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Abstract. In the present investigation, we employed the Jacobi elliptic function (JEF) method to invoke the perturbed nonlinear
Schrödinger equation with self-steepening (SS), self-phase modulation (SPM), and group velocity dispersion (GVD), which govern
the propagation of solitonic pulses in optical fibres. The proposed algorithm proves the existence of the family of solitons in optical
fibers. Consequently, chirped and chirp free W-shaped bright, dark soliton solutions are obtained from dn(ξ ), cn(ξ ) and sn(ξ )
functions. The final results are displayed in three-dimensional plots with specific physical values of GVD, SPM and SS for an
optical fiber.
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1. INTRODUCTION

Solitons are nonlinear localized waves that can be found in the field of optics. This is because of the
nonlinear reaction of the medium. In the process of considering the nonlinearity of transmitted waves,
specifically for solitons, numerous heterogeneous forms of mathematical techniques have been explored.
In the most recent few decades, there has been a substantial upsurge in interest surrounding the study of
nonlinear wave phenomena such as breather waves, solitons, rogue waves, and many other types of waves.
Researchers in the fields of engineering and applied sciences have found that the process of extracting
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solitons with nonlinear partial differential equations (NLPDEs) is one of the most interesting and intriguing
subjects to study [3–6]. This result was confirmed by a large number of the scientists and engineers who have
worked in these fields. The transmission of digital information across optical fibres is the most significant
technological usage of the soliton, and it is accomplished by using this pulse. The remarkable subject of
nonlinear optics known as the optical soliton explores a wide range of topics, including birefringent crystals,
meta-surfaces, optical couplers, optical fibres, and magneto-optics [7–12].

NLPDEs can be used to model a broad variety of difficult processes that arise in real life and can be
applied across many scientific disciplines [1–6]. The phenomenal cosmos is made up of virtually an infinite
number of fascinating nonlinear occurrences that act as complementary elements. During the process of
mathematical formulation, the nonlinearity of the resulting complex dynamical systems emerges. The non-
linear Schrödinger equation (NLSE) is one of the most important nonlinear evolution equations (NLEEs).
The NLSE can be expressed in its most general form as a cubic nonlinearity, which has several applications
in the research on waves in optical fibres [9,10]. The complicated forms of higher order with intent spe-
cial of NLSEs have been prepared with a number of different genera of nonlinear variables. It is common
knowledge that the NLSE plays a significant part in a variety of subfields of nonlinear research, including
Bose–Einstein condensates [14], nonlinear optics [15–17], and water waves [13]. In particular, the NLSE is
able to represent the propagation of a picosecond optical pulse through optical fibres [18].

Recent years have seen an increase in the number of researchers interested in obtaining chirped fem-
tosecond optical pulses for application in communication systems [19–24]. Goyal et al. [19] used self-
frequency shift (SFS) and self-steepening (SS) to characterise the chirped brilliant, double-kink, and dark
solitons of the cubic-quintic (CQ) NLSE. These solitons are described as having the CQ-NLSE. Bright, kink,
and dark solitons with nonlinear chirp are derived for the NLSE having SS and SFS effects [20,21]. Also,
higher-order NLSEs with non-Kerr law components are taken into consideration in the process of research-
ing chirped femtosecond optical pulses in optical fibres [22–24]. These chirped solitonic pulses are essential
in the design of solitary wave-based communications links, fiber-optic amplifiers, and optical pulse com-
pressors [25]. They have many applications in pulse amplification or compression, and these applications
include a wide variety of compression and amplification techniques. The chirped and chirp free W-shaped
dark and bright solitonic structures are secured in Section 2 by applying the Jacobi elliptic function (JEF)
method. In this research, these findings are given and addressed in Section 3.

2. MODEL DYNAMICAL EQUATION

The governing model to study the influence of self-phase modulation (SPM), dispersion, and SS effects on
the propagation dynamics with perturbed NLSE is considered as

iut +αuxx +β |u|2u− i
[
Γux −δ (|u|2u)x −σ(|u|2)xu

]
= 0. (1)

In order to solve the problem (1), the wave transformation is organized as

ξ = x− ct, u(x, t) = u(ξ )exp{i(κx−ωt)}. (2)

Here α , β , Γ, δ , and σ are all constants. Additionally, c, κ , and ω are all considered to be constants.
The wave variable is denoted by ξ , the frequency is denoted by κ , the wave number is denoted by ω , and
the velocity is denoted by c. In this context, the wave profile of the solitonic structure is denoted by the
expression u = u(x, t), while nonlinear dispersion (ND), SS, inter-modal dispersion (IMD), SPM, and group
velocity dispersion (GVD) come from the parameters σ , δ , Γ, β , α in sequence. When we combine Eq. (2)
with Eq. (1), we get the following:

u′′(ξ )+A2u3(ξ )+A1u(ξ )+ i
[
(
B2

B1
)u′(ξ )u2(ξ )+u′(ξ )

]
= 0, (3)

where A1 =
ω−ακ2+Γκ

α , A2 =
β−δκ

α , B1 = 2ακ − c−Γ, and B2 = 3δ +2σ .
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2.1. Analysis of Jacobi elliptic function (JEF) method

It is imperative that exact solutions to NPDEs are implemented in order to generate influential predic-
tions for further merits related to nature and living. The following are some of the methods that extract
solitons with NPDEs: the double exponential function algorithm, the Bäcklund transformation procedure,
the modified extended tangent hyperbolic function scheme, the generalised auxiliary equation approach,
the (G′/G)-expansion methodology, the homogeneous balance technique, the extended rational sin-cos and
sinh-cosh procedure. In recent years, the JEF approach, symbolic computation and other forms of compu-
tation [1–25] have been addressed to locate solitons with NLEEs.

The value of the parameter m, expressed as m (0 < m < 1), determines the modulus of JEFs. The JEF
procedure will make the functions into hyperbolic versions of themselves for setting m → 1. After setting
m→ 1, perform the following steps: dn(ξ ) → sech (ξ ), cn(ξ ) → sech(ξ ), and sn(ξ )→ tanh(ξ ). In addition,
these functions turn into trigonometric functions for m → 0. Eq. (3) is adequate to solve the problem

u(ξ ) =
n

∑
i=0

aisni(ξ ), an $= 0, (4)

u(ξ ) =
n

∑
i=0

aicni(ξ ), an $= 0, (5)

u(ξ ) =
n

∑
i=0

aidni(ξ ), an $= 0, (6)

along with

dn′(ξ ) =−m2cn(ξ )sn(ξ ), cn′(ξ ) =−dn(ξ )sn(ξ ), sn′(ξ ) = dn(ξ )cn(ξ ),
dn2(ξ ) = 1−m2sn(ξ ), cn2(ξ )+ sn2(ξ ) = 1.

Here n is the number that must be balanced, and ai (i = 0,1, · · · ,n) are constants. With the usage of the
balancing technique in Eq. (3), Eqs (4)–(6) stand as

u(ξ ) = a0 +a1sn1(ξ ), (7)

u(ξ ) = a0 +a1cn1(ξ ), (8)

u(ξ ) = a0 +a1dn1(ξ ). (9)

2.1.1. Chirped dark and antikink solitons

Inserting Eq. (7) into Eq. (3) provides us

2a1sn3(ξ ,m)m2 −a1sn(ξ ,m)+A1a1sn(ξ ,m)−a1m2sn(ξ ,m)+A1a0

+A2a3
0 +3A2a0a2

1sn2(ξ ,m)+A2a3
1sn3(ξ ,m)+3A2a2

0a1sn(ξ ,m) = 0 (10)

and
a1cn(ξ ,m)dn(ξ ,m)(B1 +B2a2

0 +2B2a0a1sn+B2a2
1sn2(ξ ,m)) = 0. (11)

After solving Eqs (10) and (11) and gathering the coefficients of sn(ξ ), one arrives at the following result:

sn3(ξ ) : 2a1m2 +A2a3
1 = 0,

sn2(ξ ) : 3A2a0a2
1 = 0,

sn1(ξ ) : 3A2a2
0a1 −a1 −a1m2 +a1a1 = 0,

sn0(ξ ) : A2a3
0 +a1a0 = 0, (12)
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and

sn2(ξ ) : a3
1B2cndn = 0,

sn1(ξ ) : 2a2
1B2a0cncn = 0,

sn0(ξ ) : B1 +B2a2
0 = 0. (13)

From the system of equations (12) and (13), we reveal

a0 =

√
−B2B1

B2
, a1 =

2m√
−2A2

. (14)

By combining Eq. (14) with Eq. (7) and plugging them into Eq. (2), one can see the dark soliton

u(x, t) =
[√

−B2B1

B2
+
( 2m√

−2A2

)
tanh(x− ct)

]
exp{i(κx−ωt)}. (15)

The dark soliton for optical fibre is depicted in Figs 1 and 2. The dark soliton can be found for β = 1.1,
δ = 0.1, Γ = 0.000001, σ = 0.000005, ω = 0.001, c = 0.01 and κ = 0.9 that is visualized in Fig. 1 with
the aid of the GVD (α). The dark solitonic is also portrayed in Fig. 2 with the help of the SPM (β ).

With the effect of SS (δ ), Eq. (15) gives the chirped dark solitonic profile by setting the parameters
β = 0.5, α = 0.01, Γ = 0.1, σ = 1.5, ω = 1, c = 5, κ = 5 and δ = 0.01, which is displayed in Fig. 3. The
corresponding contour plot clearly exhibits the chirped structure in the middle region of the dark solitons
(see Fig. 3a). The profile shifts from a chirped dark soliton to an antikink chirped soliton as the value of the
SS coefficient (δ = 1) is increased. This shift is shown in Fig. 3.

2.1.2. Chirped W-shaped bright soliton

By plugging Eq. (8) into Eq. (3), we arrive at

−a1cn(ξ ,m)+2a1m2dn2(ξ ,m)cn(ξ ,m)+A1a0 +A1a1cn(ξ ,m)+A2a3
0

+3A2a0a2
1 +3A2a2

0a1cn(ξ ,m)+A2a3
1cn(ξ ,m)−3A2a0a2

1sn2(ξ ,m)

−A2a3
1sn2(ξ ,m)cn(ξ ,m) = 0 (16)

and

−2a2
1sn(ξ ,m)dn(ξ ,m)B2a0cn(ξ ,m)−a1sn(ξ ,m)dn(ξ ,m)

(
B1 +B2a2

0 +B2a2
1

−B2a2
1cn2(ξ ,m)

)
= 0, (17)

solving Eqs (16) and (17), and by aggregating the coefficients of cn(ξ ), one can arrive at
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(a) α = 0.000001 (b) α = 0.000020

Fig. 1. Profiles of the dark soliton (15).
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(a) β = 1.4 (b) β = 20

Fig. 2. Profiles of the dark soliton (15).

      (a) β = 1.4

      (b) β = 120

– –
–

–
–

–
–

– –
–

–



134 Proceedings of the Estonian Academy of Sciences, 2023, 72, 2, 128–144

(a) δ = 0.01

(b) δ = 1

Fig. 3. Profiles of the shape-changing chirped dark soliton to antikink soliton for Eq. (15).
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      (b) δ = 1
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Fig. 3. Profiles of the shape-changing chirped dark soliton to antikink soliton for Eq. (15).
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cn3(ξ ) : A2a3
1 −2a1m2 = 0,

cn2(ξ ) : 3A2a0a2
1 = 0,

cn1(ξ ) : 2a1m2 −a1 +A1a1 +3A2a2
0a1 = 0,

cn0(ξ ) : A2a3
0 +A1a0 = 0, (18)

and

cn2(ξ ) : B2a2
1 = 0,

cn1(ξ ) : 2a2
1B2a0sn(ξ ,m)dn(ξ ,m) = 0,

cn0(ξ ) : B1 +B2a2
0 = 0. (19)

From the system of equations (18) and (19), we reveal

a0 =

√
−B2B1

B2
, a1 =

√
2√

A2m
. (20)

By combining Eq. (20) with Eq. (8) and plugging them into Eq. (2), one can see the bright soliton

u(x, t) =

[√
−B2B1

B2
+
( √

2√
A2m

)
sech(x− ct)

]
exp{i(κx−ωt)}. (21)

The above equation provides the bright solitonic structure with the following parameters: β = 1.1,
δ = 1.2, Γ = 1.0, σ = 0.5, ω = 0.01, c = 0.01 and κ = 0.9 that is displayed in Fig. 4 with the aid of the
GVD (α). The variation of the SPM coefficient (β ) also gives the bright solitonic structure, which is shown
in Fig. 5.

By plotting Eq. (21), the chirped bright soliton structure changes to W-shaped chirped solitons, which is
displayed in Fig. 6 under the influences of the SS coefficient (δ ). In Fig. 6, both the 3d plot and the contour
plot clearly visualize the chirped bright soliton profile by fixing the parameters β = 0.5, α = 10, Γ = 1,
σ = 0.5, ω = 1, c = 1, κ = 0.9 and δ = 0.05. It is interesting to note that by selecting the SS coefficient
(δ = 1, 10), we are able to produce the W-shaped chirped soliton profile that is illustrated in Fig. 6b,c.

2.1.3. Chirp free W-shaped bright soliton

Inserting Eq. (9) into Eq. (3) enables us

−a1m2dn(ξ ,m)+2a1m2sn2(ξ ,m)dn(ξ ,m)+A1a1dn(ξ ,m)+A1a0

+3A2a2
0a1dn(ξ ,m)+A2a3

0 −3A2a0a2
1m2sn2(ξ ,m)+3A2a0a2

1

−A2a3
1m2sn2(ξ ,m)dn(ξ ,m)+A2a3

1dn(ξ ,m) = 0 (22)
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(a) α = 0.000001 (b) α = 0.00001

Fig. 4. Profiles of the bright soliton (21).
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(a) β = 0.01 (b) β = 10

Fig. 5. Profiles of the bright soliton (21).
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(b) δ 1

      (a) δ = 0.05

      (b) δ = 1

      (c) δ = 10

Fig. 6. Profiles of the W-shaped chirped soliton (21).
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and

−2a2
1cn(ξ ,m)sn(ξ ,m)B2a0dn(ξ ,m)−a1sn(ξ ,m)dn(ξ ,m)

(
B1 +B2a2

0 +B2a2
1

−B2a2
1sn(ξ ,m)2

)
= 0, (23)

solving Eqs (22) and (23), and by accumulating the coefficients of cn(ξ ), one is able to obtain

dn3(ξ ) : −2a1 +A2a3
1 = 0,

dn2(ξ ) : 3A2a0a2
1 = 0,

dn1(ξ ) : −a1m2 +2a1 +3A2a2
0a1 +A1a1 = 0,

dn0(ξ ) : A2a3
0 +A1a0 = 0, (24)

and

dn5(ξ ) : a3
1B2sn(ξ ,m) = 0,

dn3(ξ ) : −2a3
1B2sn(ξ ,m) = 0,

dn1(ξ ) :
a3

1sn(ξ ,m)B2

m4 −a3
1sn(ξ ,m)B2 −2a2

1cn(ξ ,m)B2a0sn(ξ ,m)

−a1B1sn(ξ ,m)−a1B2a2
0sn(ξ ,m) = 0. (25)

From the system of equations (24) and (25), we reveal

a0 =−
a1B2cn(ξ ,m)m2 −

√
a2

1B2
2cn2(ξ ,m)m4 +a2

1B2
2 −a2

1B2
2m4 −B2m4B1

B2m2 ,

a1 =

√
2√

A2
. (26)

By combining Eq. (26) and Eq. (9), and then entering them into Eq. (2), one may see the bright soliton

u(x, t) =

[
−

a1B2cn(ξ ,m)m2 −
√

a2
1B2

2cn2(ξ ,m)m4 +a2
1B2

2 −a2
1B2

2m4 −B2m4B1

B2m2

+

( √
2√

A2

)
sech(x− ct)

]
exp{i(κx−ωt)}. (27)

The bright soliton for optical fibre is represented by the equation that was stated in Figs 7 and 8. By setting
the parametric values β = 1.1, δ = 1.2, Γ = 1.0, σ = 0.5, ω = 0.01, c = 0.01 and κ = 0.9, we obtain the
bright solitonic for α = 0.000001 that is plotted in Fig. 7a. The amplitude of the bright solitonic structure is
increasing with the help of α = 0.00001 that is depicted in Fig. 7b. Under the influences of the coefficient
SPM (β ), we obtain the shape changing property from dark solitonic structure to bright solitonic structure
with α = 0.1, δ = 1.2, Γ = 1.0, σ = 0.5, ω = 0.01, c = 0.01 and κ = 0.9, which is depicted in Fig. 8.
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(a) α = 0.000001 (b) α = 0.00001

Fig. 7. Profiles of the bright soliton (27).
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(a) β = 0.0001 (b) β = 0.1 (c) β = 10

Fig. 8. Profiles of the shape-changing one dark soliton to one bright soliton for Eq. (27).

Eq. (27) also provides the chirp free soliton profile and the W-shaped chirp free soliton profile when
dominating the SS coefficient (δ ), which is displayed in Fig. 9 that shows the chirp free bright soliton profile
(for δ = 1) by choosing α = 10, β = 0.5, Γ = 0.7, σ = 0.5, ω = 0.1, c = 0.001 and κ = 0.9. The chirp
free bright soliton changes its profile to W-shaped chirp free soliton when δ = 0.1, 0.05, which is given in
Fig. 9b,c.

   
    (a) β = 0.0001

      (c) β = 10

   
    (b) β = 0.1

Fig. 8. Profiles of the shape-changing one dark soliton to one bright soliton for Eq. (27).
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(a) δ 1
      (a) δ = 1

      (b) δ = 0.1

      (c) δ = 0.05

Fig. 9. Profiles of the W-shaped chirp free soliton (27).
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3. CONCLUSIONS

We report the exact W-shaped bright and dark solitons (both chirped & chirp free solitons) for perturbed
NLSE using the JEF algorithm. Soliton solutions for the NLSE, which is an essential component for as-
sessing pulse propagation in optical fiber-based communications systems, are required. Therefore, based on
the present effective algorithm, we have successfully obtained the W-shaped dark, bright soliton solutions
for dn(ξ ), cn(ξ ) and sn(ξ ) functions when m → 1. (If we choose m → 0, we obviously obtain trigonometry
structures). Moreover, the current algorithm is straightforward and very simple to acquire soliton solutions,
and it can be modeled to solve other similar NLPDEs.

In the case of sn(ξ ), the effect of the GVD coefficient (α) causes the amplitude of the dark solitonic
profile to drop when the value of α is increased. Additionally, the two wing parts move closer to one another,
which results in a shortening of the wing. When the value of the nonlinear coefficient β is increased, the
profile shifts from shortening to broadening, and the amplitude of the profiles drops. In other words, β
is a nonlinear coefficient. The SS coefficient (δ ) presents the shape changing property from chirped dark
soliton to chirped antikink soliton structure with amplitude decrements when δ increases. In cn(ξ ) for the
GVD coefficient, the amplitude of the profiles decreases by increasing the value of the SPM coefficient
(β ), while the amplitude of the profiles increases by increasing the value of α . By increasing the value of
the SS coefficient (δ ), the amplitude of the chirped soliton decreases. Particularly, the middle region of
the chirped soliton heavily decreases and the wing portions are also decreased by increasing the value of δ
(see Fig. 6b,c). For dn(ξ ) under the effect of the GVD coefficient, the amplitude of the profiles increases
by increasing the values of α , but the SPM coefficient influences the shape changing property from dark
soliton to bright soliton. The middle region of the dark soliton slightly moves in the upward direction, while
the wing portions move downward under the influences of the coefficient of SPM. When δ decreases, the
amplitude of the W-shaped chirp free solitons, as well as the middle region of the chirped soliton decrease.
By decreasing the value of δ (see Fig. 9b,c), the wing portions increase.

The generation of a chirped soliton profile can be attributed, in its most basic form, to a balance between
the SS effects and GVD, correspondingly. Many researchers have found W-shaped solitons under the in-
fluences of GVD, SS, and SPM. The observation of the W-shaped chirped and chirp free solitons is one of
the fundamental findings in the current paper. Also, antikink solutions are retrieved to secure in this optical
system specific values of the SS coefficient in the sn(ξ ) function. The efficiency of the JEF integration
algorithm is displayed by the sn(ξ ) function, which depicts dark solitons as a result of the influence of the
GVD and SPM coefficients, in addition to chirped dark solitons and antikink solitons, which are created by
the SS coefficient. Obviously, the cn(ξ ) and dn(ξ ) functions give the bright solitonic profile. Subsequently,
the chirped W-shaped solitons are generated by the cn(ξ ) function, but the dn(ξ ) function generates the
chirp-free W-shaped solitons. From the above discussion, we concluded that by compressing or shortening
the solitonic structure with GVD, we received the previously known result, i.e. decreasing of the solitonic
profile duration in the femtosecond, or ultrashort region. Subsequently, broadening of the soliton profile
with a coefficient of SPM provides known information, i.e. the propagation of high-intensity femtosecond
solitons. Moreover, shortening/compressing of the soliton profile with the SPM coefficient provides the loss
of energy during propagation.
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