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ABSTRACT  
Functionally graded materials (FGMs) are innovative structures created by combining the 
properties of different materials. Functionally graded porous materials (FGPMs) are materials 
in which the size, shape, distribution, and density of pores change gradually in a specific di -
rection, providing lightness and high energy absorption. Triply periodic minimal surface (TPMS) 
structures, especially when used in the inner layers, optimize load distribution and en ergy 
absorption characteristics. In this study, bending analyses of a simply supported func tionally 
graded porous sandwich beam were performed. The surface layers of the beam con sist of an 
isotropic material, while the core layer is made of a functionally graded TPMS structure. In this 
study, it is assumed that the material properties of the functionally graded porous surface and 
core layers vary according to the force law distribution along the thickness. The equations of 
motion of the beam were derived using Hamilton’s principle. Solutions were obtained in closed 
form using the Navier method. Numerical results were obtained by varying the density and 
the volume fraction index, the thickness-to-length ratio, and the thickness ratios of the core 
and surface layers. 
 
 

1. Introduction
Functionally graded materials (FGMs) are advanced structures that seamlessly 
integrate the properties of different materials, offering tailored mechanical 
and structural advantages. In particular, functionally graded porous materials 
(FGPMs) enhance lightness and energy absorption by varying the size, shape, 
and distribution of pores in a specific direction (Demirhan and Taskin 2019). 
When combined with triply periodic minimal surface (TPMS) structures in 
the inner layers, these materials optimize load distribution and energy ab ­
sorption, making them ideal for innovative engineering applications. Recent 
studies have further explored various aspects of TPMS structures to under ­
stand their unique mechanical and dynamic behaviors. For instance, Kurup 
and Pitchaimani (2023) explored the aeroelastic flutter characteristics of 
functionally graded TPMS beams, highlighting their unique dynamic be ­
havior. Qiu et al. (2025) conducted an in­depth analysis of the energy dis ­
sipation characteristics of sand­filled TPMS lattices under cyclic loading, 
providing significant insights into their structural resilience. Similarly, Ejeh 
et al. (2022) focused on the flexural properties of functionally graded and 
hybridized AlSi10Mg TPMS latticed beams, showcasing the potential of these 
materials for load­bearing applications. Tran et al. (2024) presented a ground ­
breaking investigation of three novel computational modeling frameworks 
tailored for graphene platelet­reinforced functionally graded TPMS (GPLR­
FG­TPMS) plates. Nguyen­Xuan et al. (2023) complemented this research 
by modeling FG­TPMS plates to evaluate their performance under varying 
conditions. Viet et al. (2022) extended the scope by examining the mechanical 
properties and wave propagation characteristics of TPMS lattice structures. 
Finally, Lin et al. (2022) investigated the sound insulation capacities of TPMS 
sandwich panels, employing theoretical, numerical, and experimental ap ­
proaches to emphasize their acoustic benefits. 

In this study, the material properties of the functionally graded porous 
surface and core layers are assumed to vary according to the force law 
distribution along the thickness. The equations of motion were derived using 
Hamilton’s principle, and closed­form solutions were obtained via the Navier 
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method. Numerical analyses were conducted by varying parameters such as porosity coefficient, 
thickness­to­length ratio, and the thickness ratios of the core and surface layers. In the literature, 
no previous studies have presented results for TPMS­based beams. The results for TPMS­based 
beams are presented for the first time in this study. 

2. Basic equations and assumptions 
In this study, FG­TPMS sandwich beams were analyzed. Among sheet­based architectural designs, 
the gyroid model was selected and examined (Fig. 1). The mathematical representations of this model 
are provided in Eqs (1) and (2) (Nguyen­Xuan et al. 2023). 
 
 
 
 
where t is the TPMS control parameter, ni is the quantity of unit cells and li is the length. 

In this study, the density of the functionally graded TPMS structure is assumed to vary in a single 
pattern: symmetric. Additionally, an approach based on these patterns is used for the variation of 
the density of the sandwich structure. 
For sandwich plates: 
 
 

ρmax and ρmin represent the highest and the lowest densities of the structure, respectively. V(z) is 
the volume fraction function, defined as follows: 
 
 
 
 
 

The mechanical properties of the FG­TPMS plates (Table 2) are characterized using the two­
phase fitting method introduced by Nguyen­Xuan et al. (2023). 

In Table 1, the relative elasticity modulus, relative shear modulus, and Poisson’s ratio of the 
TPMS structures are expressed as functions of density. For the FG­TPMS sandwich structures given 
in Eqs (3) and (4), it is assumed that the upper and lower surface layers are isotropic. As a result, 
the elasticity modulus, shear modulus, and Poisson’s ratio remain constant in these layers due to 
the constant density. However, within the FG­TPMS core of the sandwich structures, these properties 
vary with density across the thickness. 
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Gyroid:−𝑡 ≤ sin⁡(𝜔1x)cos⁡(𝜔2y) + sin⁡(𝜔2y)cos⁡(𝜔3z) + sin⁡(𝜔3𝑧)cos⁡(𝜔1x) ≤ 𝑡,       (1)𝜔𝑖 = 2𝜋𝑛𝑖𝑙𝑖 ⁡⁡𝑖 = 1,2,3,                                                             (2)

Fig. 1.  Sheet-based architecture gyroid models: (a) 20–50, 
(b) 20–80, (c) 80–100, and (d) sandwich beam (Al-Ketan 
and Abu Al-Rub 2021). 

𝜌 = (𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛) × 𝑉𝐴(𝑧) + 𝜌𝑚𝑖𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜌 = (𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛) × 𝑉𝐵(𝑧) + 𝜌𝑚𝑖𝑛 .             .          (3),

 𝑉𝐴(𝑧) = {⁡⁡⁡⁡ 0( 𝑧−ℎ2ℎ3−ℎ2)𝑛1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 𝑉𝐵(𝑧) = {⁡⁡⁡⁡ 0(1 − 𝑐𝑜𝑠 ( 𝜋𝑧ℎ3−ℎ2))𝑛1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ℎ1 ≤ 𝑧 ≤ ℎ2ℎ2 < 𝑧 ≤ ℎ3ℎ3 < 𝑧 ≤ ℎ4       (4) , , .
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The hyperbolic shear deformation beam theory is a framework developed to analyze the mech ­

anical behavior of planar sandwich structures. This theory aims to provide more accurate results by 
properly accounting for the shear stresses on the upper and lower surfaces of the beam. 

The displacement field of the hyperbolic shear deformation beam theory is expressed in Eqs (5) 
and (6): 

According to the hyperbolic shear deformation beam theory, the non­zero normal (εx) and shear 
(γzx) strains at any point of the beam are related to the unknown displacement variables εx0, kxb, kxs, γzx0 
as expressed in Eqs (7) and (8), and occur at the points where they are related as follows: 

The stress­strain relationship at any point in the k layer of the beam is given by the one­
dimensional Hooke’s law in Eq. (9): 

The equations of motion for the FG sandwich beam based on the hyperbolic shear deformation 
theory are derived using Hamilton’s principle. In FG sandwich beams, Hamilton’s principle serves 
as the fundamental principle for deriving the equations of motion, expressing the condition where 
variations in the total energy of the system are zero: 
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Table 1. Layer types and height values of h1, h2, h3, h4 

Table 2. Mechanical properties of sheet-based TPMS structures 

 
Pattern Case H/.- H/,+ * Pattern Case H/.- H/,+ * 

A A1 0.20 0.5 1.0 B B1 0.20 0.5 0.561 
A2 0.20 0.8 3.0 B2 0.20 0.8 1.757 
A3 0.25 1.0 6.5 B3 0.25 1.0 3.943 

Table 3. Maximum and minimum values of the density and volume fraction exponents for the three cases 
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The change in the strain of energy is expressed by Eq. (11): 

In Eq. (12), Nx represents the normal force; Mc is the bending moment, similar to classical beam 
theory; Ms is the higher­order moment associated with shear deformation; and Q is the shear force. 
These quantities are calculated by properly integrating the stresses that occur across the beam 
thickness. 

The matrices A, B, C, D, E, F, and H are defined in Eq. (13). These matrices represent the 
properties and geometry of the beam. 

The change in potential energy (δV) due to the load q and the axial load N0 is expressed in 
Eq. (14): 

The change in kinetic energy (δK) is obtained using Eq. (15): 

The moment of inertia coefficients IA, IB, IC, ID, IE, IF are defined in Eq. (16): 

The equations of motion are obtained by summing the coefficients δu0, δw0, and δϕ0 and setting 
them equal to zero. This is done by integrating Eq. (10) using partial integration: 

By substituting the stress results (Nx, M
c, M s, Q) from Eq. (12) into Eq. (17), the following 

equations of motion can be obtained in terms of the unknown displacement variables (u0, w0, ϕ): 
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𝛿𝑈 = ∫ ∫ ∫ (𝜎𝑥𝑘𝛿𝜀𝑥ℎ2−ℎ2 + 𝜏𝑧𝑥𝑘𝑏2−𝑏2𝐿0 𝛿𝛾𝑧𝑥)𝑑𝑧𝑑𝑦𝑑𝑥 = ∫ (𝑁𝑥 𝑑𝛿𝑢0𝑑𝑥 − 𝑀𝑐 𝑑2𝛿𝑤0𝑑𝑥2 + 𝑀𝑠 𝑑²𝛿𝜙𝑑𝑥² + 𝑄𝛿𝜙) 𝑑𝑥.𝐿0         (11)

{𝑁𝑥𝑀𝑐𝑀𝑠𝑄 } = 𝑏 ∫ {  
  𝜎𝑥𝑘𝜎𝑥𝑘𝑧𝜎𝑥𝑘𝑓𝜏𝑧𝑥𝑘 𝑓′}  

  = [𝐴 𝐵 𝐶 0𝐵 𝐷 𝐸 0𝐶 𝐸 𝐹 00 0 0 𝐻]
ℎ2−ℎ2 ⁡{  

  𝜀𝑥0𝑘𝑥𝑏𝑘𝑥𝑠𝛾𝑧𝑥0 }  
  

.           (12)

(𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹) = 𝑏 ∫  ℎ2−ℎ2  𝐸𝑘(𝑧)(1, 𝑧, 𝑓, 𝑧2, 𝑓𝑧, 𝑓2)𝑑𝑧,  𝐻 = 𝑏 ∫  ℎ/2−ℎ/2  𝐺𝑘(𝑧)𝑔2𝑑𝑧.   (13)

𝛿𝑉 = ∫  𝐿0 (𝑞𝛿𝑤 + 𝑁0 𝑑𝑤𝑑𝑥 𝑑𝛿𝑤𝑑𝑥 ) 𝑑𝑥.     (14)

𝛿𝐾 = ∫  𝐿0  ∫  𝑏/2−𝑏/2  ∫  ℎ/2−ℎ/2  𝜌(𝑧) (𝑑2𝑢𝑑𝑡2 𝛿𝑢 + 𝑑2𝑤𝑑𝑡2 𝛿𝑤) 𝑑𝑧𝑑𝑦𝑑𝑥⁡= ∫  𝐿0  (𝐼𝐴 𝑑2𝑢0𝑑𝑡2 − 𝐼𝐵 𝑑3𝑤0𝑑𝑥𝑑𝑡2 + 𝐼𝐶 𝑑2𝜙𝑑𝑡2 ) 𝛿𝑢0𝑑𝑥 + ∫  𝐿0  (−𝐼𝐵 𝑑2𝑢0𝑑𝑡2 + 𝐼𝐷 𝑑3𝑤0𝑑𝑥𝑑𝑡2 − 𝐼𝐸 𝑑2𝜙𝑑𝑡2 ) 𝑑𝛿𝑤0𝑑𝑥 𝑑𝑥⁡+∫  𝐿0  (𝐼𝐶 𝑑2𝑢0𝑑𝑡2 − 𝐼𝐸 𝑑3𝑤0𝑑𝑥𝑑𝑡2 + 𝐼𝐹 𝑑2𝜙𝑑𝑡2 ) 𝛿𝜙𝑑𝑥 + ∫  𝐿0  𝐼𝐴 𝑑2𝑤0𝑑𝑡2 𝛿𝑤0𝑑𝑥.          (15)

(𝐼𝐴, 𝐼𝐵, 𝐼𝐶, 𝐼𝐷, 𝐼𝐸, 𝐼𝐹) = 𝑏 ∫  ℎ2−ℎ2 𝜌𝑘(𝑧)(1, 𝑧, 𝑓, 𝑧2, 𝑓𝑧, 𝑓2)𝑑𝑧.   (16)

𝑑𝑁𝑥𝑑𝑥 = 𝐼𝐴 𝑑2𝑢0𝑑𝑡2 − 𝐼𝐵 𝑑3𝑤0𝑑𝑥𝑑𝑡2 + 𝐼𝑐 𝑑2𝜙𝑑𝑡2 , 

𝑑2𝑀𝑐𝑑𝑥2 = −𝑞 + 𝑁0 𝑑2𝑤0𝑑𝑥2 + 𝐼𝐵 𝑑3𝑢0𝑑𝑥𝑑𝑡2 − 𝐼𝐷 𝑑4𝑤0𝑑𝑥2𝑑𝑡2 + 𝐼𝐴 𝑑2𝑤0𝑑𝑡2 + 𝐼𝐸 𝑑3𝜙𝑑𝑥𝑑𝑡2, 𝑑𝑀s𝑑𝑥 − 𝑄 = 𝐼𝑐 𝑑2𝑢0𝑑𝑡2 − 𝐼𝐸 𝑑3𝑤0𝑑𝑥𝑑𝑡2 + 𝐼𝐹 𝑑2𝜙𝑑𝑡2   .                 (17).

.

.

.

.

𝐴 𝑑2𝑢0𝑑𝑥2 − 𝐵 𝑑3𝑤0𝑑𝑥3 + 𝐶 𝑑2𝜙𝑑𝑥2 = 𝐼𝐴 𝑑2𝑢0𝑑𝑡2 − 𝐼𝐵 𝑑3𝑤0𝑑𝑥𝑑𝑡2 + 𝐼𝐶 𝑑2𝜙𝑑𝑡2 , 

𝐵 𝑑3𝑢0𝑑𝑥3 − 𝐷 𝑑4𝑤0𝑑𝑥4 + 𝐸 𝑑3𝜙𝑑𝑥3 = −𝑞 + 𝑁0 𝑑2𝑤0𝑑𝑥2 + 𝐼𝐵 𝑑3𝑢0𝑑𝑥𝑑𝑡2 − 𝐼𝐷 𝑑4𝑤0𝑑𝑥2𝑑𝑡2 + 𝐼𝐴 𝑑2𝑤0𝑑𝑡2 + 𝐼𝐸 𝑑3𝜙𝑑𝑥𝑑𝑡2, 
(18)𝐴 𝑑2𝑢0𝑑𝑥2 − 𝐵 𝑑3𝑤0𝑑𝑥3 + 𝐶 𝑑2𝜙𝑑𝑥2 = 𝐼𝐴 𝑑2𝑢0𝑑𝑡2 − 𝐼𝐵 𝑑3𝑤0𝑑𝑥𝑑𝑡2 + 𝐼𝐶 𝑑2𝜙𝑑𝑡2 , 

,

,

,

,



The solution of the equation of motion for the bending and free vibration analysis of a simply 
supported functionally graded sandwich beam is obtained using the Navier method. The boundary 
conditions for the simply supported beam are given in Eq. (19): 

 
 

It is assumed that the solution takes the form given in Eq. (20): 
 
 

It is assumed that the uniform transverse load q acting on the upper surface of the beam is as 
given in Eq. (21): 

 
 
 
The analytical solution can be obtained from Eq. (22): 

The vertical displacement values of the FG porous sandwich beam are obtained by solving 
Eq. (22). 

3. Results 
In this study, the static analysis of TPMS­core functionally graded porous sandwich beams was 
performed. Effective material properties were defined using the mixture rule with an exponential 
variation, and equations of motion were derived via Hamilton’s principle. Upon analyzing Fig. 2: 
● Figure 2a illustrates the vertical displacement (w) values versus the x/L ratio for three­layer 

types (1­8­1, 1­2­1, and 2­1­2) at L/h = 5. The 1­8­1 layer shows the lowest displacement, 
indicating higher rigidity, while the 2­1­2 layer exhibits the highest displacement, suggesting 
greater flexibility. Maximum displacement occurs at x/L = 0.5 and decreases toward the edges. 

● Figure 2b presents w values for the 1­2­1 layer at L/h = 5 under conditions B1, B2, and B3. 
B1 shows the lowest displacement, indicating higher rigidity, while B3 exhibits the highest 
displacement, reflecting greater flexibility. 

● Figure 2c shows the vertical displacement for the 2­1­2 layer at L/h = 5 and L/h = 20. The highest 
displacements occur at L/h = 5, with maximum deformation at x/L = 0.5 in all cases. 

 

                                                                                                                             Static analysis of FG-TPMS porous beams        113

𝑤0 = 𝑁𝑥 = 𝑀𝑐 = 𝑀s = 0,  𝑥 = 0 ve 𝑥 = 𝐿.                                       . (19)

𝑢0(𝑥, 𝑡) = ∑ 𝑢𝑚cos(𝛼𝑥)𝑒𝑖𝑎𝑡,∞m=1,3,5𝑤0(𝑥, 𝑡) = ∑ 𝑤𝑚sin(𝛼𝑥)𝑒𝑖𝑎𝑡,∞m=1,3,5𝜙(𝑥, 𝑡) = ∑ 𝜙𝑚 cos(𝛼𝑥)𝑒𝑖𝑎𝑡∞m=1,3,5 .    

(20)

,

,

.

𝑞(𝑥) = ∑ 𝑄𝑚 sin(𝛼𝑥)∞m=1,3,5 ⁡⁡⁡𝑄𝑚 = 4𝑞0𝑚𝜋 .                  (21)

[ 𝐴𝛼2 −𝐵𝛼3 𝐶𝛼2−𝐵𝛼3 𝐷𝛼4 −𝐸𝛼3𝐶𝛼2 −𝐸𝛼3 𝐹𝛼2 + 𝐻] × {𝑢𝑚𝑤𝑚𝜙𝑚} = { 0𝑄𝑚0 } .                   (22)

Fig. 2.  (a) The vertical displacement values vary with the x/L ratio for three different layers at L/h = 5 ratio and B2;  (b) the vertical 
displacement values vary with the x/L ratio for the 1-2-1 layer under  B1, B2, and B3 conditions at L/h = 5 ratio; (c) the vertical 
displacement values vary with the x/L ratio for the 2-1-2 layer at L/h = 5 and L/h = 20 ratios at B2. 

(a) (b) (c)

,

L/h = 5 
1­2­1

L/h = 5 
B2

2­1­2 
B2

L/h = 5 
L/h = 20



4. Conclusion 
The static analysis of TPMS­core functionally graded porous sandwich beams provided key insights 
into material behavior under different conditions. The 1­8­1 layer showed the least vertical dis ­
placement, indicating high rigidity, while the 1­2­1 and 2­1­2 layers exhibited greater flexibility. 
The study also highlighted how varying density (B1, B2, B3) influenced deformation, underscoring 
the importance of structural design in optimizing performance. These findings are valuable for the 
application of TPMS­based sandwich structures in lightweight, high­performance materials. In 
future studies, diamond, split­P, primitive, neovius, and lidinoid TPMS types will also be considered. 
 
Data availability statement  
All data are available in the article. 
  
Acknowledgment 
The publication costs of this article were partially covered by the Estonian Academy of Sciences. 
 

114        C. Solar et al.

References 
Al­Ketan, O., Abu Al­Rub, R. K. 2021. MSLattice: a free soft ware 

for generating uniform and graded lattices based on triply periodic 
minimal surfaces. Mat. Design Process. Comm., 3(6), e205. 
https://doi.org/10.1002/mdp2.205 

Demirhan, P. A. and Taskin, V. 2019. Bending and free vibration 
analysis of Levy­type porous functionally graded plate using state 
space approach. Compos. B: Eng., 160, 661–676. https://doi.org/ 
10.1016/j.compositesb.2018.12.020 

Ejeh, C. J., Barsoum, I. and Abu Al­Rub, R. K. 2022. Flexural 
properties of functionally graded additively manufactured 
AlSi10Mg TPMS latticed­beams. Int. J. Mech. Sci., 223, 107293. 
https://doi.org/10.1016/j.ijmecsci.2022.107293 

Kurup, M. and Pitchaimani, J. 2023. Aeroelastic flutter of triply 
periodic minimal surface (TPMS) beams. Compos. C: Open Access, 
10, 100349. https://doi.org/10.1016/j.jcomc.2023.100349 

Lin, C., Wen, G., Yin, H., Wang, Z.­P., Liu, J. and Xie, Y. M. 2022. 
Revealing the sound insulation capacities of TPMS sandwich 

panels. J. Sound Vib., 540, 117303. https://doi.org/10.1016/j.jsv. 
2022.117303 

Nguyen­Xuan, H., Tran, K. Q., Thai, C. H. and Lee, J. 2023. 
Modelling of functionally graded triply periodic minimal surface 
(FG­TPMS) plates. Compos. Struct., 315, 116981. https://doi.org/ 
10.1016/j.compstruct.2023.116981 

Qiu, N., Ding, Y., Guo, J. and Fang, J. 2025. Energy dissipation of 
sand­filled TPMS lattices under cyclic loading. Thin–Walled 
Struct., 209, 112848. https://doi.org/10.1016/j.tws.2024.112848 

Tran, K. Q., Hoang, T.­D., Lee, J. and Nguyen­Xuan, H. 2024. Three 
novel computational modeling frameworks of 3D­printed grap ­
hene platelets reinforced functionally graded triply periodic 
minimal surface (GPLR­FG­TPMS) plates. Appl. Math. Model., 
126, 667–697. https://doi.org/10.1016/j.apm.2023.10.043  

Viet, N. V., Karathanasopoulos, N. and Zaki, W. 2022. Mech anical 
attributes and wave propagation characteristics of TPMS lattice 
structures. Mech. Mater., 172, 104363. https://doi.org/10.1016/j. 
mechmat.2022.104363 

 

TPMS-südamikuga funktsionaalgradientstruktuuriga poorsete  
sandwich-talade staatiliste omaduste uurimine 

Caner Solar, Pinar Aydan Demirhan ja Vedat Taskin 

Funktsionaalgradientmaterjalid on uudsed struktuurid, mille loomiseks kombineeritakse erinevate 
materjalide omadusi. Funktsionaalgradientmaterjalide pooride suurus, kuju, jaotus ja tihedus muutuvad 
järk-järgult kindlas suunas, tagades kerguse ja energia neeldumise. Minimaalse energiaga kolmikperioodilise 
pinnaga (TPMS) struktuurid optimeerivad koormuse jaotumise ja energia neelamise omadusi, eriti kui neid 
kasutatakse sisekihtides. Uuringus teostati kinnistamata funktsionaalgradientstruktuuriga poorse sandwich-
tala paindekatse. Tala väliskihid olid isotroopsest materjalist, sisekiht TPMS-funktsionaalgradientstruktuuriga. 
Eeldati, et funktsionaalgradientstruktuuriga poorsete välis- ja sisekihtide omadused varieeruvad mööda rist-
lõiget vastavalt koormuse jaotumisele sõltuvalt kaugusest. Tala liikumise võrrandid tuletati Hamiltoni põhi-
mõtte abil. Lahendid saadi lõplikul kujul Navier’ meetodi põhjal. Arvutuslikud tulemused saadi, muutes suh-
telist tihedust ja mahuosa, paksuse-pikkuse suhet ning sise- ja väliskihi paksuste suhet. 
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