
1. INTRODUCTION 
 
One of the fundamental challenges in data processing is 
finding a way to describe the data characteristics, i.e. 
finding its statistical description. A number of techniques 
with good predictive capabilities have been developed in 
the field of machine learning. Regression analysis remains 
relevant due to its simplicity and flexibility as well as the 
ease of understanding the processes that take place and 
interpreting parameters in them. Linear regression models 
have lower complexity and they are easy to use and 
interpret. However, they fail to fit complex datasets 
properly. Nonlinear regression (NR) model fitting and 
parameter estimation is the best approach for analysing 
many types of data [1]. The goal of NR is to iteratively 
find the values of parameters that minimize the sum-
of-squares of differences between the estimated and 
the measured values. It starts with the initial values of 

parame ters and is followed by adjusting those values, until 
the best possible fit is found or until the maximum number 
of iterations is reached. 

In general terms, NR can be described by the 
following formula: 

 
 

 
where f is the response function, x is the input (n-di -
mensional vector of predictors), θ is the k-dimensional 
vector of parameter estimates that is to be calculated, and 
ε is the error [2].  

NR is used in a wide range of scientific and technical 
fields for the analysis and interpretation of nonlinear 
fitting to data. The natural nonlinearity of the processes 
in medicine makes this field suitable for the application 
of NR, e.g., in the fields of cancer dependencies identi -
fication [3], split-belt treadmill walking [4], electromyo - 
graphy techniques for rehabilitation [5], and CT imaging 
[6]. Other areas for NR application are renewable energy 
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technologies and ecology, where NR is useful for pre -
dicting the biogas production rate [7], air quality mod- 
elling [8], and wastewater treatment [9]. In the previous 
two years, after the outbreak of the COVID-19 virus 
pandemic, NR has been used in attempts to describe and 
understand the impact of risk factors in death rate [10], 
environmental factors impacting the epidemic [11], or 
even forecasting a model for predicting COVID-19 
infection rates [12]. Furthermore, NR is especially present 
in the field of computer vision, where it is widely used for 
counting people at mass gatherings, age assessment, 
visual tracking, and image super-resolution [13]. 

One of the main goals in wireless communication 
systems design is to achieve the desired quality of service 
and grade of service in terms of the spectral efficiency 
requirements of the received signal. Among the key issues 
within this process is the analysis of properties and im -
pacts that any type of interference has on wireless com - 
munication. Efficient receiving systems operation is heavily 
dependent on a reliable assessment of the received signal 
model and its parameters. 

Propagation of the wireless signal through the atmos -
phere is characterized by temporal fluctuations in the 
envelope and phase shifts of the transmitted signal. These 
changes in the level of the useful signal over time are 
called fading [14]. Fading leads to the reception of signals 
of poor quality. Several distribution models can be used 
to describe signal envelope fluctuations in fading chan -
nels: Nakagami-m, Weibull, Rayleigh, Nakagami-q (Hoyt), 
Rician, α-μ, κ-μ, η-μ, α-κ-µ, α-η-μ [14,15]. 

Various diversity techniques are implemented to 
reduce the impact of fading and interchannel interference, 
the most important of which are space, time, and fre -
quency diversity. A diversity receiver listens to signals on 
multiple antennas in order to accurately estimate a fading 
channel model and to optimize its parameters [14]. The 
diversity receiver may estimate features of the signals at 
their input by determining the signals’ distribution types 
and the parameters of these distributions.  

Several approaches have been developed for statistical 
model recognition using different methods [16]. When it 
comes to estimating fading channel parameters, there are 
numerous examples of estimators based on the method of 
moments [17] and the method of maximum likelihood 
[18].  Attempts have also been made to deal with this matter 
by using deep learning [19], however, overall, this remains 
an open issue for future research and performance im -
provement. 

This paper explores the application of NR algorithms 
in the assessment and recognition of signal characteristics 
at the inputs of antennas at the base station receiver with 
the aim of improving communication system perform ance. 
The approach that is used in the paper is concerned with 
identifying the statistical models of the received signals 

and estimating the parameters of the identified statistical 
distribution. A special advantage of this ap proach is that no 
prior knowledge about the signal characteristics is necess -
ary, and signal processing is possible in almost real time.  

The remainder of this paper is structured as follows: 
first, we present an overview of the distribution models 
we used in signal recognition. Second, we outline the 
methodology and describe the data used to test the 
approach. Third, we present the results and discussion, 
followed by concluding remarks on the performance and 
possibilities of using this approach. 
 
 
2. DISTRIBUTION  MODELS 
 
A base station receiver needs to make a selection of 
several received signals and use the one with the best 
characteristics, which makes it highly important to rec -
ognise both the distributions of the signals at the input of 
a receiver and their parameters. For this paper, we selected 
some of the most frequent distributions of the signal’s 
envelopes found in the literature for a base station receiver 
[20]: Gamma, Rayleigh, Rician, Nakagami-m, and Weibull. 

The probability density function (PDF) of the Gamma 
model can be described as [14]: 
 
 
 
where Ω = 2σ2 is the scale parameter, e.g. the average 
signal power (defined as Ω = E(r2), where E is the math -
ematical expectation of a statistical process), and c is the 
shape parameter.  

The PDF of the Rayleigh model can be described as [21]: 
 

 
 

where Ω is the scale parameter.  
The PDF of the Rician model is [21]: 
 
 
 
 

where K is the Rician factor, Ω is the scale parameter, and 
I0[] is the zeroth order modified Bessel function of the 
first kind. When K increases, the impact of Rician fading 
is declining and system performance increases. When the 
Rician factor K increases, then the Rician channel be -
comes the channel without fading. When the Rician factor 
K goes to zero, the Rician model becomes the Rayleigh 
model [22]. 

The PDF of the Nakagami-m model is [23]: 
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where Γ[] is the Gamma function, Ω is the scale par -
ameter, and m is the Nakagami fading parameter. When 
m increases, the sharpness of the fading decreases. When 
m = 1, the Nakagami-m channel becomes the Rayleigh 
channel. When m goes to infinity, the Nakagami-m model 
becomes a model without fading [21]. 

The PDF of the Weibull model is [14]: 
 
 

 
where α is the shape parameter and Ω is the scale 
parameter. When α = 2, the Weibull model becomes the 
Rayleigh model, and when α goes to infinity, the Weibull 
model becomes a model without fading. The sharpness of 
the fading depends on the parameter α [24]. 
 
 
3. METHODOLOGY 
 
The probability distribution of the signal and its parameter 
estimations can be assessed using data analysis methods. 
Since we could not access the real signal data at the input 
of the base station receiver, we used randomly generated 
signals’ sample data in line with the most frequent dis -
tributions of the signal’s envelopes found in literature [20]. 
Subsequently, we designed and applied the recognition of 
the signals’ data distributions and their parameters in re -
ceiver’s logic by using NR.  

To simulate signal samples at the inputs of a receiver, 
and to measure model recognition algorithm efficiency, 
we generated a set of test data that is sufficiently large to 
evaluate the preciseness of the estimates. We used the 
MATLAB software (Release 2021a) built-in makedist 
func tion to generate random sample values for the se -
lected probability distributions and their parameter values.  

In the preparation phase, distribution parameter values 
of the generated signals are chosen to correspond to the 
cases that may be encountered in reality, in accordance 
with the reference value ranges given in [25]. In each of 
the five distributions, the scale parameter Ω varies from 
1 to 2.5 in increments of 0.1. Additionally, the following 
parameter values are used in four distributions: 
● Gamma distribution: five values of parameter c, from 

1 to 3 in increments of 0.5, 
● Nakagami-m distribution: six values of parameter m, 

starting with 0.5, and from 1 to 5 in increments of 1, 
● Rician distribution: six values of parameter K, from 0 

to 5, in increments of 1, 
● Weibull distribution: six values of parameter c, from 

0.5 to 3 in increments of 0.5. 
In order to obtain fair results in the evaluation (rec -

ognition) of a probability distribution and its parameter 
values from the test signal samples, 100 signals were 
generated for each of the 384 different parameter com -

binations. Thus, a total of 38 400 different signals were 
used in this experiment (one signal consists of Ns 
randomly generated values).  

The process of parameter estimation of a probability 
distribution is based on finding the model, which best fits 
the signal data points. Since the regression finds the best 
parameter values by minimizing the error between the 
values of real data against the calculated values from 
mathematical equations (the reference values), we decided 
to calculate these parameters not directly from the test data 
signal values, but from their discretised Cumulative 
Density Functions (dCDF).  

In order to better present how the normalised dCDF is 
calculated from the sample values of the input signal, we 
generated 20 signal samples that follow a distribution 
selected in the random generator (in this case – Gamma 
distribution with parameters Ω = 1 and c = 2), which are 
presented in Fig. 1. As can be seen, the generated sample 
values in this example are in the range of 0.165–9.475.  
This value range is then divided into several subranges 
(bins; see column Bin MaxV in Fig. 2). The dCDF value 
of each bin is calculated as the number of sample values 
that are less than or equal to its maximum value (i.e. the 
number of sample values that are less or equal to the 
maximum value of the fourth bin in this example is 17, as 
shown in column dCDF). At the end of the process, the 
dCDF is normalised (divided) by the total number of 
samples (column normalised dCDF). By selecting values 
from columns Bin MaxV and normalized dCDF for x and 
y axes, respectively, we prepared the coordinates of data 
points for curve fitting in the next steps of the NR 
application.  
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Fig. 1. Calculating normalised dCDF of the signal’s sample 
values. 



In telecommunication systems, performances should 
be as close to real time as possible, and care must be taken 
not to introduce any significant delays. Bearing that in 
mind, the dCDF of the received signal should be cal -
culated from a reasonably small number of points (Ns), but 
taking into account that the shorter signal length does not 
cause reduced measurement accuracy. In this paper, we 
decided to use a sample size Ns = 1000, as this was found 
to be sufficient for a reliable estimation of the probability 
distribution parameters [26]. Another challenge is to 
determine the appropriate number of bins for the dCDF. 
An insufficient number of bins can make distributions 
sacrifice too much information, and excessive bin numbers 
might distort the curve to overfit data. In this paper, we 
used Nb = 50 beans in the experiments.  

For the recognition of signal distributions and the 
distribution parameters, we used the methods of NR 
analysis. In our case, the input data points are x and y 
values of the signal’s dCDF, and mathematical models 
(equations) of the most frequent Cumulative Distribution 
Functions with their parameters (i.e. Ω, α, K, m from the 
equations above) as variables. At the output, algorithms 
present the appropriate models and estimated values of 
their parameters along with information criteria for model 
selection. The process that calculates the best fit of the 

dCDF of the test data to the pre-defined probability dis -
tribution models consists of several steps: (1) setting the 
initial values of the parameters to be recognized, and their 
possible ranges, (2) fitting the model, (3) checking the 
convergence and the parameter value constraints, and (4) 
choosing the best model. 

There are many statistical software packages on the 
market that support nonlinear model fitting. In this paper, 
we used the programming language R (version 4.1.1) and 
its nlsLM framework [27]. The Levenberg–Marquardt 
algorithm [28] from the nlsLM framework combines the 
Gauss–Newton and the Gradient Descent minimization 
algorithms to solve nonlinear least squares problems. 
Using this algorithm, we fitted the parameterized math -
ematical models of probability distributions to the normal- 
ized dCDF data points and found the optimal parameters 
that minimize the residual sum of squares. 

We used two model selection criteria for finding the 
best fit: Akaike’s Information Criteria (AIC) and Bayesian 
Information Criteria (BIC) [29]. AIC and BIC are among 
the best-known statistical model selection criteria with a 
wide range of uses. These criteria complement each other: 
AIC is used for predicting future data as a criterion of 
model adequacy, while BIC is used for identifying models 
with the highest probabilities of being true models for the 
data [30].  

In order to obtain experimental results, the authors 
wrote an R script that implements the steps of the meth -
odology outlined above. This script receives a signal as 
input, processes it and calculates the dCDF, then fits the 
distribution models and checks whether the parameters of 
the successfully fitted models are within the reference 
values reported in literature [14]. The advantage of this 
approach is pipeline processing, i.e. the input signal can 
be processed in real time up to the desired number of 
measurements, while the probability distribution models 
can be evaluated. The system rejects those fitted models 
whose parameters are outside the expected ranges, and 
then selects the best among the remaining models. The 
model with the lowest value of the AIC and BIC 
parameters is selected. The pseudocode algorithm of the 
steps taken in preparation and implementation of this 
method is shown in Fig. 2. 
 
 
4. RESULTS  AND  DISCUSSION 
 
For this analysis, we used MATLAB to generate 100 
signals with Ns data points for each of the 384 com -
binations of parameters, and thus simulate input signal 
diversity. The model fitting was applied to each of the 
signals and the best possible fit was identified. In the 
following tables, the results of the experiments are pre -
sented in a way that row and column headers show the 
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1 Input: input signal, probability distribution models           
2 // Preparation phase: 
3     Find max sample value 
4     bean_size = max_sample / number_of_beans �
5     for i �1, number_of_beans do�
6         beans[i] = i * bean_size  
7     end for 
8     for i ����number_of_samples do�
9         for j �����number_of_beans do �
10             if sample[i] <= beans[j]  then�
11                 dCDF[j] += 1 �
12             end if �
13         end for�
14     end for 
15     for i �����number_of_beans  do�
16         normalized_dCDF[i]=dCDF[k]/number_of_samples 
17     end for 
18 // Estimation phase: �
19     for �������number_of_distribution_models  do�
20         Fit the model[i] to normalized_dCDF �
21         if fitting converges then�
22             if parameters are in the range then�
23                 Add the model to results �
24             end if�
25         end if�
26     end for 
27     for model �����number_of_fitted_models  do�
28         Find the model with lowest AIC, BIC  
29     end for 
30 Output: the best model�

 
 

Fig. 2. Flowchart of the steps in the application of NR in 
recognizing statistical models. 
 
 



selected parameter values of the generated signals, while 
the table cell values show the percentage of correct identi -
fications. The axes labels in further figures (x and y) rep- 
resent r and the cumulative of fR(r) from the equations 2–6. 
 
4.1. Gamma  distribution 
 
Table 1 presents the results of fitting the Gamma dis -
tribution signals with different values of the shape par- 
ameter c. The results show that the applied algorithm 
gives a high percentage of correct recognition of the 
Gamma distribution, and, furthermore, that the scale par -
ameter Ω has no evident effect on the estimation results. 

When the shape parameter of the Gamma (parameter c) 
and Weibull (parameter α) distributions is equal to one, 
we obtain a special case of these two distributions – they 
become exponential distributions [25]. This means that 
the curves of these two distributions have the same shape. 
As a result, there is an approximately equal probability 
that the algorithm will ‘recognize’ the signal as a Gamma 
or as a Weibull distribution, and the summarized estimation 
results give 100% successful recognition. 
  
4.2. Rayleigh  distribution 
 
The Rayleigh distribution is a special case of several 
distributions: 

● For parameter K = 0, equation (4) is reduced to equation 
(3), i.e. a special case when the Rician distribution 
becomes the Rayleigh distribution [22]. 

● For parameter m = 1, equation (5) is reduced to equation 
(3), i.e. a special case when the Nakagami-m dis -
tribution becomes the Rayleigh distribution [21]. 

● For parameter α = 2, equation (6) is reduced to 
equation (3), i.e. a special case when the Weibull 
distribution becomes the Rayleigh distribution [24]. 
Due to the abovementioned relationships among 

probability distributions, the algorithm randomly rec -
ognizes the distributions of signals as one of the dis - 
tributions in the set, but in total the recognition results are 
100%.  

For illustrative purposes, Table 2 displays the rec -
ognition results for signals whose data are generated with 
the Rayleigh distribution. 
 
4.3. Rician  distribution 
 
Table 3 presents the results of fitting the Rician dis -
tribution signals with different values of the K factor. The 
scale parameter Ω has no evident effect on the estimation 
results. 

As stated above, K = 0 is a special case when the 
Rician distribution becomes the Rayleigh distribution, and 
both the Nakagami-m distribution for m = 1 and the 
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Gamma c = 1 c = 1.5 c = 2 c = 2.5 c = 3 
1.
	�	� �	�.3 100  82.25 92.25  93.75 97.25 
1.�	�	� �	�.7 100  78.75 89  92.75 96.75 
1.�	�	� �	�.1 100  79.75 88.75  93 98 
2.�	�	� �	�.5 100  79.5 88.5  93.75 99.25 
AVERAGE 100  80.06 89.63  93.31 97.81 

 

Table 1. Gamma distribution fitting results 
 
 

Rayleigh Rayleigh Rician Nakagami Weibull TOTAL
1.0 � ��� 1.3    34.25  19    19.25   27.5 100 

1.4 � ��� 1.7    31  19.25    18.5   31.25 100 

1.8 � ��� 2.1    31.5  20    17   31.5 100 

2.2 � ��� 2.5    33.5  19.75    16.5   30.25 100 

AVERAGE    32.56  19.5    17.81   30.13 100 

Table 2. Rayleigh distribution fitting results 
 
 

 

 
Rician K = 0 K = 1 K = 2 K = 3 K = 4 K = 5 

1.����� ���.3 100 73.75 78.25 73.75  73   89.5 

1.����� ���.7 100 73 75.25 68.25  64.5   92.5 

1.����� ���.1 100 73 74.75 67.75  70.75   91.25 

2.����� ���.5 100 74.25 72.75 71.25  68.5   87.75 

AVERAGE 100 73.5 75.25 70.25  69.19   90.25 

 
 

Table 3. Rician distribution fitting results 
 



Weibull distribution for α = 2 represent a special case of 
becoming the Rayleigh distribution. The recognition 
results of 100% can be seen in the corresponding column 
of Table 3.  

 
4.4. Nakagami-m  distribution 
 
In Table 4, the recognition results of signals generated 
with the Nakagami-m distribution are presented. A high per -
centage (~ 90%) of correct recognition of the Nakagami-m 
distribution is achieved, except for the results with the 
parameter m = 1, where the 100% rec ognition is achieved. 
As before, the parameter Ω shows no influence on the 
recognition results. 

When the parameter m approaches 1, the Nakagami-m 
distribution becomes Rayleigh, while both Rician (K = 0) 
and Weibull (α = 2) have an overlapping special case of 
becoming the Rayleigh distribution. The recognition 
results of 100% can be seen in the corresponding column 
of Table 4.  
 
4.5. Weibull  distribution 
 
In Table 5, the results of fitting the Weibull distribution 
with different values of the parameter α are presented. 
There is a strong dependence of recognition results on the 
value of the parameter α, while the parameter Ω has no 
influence. As the parameter α value increases, the accu -
racy percentage of the Weibull distribution identification 
decreases. 

There are two columns in Table 5 with the results of 
100% of correctly identified signals. As stated before, this 
is due to two special cases: when α approaches 1, Weibull 
becomes the exponential distribution, and when α ap -
proaches 2, Weibull becomes the Rayleigh distribution. 
 
4.6. Illustrative  curve  fitting  plots  
 
Below we present figures showing some illustrative cases 
of model fitting. While we do provide the AIC and BIC 
values in these figures, it should be noted that the in -
dividual AIC and BIC values should not be interpreted in 
absolute terms, but rather as differences in values between 
them [29]. These criteria have no particular value that can 
be regarded as a threshold, and because this is affected by 
arbitrary scaling constants and sample sizes, they have a 
wide range of possible values ([29] reports an indecisive 
range from –600 to 340 000). In cases where these values 
are relatively large compared to the differences between 
them, these differences may appear to be trivial. However, 
only these differences between values can be interpreted 
as the proof of a correct model fit, since they are not 
affected by the scaling parameters. 

Figure 3 displays the results of fitting the Rician dis -
tribution signal with the parameters Ω = 1 and K = 5. Two 
cases are presented: selecting the best fit considering the 
expected parameter range and selecting the best fit without 
considering the expected range. The system tries to fit all 
the models and finds that only the Rician and Nakagami-
m distribution parameters are within the expected range; 
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Nakagami-m m = 0.5 m = 1 m = 2 m = 3 m = 4 m = 5 

1.����� ���.3   94.5 100 91 91 89.75  85.5 

1.����� ���.7   94 100 92.25 93 89.25  87.75 

1.����� ���.1   92.5 100 90.75 89.5 90.5  88 

2.����� ���.5   94.5 100 92.5 94.25 89.25  86 

AVERAGE   93.88 100 91.63 91.94 89.69  86.81 

 

 
 

Table 4. Nakagami-m distribution fitting results 
 
 

 

 

 

 

Weibull � = 0.5 � = 1 � = 1.5 � = 2 � = 2.5 � = 3 
1.����� ���/3 100 100  85.25 100  54 61 

1.����� ���.7   99.75 100  83 100  51.5 61.75 

1.����� ���.1 100 100  85.75 100  50 60.5 

2.����� ���.5 100 100  89.25 100  53.25 58.5 

AVERAGE   99.94 100  85.81 100  52.19 60.44 

 
 

Table 5. Weibull distribution fitting results 
 
 



the system checks the AIC and BIC values and suc -
cessfully identifies the Rician distribution. The estimated 
parameter values are Ω = 0.99 and K = 4.71.  

Figure 4 displays the same case of model fitting as 
Fig. 3 but without the parameter range checking. The 

system finds the best fit for the Weibull distribution model 
despite the fact that the parameter α = 3.8 is outside the 
reference values [14]. 

In Fig. 5, a representative example of fitting the over -
lapping distributions is presented; the figure displays the 
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Fig. 3. Limited curve fitting. 
 
 

 
 

Fig. 4. Unlimited curve fitting. 



fitting of the Rician distribution signal with the parameters 
K = 0 and Ω = 1. As stated previously, this is the case 
when the Rician distribution overlaps with the Nakagami-
m distribution with the parameter m = 1, the Weibull 
distribution with the parameter α = 2, and the Rayleigh 
distribution. As can be seen in Fig. 3, the AIC and BIC 
parameter values are close, which is to be expected 
considering that these distributions overlap. 
 
 
5. CONCLUSIONS 
 
This paper presents a new approach to using nonlinear 
regression for calculating the statistical models of wireless 
channel identification. The given model provides the 
means for not only recognizing statistical distributions of 
wireless channels, but also for estimating the parameter 
values of these distributions. The proposed algorithm is 
able to recognize the correct distribution without prior 
knowledge about the input signal, using only predefined 
probability distribution models. The algorithm is ap -
plied to the Gamma, Rayleigh, Rician, Nakagami-m, and 
Weibull distributions. The results of the executed simu -
lations show a high percentage of successful identifi- 
cations for all the distributions, even in the special cases, 
where the statistical model of a wireless channel may be 
described by any of the several statistical distributions. 
Furthermore, the results show that the scale parameter Ω 
of some distributions does not affect the distribution 

recognition results, which was to be expected, since the 
scale parameter is a measure of the spread of a dis -
tribution, but has no effect on its skewness. As noted 
earlier, it is the shape parameter that determines the 
special cases when these distributions are equivalent or 
approximate to other distributions. 

The obtained results may have practical usage in 
helping designers of wireless communication systems to 
design them with optimal parameter values of distribution 
models, and to obtain the best possible system per -
formance (select the signal with the best performance) in 
receiving and processing signals from wireless channels. 
The insights gained from this paper may be of assistance 
in other fields, where probability distribution models can 
be applied. Moreover, the fact that this approach does not 
use prior knowledge about the input signal, it can po -
tentially reduce the design and implementation com - 
plexity. Future research could include enhancing the 
methodology for a better detection of special cases when 
one distribution transforms to another with a certain 
combination of parameters, and for recognizing the 
more complex distribution models that are used in fading 
channels.  
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Fig. 5. Fitting the Rician distribution when K = 0. 
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Mittelineaarse  regressiooni  meetod  traadita  side  signaalide  levimudeli  tuvastamisel 
 

Dragiša Miljković, Siniša Ilić, Dragana Radosavljević ja Stefan Pitulić 
 
Paljudes siderakendustes on oluline tuvastada empiiriliste andmete jaotusseadust võimalikult reaalaja lähedaselt. Üks 
spetsiifilisi rakendusi traadita sidesüsteemide puhul on statistiliste mudelite tuvastamine levikeskkonnast tingitud tugi-
jaama ja vastuvõtjate vaheliste signaalide sumbumisel (fading), mis on üks kõige olulisemaid probleeme antennide ruu-
milise eraldatuse määramisel. Käesolevas artiklis kirjeldatakse mittelineaarse regressiooni metoodikat ning rakendamise 
tulemusi sisendsignaali jaotuse ja selle parameetrite väärtuste tuvastamisel. Lisaks saab pakutud lähenemisviisi kasutada 
reaalajas sidesignaali jaotusseaduse määramiseks ilma sisendsignaali kohta eelnevat infot omamata. Levenbergi– 
Marquardti mittelineaarsel vähimruutude meetodil põhinevat algoritmi testitakse suure hulga Gamma, Rayleigh’, Rice’i, 
Nakagami-m ja Weibulli jaotuste põhiselt genereeritud signaalide abil. Eksperimentaalsed tulemused näitavad, et see 
lähenemine on täpne signaali statistilise levimudeli tuvastamiseks. 
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