) 1/MP EqP 1/M-SP SP SP 
Physical issues (C3) M-SP M-SP EqP SP SP-VSP 
Psychological issues and trust (C4) 1/SP 1/SP 1/SP EqP MP 
Ethical and legal issues (C5) 1/SP-VSP 1/SP 1/SP-VSP 1/MP EqP 

Table 2. Pairwise comparison matrix of risk criteria 

 C1 C2 C3 C4 C5 
C1 (1.00,1.00,1.00) (2.12,3.17,4.20) (0.26,0.32,0.42) (3.84,4.84,5.85) (4.99,6.01,6.92) 
C2 (0.24,0.32,0.47) (1.00,1.00,1.00) (0.21,0.27,0.37) (3.68,4.72,5.75) (3.99,5.02,6.04) 
C3 (2.38,3.12,3.83) (2.74,3.77,4.79) (1.00,1.00,1.00) (3.34,4.36,5.37) (4.94,5.95,6.96) 
C4 (0.17,0.21,0.26) (0.17,0.21,0.27) (0.19,0.23,0.30) (1.00,1.00,1.00) (1.92,2.95,3.96) 
C5 (0.14,0.17,0.20) (0.17,0.20,0.25) (0.14,0.17,0.20) (0.25,0.34,0.52) (1.00,1.00,1.00) 

 

 
Table 3. Aggregated pairwise comparison matrix in terms of fuzzy numbers 

  Aggregated fuzzy comparison values Fuzzy weights Crisp weights Normalized crisp weights Rank 
C1 (1.60,1.97,2.35) (0.19,0.28,0.41) 0.29 0.28 2 
C2 (0.94,1.15,1.43) (0.11,0.16,0.25) 0.17 0.17 3 
C3 (2.55,3.14,3.69) (0.30,0.45,0.64) 0.46 0.44 1 
C4 (0.40,0.49,0.61) (0.05,0.07,0.11) 0.07 0.07 4 
C5 (0.24,0.29,0.35) (0.03,0.04,0.06) 0.04 0.04 5 

 

 
Table 4. Fuzzy and crisp weights of the criteria, final ranks 
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5. Conclusion
 While the performance and risk analysis of robotic systems has been extensively studied, the 

analysis of human­robot interaction in terms of performance and risk remains comparatively less 
explored. 

The current study is focused on safety assessment in HRI. The main contribution of this paper 
is the development of a conceptual framework for safety/risk analysis, involving the selection of 
risk criteria and risks in HRI and their evaluation. The Fuzzy AHP­ and Fuzzy TOPSIS­based risk 
evaluation procedure developed provides a simple and powerful tool for risk prioritization. The 
values of the similarity indices provide more information than simply the ranking of risks, as they 
also reflect differences in the magnitudes of risks (see Table 5).
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Inimese ja roboti koostöö: ohutuse ja riskianalüüsi kontseptuaalne  
raamistik 

Johannes Matsulevitš, Jüri Majak, Martin Eerme, Martinš Sarkans, Olga Dunajeva, 
Kadri Kristjuhan-Ling, Tõnis Raamets ja Vjatšeslav Kekšin 

Tarkade tehaste ja teenuste valdkonnas, kus inimesed ja robotid töötavad kõrvuti, on nende koostöö aren-
damine esmatähtis. Tõhus riskijuhtimine on hädavajalik, kuna robotid peavad arvestama inimeste liikumise 
ja potentsiaalsete töökeskkonna ohtudega. Selliste süsteemide loomisel on väga oluline ohutuse, ergo -
noomika ja paindlikkuse vahelise tasakaalu leidmine. Ebakõla inimese liikumise ja roboti käitumise vahel võib 
põhjustada õnnetusi või suurendada vigastuste riski. Üks keeruline aspekt inimeste ja robotite koostöös on 
määramatusega arvestamine. 

Artiklis tutvustatakse ohutuse ja riskianalüüsi kontseptuaalset raamistikku, mis sisaldab riskikriteeriumide 
ja riskide hierarhiat. Arvesse võetakse nii inimeste kui ka robotitega seotud tegureid. Autonoomsete sõidukite 
jaoks välja töötatud multikriteriaalset otsustusprotsessi kohandatakse inimeste ja robotite koostöö riskiana-
lüüsiks. Lõpptulemusena saadakse olulisuse alusel järjestatud kriteeriumid ja riskid, mis loob võimaluse riskide 
vähendamiseks tulevikus. 
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