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ABSTRACT  
To study the flight dynamics of fragments, the following input data are considered: initial 
coordinates, velocities, air density, the fragment’s exposed area, drag coefficient, and mass. 
The parameters for the fragmentation process are determined through experimental studies 
and finite element analysis of the natural fragmentation of a high-explosive projectile. The 
simu lation of the natural fragmentation of an explosive projectile shell leverages the finite 
element method, and stochastic failure theory is applied using the Ansys Autodyn software. 
The point mass trajectory model is employed to predict the trajectory of a fragment moving 
under the impact of drag and gravitational force. In the current study, the main focus was on 
the development of the methods and tools for implementing trajectory models with varying 
drag coefficients for different flow speeds. Different approaches for determining drag coef -
ficient are discussed. The nonlinear trajectory model was converted to a linear system of dif -
ferential equations by employing quasi-linearization. The linear system of differential equ ations 
was solved using the Haar wavelet method. The fragment trajectory model with im proved 
accuracy can be considered as the final result of the study. 
 

1. Introduction
The study of fragment flight dynamics offers a means to evaluate the hazards 
posed by rapidly moving fragments dispersed into the surroundings. The 
associated risks are contingent on the fragment density per unit volume and 
the kinetic energy of the fragment under investigation at the specific location. 
The initial fragmentation parameters are dictated by the object causing the 
fragmentation and the nature of its formation. Fragmenting objects can range 
from fuel tanks and explosive devices to vehicle parts, with the formation 
typically resulting from explosions, collisions, or fractures. 

The study of fragments resulting from explosions covers simulations, 
experiments, and statistical models. Collecting the data required for fragment 
flight from experiments, such as mass, dimensions, velocities, accelerations, 
and direction vectors, is both resource­ and labor­intensive [1–3]. On the other 
hand, statistical models, while useful in certain scenarios based on specific 
experiments, may not always be suitable for a given case [4].  

Various numerical methods have been introduced for the analysis of 
the fragments of metallic objects, including the probabilistic mass method 
by Djelosevic and Tepic [5], the arbitrary Lagrangian–Eulerian approach 
by Ahmed et al. [2], and the stochastic failure theory adapted by Ugrčić [6]. 
The results from these simulations can serve as initial data for the point 
mass trajectory model, which is described by a nonlinear system of ordinary 
dif ferential equations (ODE). To solve the nonlinear ODE system, Kljuno 
and Catovic [7] as well as Szmelter and Lee [8] employed the Runge–Kutta 
method, while Djelosevic and Tepic [5] utilized the Taylor series­based 
method. 

The drag coefficient plays a crucial role in determining the trajectory of 
fragments due to its direct effect on the aerodynamic resistance experienced 
by a fragment moving through the air. Experimental studies, finite element 
simulations, and numerical simulations have demonstrated that the drag 
coefficient value is directly related to flying object variables, such as shape, 
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size, and roughness [4,9–16]. Fragment shape plays a crucial role in determining the drag coefficient 
due to its impact on flow separation and turbulence generation around the fragment [7]. Irregularly 
shaped fragments, typical of high­explosive projectile breakups, exhibit complex aerodynamic 
behavior compared to standard geometric shapes, such as spheres or cylinders [8]. Recent studies, 
including those by Hu et al. [17] and Seltner et al. [18], have refined empirical models for drag co ­
efficient estimation under varying flow conditions, expanding on foundational work by Mott [11] 
and Grady and Kipp [12]. 

In the current study, the finite element model developed for the simulation of natural frag ­
mentation of a high­explosive projectile is combined with the Haar wavelet approach for the solution 
of the nonlinear trajectory model.  

2. Methodology 
To analyze the flight dynamics of fragments, first, it is necessary to establish certain parameters. 
These include the initial coordinates, velocities relative to these coordinates, air density, the frag ­
ment’s exposed area, drag coefficient, and mass. The parameters for the fragmentation process are 
de termined through an experimental study and finite element analysis of the natural fragmentation 
of a high­explosive projectile. 

The simulation of the natural fragmentation of an explosive projectile shell leverages the finite 
element method and stochastic failure theory and is carried out using the Ansys Autodyn software. 
The arbitrary Lagrange–Eulerian approach, in conjunction with the Johnson–Cook strength and 
fracture method, is employed to simulate fragmentation and the subsequent dispersion of fragments 
into the surrounding air. Numerical analysis is performed to ascertain the fragment’s initial position, 
velocity, mass, and volume. The simulation’s coordinate system is derived from the computer­aided 
design model and is transformed to align with the situation’s coordinate system. Figure 1 provides 
a visualization of the simulation’s geometry, the coordinate system, and the explosion­induced 
scattering of fragments. 

In the simulation, a projectile with a casing that weighed 38 kg and had a diameter of 155 mm 
was investigated. The simulation spanned a duration of 0.43 ms, during which roughly 2500 
fragments were formed. These fragments had masses varying from 0.3 × 10–5 kg to 0.5 kg, velocities 
in the range of 250 m/s to 1400 m/s, and volumes from 3 mm3 up to 6.6 × 104 mm3. The specific 
parameters for chosen fragments can be found in Table 1. The fragments with high kinetic energy 
were selected to ensure sufficient flight path. 

The effects of drag and gravitational forces dictate the movement of fragments through the air. 
This movement can be modeled by employing the point mass trajectory model based on Rayleigh’s 
drag equation [4,13,19]. 
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Fig. 1.  (a) Projectile shell and (b) shell fragmentation. 
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where V is the velocity of the fragment and equates to √x́ 2 + y´2 + z´2 in which x́ , y´ and ź  are 
velocities in each direction. The apostrophe (´) is defined as the derivative of a function with respect 
to time. Also, ρ is the air density, g is the gravitational acceleration, and CD is the drag coefficient, 
which can be presented as 

where FD is the drag force, which acts on fragments due to their relative motion against the 
surrounding air. For accurate modeling, CD must be determined based on fragment shape, speed, 
flow regime, and orientation relative to the airflow. However, in the case of irregularly shaped 
fragments, determining an accurate function to represent CD could be quite challenging; thus, 
estimating the drag coefficient value range could be the next best option in determining the distance 
that a fragment will travel at any moment.   

Irregular fragments from explosive events often fall into shape categories such as parallelepiped, 
box, wedge, and mountain ridge geometries, each with varying CD profiles based on experimental 
data. Each shape category has a unique drag coefficient range, which varies based on how the 
fragment interacts with airflow [4]. Fragments with a larger frontal area perpendicular to the flow 
direction generally experience higher drag coefficients.  

After assigning a value for the drag coefficient, the nonlinear system of differential equations 
presented in Eq. (1) is transformed into a linear one by applying the quasilinearization technique. 
In this study, the Taylor series expansion has been utilized for this purpose [20]. The linear system 
of differential equations is solved using the Haar wavelet method (HWM) [21–23], and the influence 
of the variation CD on fragment trajectory is analyzed. Future studies are planned to refine the 
modeling and design of the fragment by utilizing powerful AI­based methods and tools [24–29]. 

3. Results 
This section investigates the effect of the drag coefficient on the fragment trajectory. For this study, 
the value of the air density is chosen to be 1.20 kg/m3 and the gravitational acceleration 9.81 kg/s2. 
For two fragments, fragment No. 1 and No. 6, with the initial values presented in Table 1, the effect 
of various drag coefficient values is presented in Table 2. According to the initial values, the 
fragments start traveling through the air at supersonic speeds, and the drag coefficient values are 
chosen based on [4] in the range of 0.6 to 2.07.  

As can be observed, the drag coefficient can significantly change the location and speed of the 
fragment after 2.5 seconds. As expected, by increasing the drag coefficient value, the fragments 
slow down faster and remain closer to the initial point. This assessment could be a crucial aspect of 
the safety analysis. This matter is presented visually in Fig. 2.  

It should be mentioned that the fragments start within a supersonic speed range and fall into 
the subsonic range. Hence, it would be more accurate to consider the drag coefficient as a function 
that is dependent on the Mach number and fragment size. However, introducing the drag coefficient 
as a function will create more complexity to the problem due to the irregularity of the fragment’s 
shape and roughness. 
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Fragment No. �� 
� 	� ���  
��  	��  Mass Volume 
1 –0.175 –0.384 1.093 –101.9   –994.1   444.9 6.88E-04 8.95E-06 
2 –0.671   0.434 0.849 –337.4   1000.9   346.0 5.36E-04 6.87E-06 
3 –0.621   0.415 1.121 –470.2     995.8   879.7 6.13E-04 7.85E-06 
4 –0.622 –0.415 1.120 –471.4   –997.2   879.1 6.13E-04 7.85E-06 
5 –0.455   0.569 0.840      –78.9   1353.4   203.5 5.06E-04 6.48E-06 
6 –0.531   0.533 0.794 –156.4 1246.47   149.1 4.77E-04 6.11E-06 
7 –0.176   0.351 1.134 –156.1     916.1   518.7 3.89E-04 4.98E-06 
8 –0.576 –0.102 1.295 –548.1   –249.5 1210.6 1.40E-03 1.79E-05 

Table 1. The initial position and velocities of selected fragments; unit system (m, kg, s) 

�� =
���
����
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4. Conclusion 
The numerical modeling of fragment flight dynamics is performed, covering the whole cycle from 
experimental study and finite element analysis of the natural fragmentation of a high­explosive 
projectile to the development of a nonlinear trajectory model, quasilinearization, and the solution 
of a system of linear differential equations using the Haar wavelet method. The results obtained for 
different drag coefficient values are visualized in Fig. 2.   

The planned future studies include the development and implementation of artificial neural 
networks and Haar wavelet­based models for describing the behavior of the drag coefficient. 
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 CD � � � �� �� �� 

Fr
ag

m
en

t N
o.

 1
   0.6   –82.7056  –806.6848 342.1496 –14.5318 –142.1023 49.2556 

  1.27   –52.5861  –513.6224 211.9643   –7.4630   –73.2175 19.1801 

  1.45   –48.2381  –471.3466 193.1371   –6.6050   –64.8564 15.5232 

  1.72   –43.0582  –420.9962 170.6929   –5.6356   –55.4098 11.3882 

  2.07   –37.9570  –371.4284 148.5714   –4.7369   –46.6525   7.5510 

Fr
ag

m
en

t N
o.

 6
   0.6 –108.2442    863.1932   85.4217 –17.3385   139.2097     2.91141 

  1.27   –67.0990    537.4383   47.5523   –8.6303     69.9509 –4.7025 

  1.45   –61.2927    491.5597   42.1939   –7.5927     61.6974 –5.6079 
  1.72   –54.4169    437.2727   35.8440   –6.4252     52.4097 –6.6243 

  2.07   –47.6887    384.2037   29.6261   –5.3474     43.8335 –7.5581 
 

Table 2. Position and velocities of two fragments with various drag coefficient values at t = 2.5 s  

 
Fig. 2.  Trajectory model of fragment No. 6 for different drag coefficient values. 
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Fragmentide lennudünaamika numbriline modelleerimine 

Lenart Kivistik, Marmar Mehrparvar, Martin Eerme, Veiko Dieves ja Jüri Majak 

Töös uuritakse fragmentide lennudünaamikat alates fragmentatsiooniprotsessi modelleerimisest kuni lennu -
trajektoori määramiseni. Fragmentatsiooniprotsessi parameetrid on määratud eksperimentaalselt. Protsessi 
simuleerimiseks on kasutatud lõplike elementide meetodit rakendustarkvaras Ansys Autodyn. Fragmentatsiooni 
ja sellele järgneva fragmentide ümbritsevasse õhku hajumise modelleerimiseks on rakendatud Lagrange–Euleri 
meetodit koos Johnson–Cooki tugevus- ja purunemismudelitega. Fragmendi trajektoori modelleerimisel on ka-
sutatud punktmassi trajektoorimudelit. Mittelineaarne trajektoorimudel on teisendatud lineaarseks diferent-
siaalvõrrandite süsteemiks kvasi-lineariseerimise abil. Lineaarse diferentsiaalvõrrandite süsteemi lahendami-
seks on rakendatud Haari lainikute meetodit. Uuring keskendub meetodite ja tööriistade arendamisele 
trajektoorimudelite rakendamiseks, kus takistustegur varieerub sõltuvalt voolukiirusest. Analüüsitakse erinevaid 
lähenemisviise takistusteguri määramiseks. Lõpptulemusena esitatakse täpsem fragmendi trajektoorimudel. 

 


