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Abstract. This paper presents a bottom-up bivariate analysis approach to estimate current harmonics by taking account of network

and load variations. The current harmonics assessment in the presence of existing and future nonlinear loads is vital to study

their impact on the distribution grid. The traditional harmonic analysis models consider only stable loads while neglecting the

harmonic interaction among the devices. Modern nonlinear loads operate under different working modes and configurations. Ther-

mal stability, harmonic cancellation, and dynamic network parameters influence the current harmonic estimations. In this paper,

a probabilistic approach is presented to model harmonic emission in the low voltage distribution grid under network and load

uncertainties. A case study is used to demonstrate effectiveness of the proposed model.
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1. INTRODUCTION

Current harmonic emission is becoming a critical power quality issue as the uptake of nonlinear devices

in the distribution grid is increasing. Rampant electricity demand, fluctuating fuel prices, and greenhouse

gas (GHG) emission is pushing the manufacturer of electrical equipment toward energy-efficient design.

Consequently, all modern household appliances incorporate electronic-based converters.These devices draw

non-sinusoidal currents and cause voltage distortion in the distribution grid. High penetration of electric

vehicles and smart buildings will further increase the share of nonlinear devices in the coming years.

The primary task of the network operators is to maintain power quality within the limits for the network

and, therefore, a realistic estimation of current harmonics is critical. This paper presents an overview of a

probabilistic approach to estimate current harmonics in the low voltage (LV) distribution grid in the presence

of different uncertainties.

The power quality indicates an aggregated effect of electromagnetic disturbances that can degrade the

voltage and current waveforms. One of the critical parameters of power quality is the sine waveform of the
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network voltage. The periodic variations from the sinewave, characterized as harmonics, are responsible for

the voltage waveform deterioration. As the share of these voltage harmonics increases, the reliability of the

network is imperiled. The current and voltage distortions may lead to several problems in the distribution

network. The incremental higher frequencies amplify the proximity and skin effects in the cables. The

performance and life span of transformers, cables, and other network components may be reduced because

of the added stress [1,2]. The network protection equipment and electrical appliances can malfunction due

to these unwanted harmonics [3]. Furthermore, the neutral conductor can be overloaded and it leads to

undesirable consequences in the network [4]. The capacitor banks can also fail as the higher frequencies

can alter their impedance [5]. Therefore, details about harmonic sources and their effect on the network

are vital for the network operators to understand the power system’s smooth operation within the limits of

power quality indices.

Although sufficient literature is available related to power flow modelling, nonlinear load modelling and

stochastic current harmonic estimations are relatively contemporary. The classical residential load models

are developed to predict energy consumption patterns and are, therefore, unable to estimate current harmonic

emissions mainly because of their low time resolution. Due to the stochastic nature of the modern nonlin-

ear devices, it is not easy to model their usage and operational behaviour. Typically, a general overview is

presented based on assumptions and limited measurements of the harmonic currents. On the other hand,

several uncertainties are associated with a probabilistic approach for harmonic estimation. Domestic electri-

cal appliances can operate in different modes and the harmonic emission profile could be very different for

each mode. Thermal stability associated with electronic devices causes variation in the current harmonics,

leading to an inaccurate assessment of power quality indices [6]. The harmonic cancellation also occurs

as voltage or current harmonics are aggregated by geometrical vector addition because of the phase angles

associated with them [7]. As a result, the aggregated harmonic content at the point of common coupling

(PCC) may increase or decrease [8]. The assumptions and uncertainties linked with harmonic analysis lead

to an inefficient modelling approach with inaccurate harmonic estimations.
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Fig. 1. Current and voltage waveforms at the PCC.

This paper provides a framework of probabilistic modelling of current harmonics with nonlinear loads

in the distribution network. The model relies on comprehensive power quality measurements and a proba-

bilistic approach to model the harmonic current magnitude and phase angles. The electrical appliance usage

patterns were developed to evaluate a nonlinear device’s impact on the grid by the residential occupants.

The load measurements were performed at different voltage waveforms, including sine wave, to observe the

harmonic cancellation impact on harmonic aggregation. The harmonic analysis approach at different volt-

age levels will provide an insight into the real-time effect of electronic load on the network. The network

impedance provides the way to calculate harmonic emission limits and is often estimated by using short cir-

cuit impedance [9]. The modern electronic load contains additional passive components that may affect the

network impedance. The current harmonic measurements of electronic loads with different voltage wave-

forms will enable us to estimate the change in the load’s impedance at various frequencies. Figure 1 shows

how to estimate the change in network impedance when the electronic load is connected at the point of
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common coupling at a particular frequency. In the first stage, the voltage VPCC and the current IPCC from the

network at the PCC are measured before connecting the load. The current IL (150 Hz) is then injected and

new measurements of the voltage V ′
PCC and the current I′PCC are taken at the PCC. The network impedance

can be detected at the frequency f by using Eq. 1:

Z f =
V ′

PCC −VPCC

I′PCC − IPCC
. (1)

The existing harmonic estimation methods are presented in Section 2. Accuracy and uncertainties are anal-

ysed in Section 3 and Section 4 describes the proposed modelling approach for current harmonic estimation.

A case study used to evaluate harmonic emission from the lighting load in the distribution grid is introduced

in Section 5. Conclusions are presented in Section 6.

2. HARMONIC ESTIMATION METHODS

The distribution network is designed to provide sinusoidal voltage to the consumers. The modern nonlinear

loads distort the voltage by adding current harmonics. A detailed harmonic analysis could provide insight

into the power system behaviour under these voltage and current distortions. Researchers have made dif-

ferent models to estimate the current harmonics for the residential network. These models can be classified

into time or frequency domain equivalent load models or measurement-based models.

The frequency-domain models are easier to compute and consider the frequency domain attributes of

the electrical equipment. The simplest frequency domain model is the current source model based on the

current magnitude and phase measurement of each harmonic under consideration. Any nonlinear load can

be represented by the sum of constant current sources for each frequency [10]. Each current harmonic

source is independent of the input voltage. However, in the distribution grid, the voltage distortions can alter

the harmonic emissions of electrical equipment [11]. As the voltage waveform in a distribution network

changes continuously depending on the type and amount of the connecting load, current source models are

not effective for harmonic analysis. The Norton model addresses this problem by considering the admittance

matrix. The model parameters are estimated by switching the operating condition of the power system with

the assumption that the impedance and current of the Norton model will be constant and will not change

with the shape of the voltage waveform. Two different sets of current and voltage harmonics are used to

estimate the model parameters by means of Eq. 2 and Eq. 3:

Zn,h =
V ′

h −Vh

I′h − Ih
, (2)

In,h =
Vh

Zh,k
− Ih. (3)

Here, Zn,h and In,h are the impedance and current of the Norton equivalent model for the harmonic h cal-

culated by using two sets of current and voltage measurements Vh, Ih and V ′
h, I′h. Although this approach

provides some advantages over the current source model, it is unable to consider the cross dependency of

harmonics. The harmonic currents only depend on the corresponding voltage harmonics and not on the

voltage waveform itself.

This shortcoming was improved by employing a crossed frequency admittance matrix in the Norton

coupled (NC) model. The estimated harmonic currents using this model will depend not only on the voltage

harmonics of the same frequency but also on the other frequencies. Eq. 4 and Eq. 5 represent the mathemat-

ical form of the NC model. The verification and comparison of frequency-domain models are presented in

[12,13].
�I =�Y ×�V , (4)
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The time-domain models are based on the load’s actual circuits and provide in-depth information about

the load harmonic emission profile. A time-domain harmonic analysis approach was applied to nonlinear

loads categorized based on their circuit topologies in [11]. Most electronic devices contain switch mode

power supplies (SMPSs), for which reason time-domain models equivalent to the SMPS were created. The

current harmonic estimation was provided on simulated and measured waveforms. In another study, a har-

monic model was formulated for computer loads connected to a single transformer [14]. The results show

harmonic cancellation and voltage waveform distortion at the transformer. The mathematical models of low

power compact fluorescent lamps (CFLs) were made to study harmonic penetration in [15]. The voltage

and current waveforms were recorded and analysed by means of circuit simulation software. Although the

time-domain models provide an accurate harmonic analysis approach, they have limited application as it is

challenging to model every load connected to the grid using its circuit schematic.

In the electrical model-based approach, the load connected to the network is categorized based on their

electrical properties, and the probability distribution of each group is defined to estimate the overall har-

monic emission. For example, the network load can be divided into linear or nonlinear devices. These

devices can be additionally categorized according to circuit topology and power quality characteristics. A

similar probabilistic harmonic analysis model was proposed in 1987 [16]. The model categorized nonlin-

ear loads into four categories based on the switching state and operating mode. The harmonic aggregation

analysis was performed using the Monte Carlo approach with probability density functions (PDFs) of har-

monic magnitude and phase angles. Based on the appliance measurement data and their usage patterns, a

harmonic analysis approach was applied to study the harmonic impacts of the household appliance in the

low voltage distribution grid [17]. The results obtained from the harmonic model were then compared with

the real-time measurements of the network. A similar bottom-up probabilistic harmonic estimation mod-

elling approach was presented in [18]. The model generated a household appliance’s usage patterns based

on occupant behaviour, and the appliance’s equivalent circuits were used to analyse the harmonic emission.

The simulation results of harmonic loads were compared with the actual grid measurement results to extract

correlated data. In another study, a probabilistic model to analyse waveform distortions was presented under

the influence of high penetration of electric vehicles (EVs). The authors highlight the importance of this

approach as uncertainties associated with the EV charging patterns can be easily accounted for [19]. The

single and three-phase nonlinear loads were divided into groups based on their current THD (total harmonic

distortion) in [20]. The participation of these load groups was obtained based on energy usage patterns at

different times of the day. The author selected the customer database parameters by assuming that the data

of any particular device type belonged to a normal distribution. The voltage distortion in the low voltage

network was evaluated based on this probabilistic method.

In the measurement-based models, current harmonic emission is analysed from the probability distribu-

tions of harmonic current measurement data. The measurements could be taken at the electrical appliance

level in a bottom-up approach, and aggregated harmonic analysis could provide the harmonic estimation

at the point of common coupling. In the top-down approach, measurements are taken at the distribution

transformer. In both cases, extensive measurement data is usually compared with an appropriate probability

distribution. The voltage distortion in the distribution network was estimated by using Monte Carlo sim-

ulation of the aggregated harmonic current in [21]. The measurement data was assumed to fit a normal

distribution. The harmonic currents were measured of residential and commercial loads at the point of com-

mon coupling in [22]. The measurements were divided into low, medium, and high demand subgroups and

compared with the normal distribution and uniform distributions.
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Two different approaches can be applied to construct a probabilistic model based on the type and amount

of data [23]. The first approach could be termed as a parametric model where a finite set of data parameters

can be compared with predefined distributions. In the second non-parametric approach, the model is based

on distributions calculated from the data itself [24]. The parametric models mostly employ the normal

distribution defined by mean and variance. The probability density function of a normal distribution is

indicated by Eq. 6:

fx =
1√

2πσ2
× e−

(x−μ)2

2σ2 . (6)

Here, σ is the standard deviation and μ represents the mean value of x.

In the early harmonic models, the normal distribution was used to describe both magnitude and phase

angles as independent variables. However, this assumption is not accurate for harmonic analysis. Therefore,

a joint or bivariate probabilistic approach is more effective where the estimated variable depends on the

probability density function of two variables. In [10], the load current for residential buildings was estimated

using beta bivariate distributions.In [11,12], the joint normal distribution (JNB) was employed for the fore-

casting of harmonic emissions. The parameters of the normal joint distribution, σ (standard deviation) and

μ (mean value) are calculated by Eq. 7 and Eq. 8 using the complex components of the current ix and iy:

μxy =

[
ix
iy

]
, (7)

∑xy =
[

σ2ix σ(ix, iy)
σ(ix, iy) σ2iy

]
. (8)

Figure 2a shows the 15th harmonic current when normal distribution fitting parameters are applied in a

complex plane for a display monitor. The individual probability density of the real and imaginary parts of the

current harmonics is indicated by red and blue lines, respectively. The green circle encloses the part of the

distribution responsible for 95 percentile of the estimated values. Although the joint probability distribution

provides better results than the individual normal distribution for x and y values, it can, however, be effective

only when both components are linearly dependent. The nonlinear devices with multiple operating modes

result in different harmonic currents. The resultant distribution fit of these devices could be very different

from the normal distribution. Figure 2b shows the 9th harmonic current spread of a personal computer (PC)

stress test in a complex plane where three different clusters are clearly visible. The normal joint distribution

cannot represent this data efficiently. This problem can be addressed by clustering the data and applying the

JNB to respective clusters. This approach is known as a multivariate normal mixture and provides a more

flexible distribution fit [25]. The distribution mixture approach was applied in [26] to study power quality

impact in low voltage distribution. The PDFs of the current harmonics were calculated by finite normal

distribution components with their associated weights. The drawback of this approach is that the model

requires predefined cluster information.

An adaptive kernel density estimation (KDE) with a plug-in bandwidth selection approach is presented

in [27]. The KDE algorithm designates probability distribution for every data point using a kernel function

and bandwidth, also known as the smoothing parameter, indicated in Eq. 9:

fh =
1

N

N

∑
i=1

Kb(h−hi) =
1

Nb

N

∑
i=1

K
(h−hi)

b
. (9)

Here, fh provides the PDF of h for N observations. K is the kernel and b is the bandwidth. The sum of

kernels provides the total probability density of a variable. The optimal bandwidth selection is critical in a

KDE model. A large bandwidth will smooth the probability density curve but results in fewer data points

in each kernel. As a result, information about data variation will be lost. The optimal methods for finding

bandwidth are introduced in [28]. The KDE algorithm, along with the Monte Carlo simulation, was used to
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(a) 15th harmonic current of display monitor (b) 9th current harmonic spread of PC

Fig. 2. Joint probability distribution applied to harmonic currents drawn by monitor and PC [23].

estimate harmonic load flow in [24] and [29]. However, harmonic current magnitude and phase angles were

estimated independently, which would provide inaccurate phasor data results. A joint distribution from the

KDE algorithm can generate better results where multidimensional vectors represent the parameters. In Fig.

3a, the KDE is applied to the 5th harmonic current measured during the PC stress test. This method requires

intensive calculations, and high computational power is needed for even a small scale harmonic analysis.

(a) KDE distribution (b) Histogram distribution

Fig. 3. KDE and histogram distribution applied to the 5th harmonic current of a PC [23].

Empirical bivariate histogram (EBH) distribution is another approach that divides data into predefined

bins. The EBH distribution data is normalized by using Eq. 10 to create a probability density mesh:

Px,y =
C(x,y)

N ·Wx ·Wy
. (10)

Here, Px,y y is the probability density of a bin at (x,y), C(x,y) are the number of samples in the bin and Wx, Wy
defines the area of the bin. N defines the total number of data points. Figure 3b demonstrates the histogram

distribution applied to the 5th harmonic current of a PC under stress test. The advantage of EBH over KDE

distribution is that it requires less computational power. However, both EBH and KDE distributions generate

unused data space in the PDF when clusters are present in the data. Data sampling for these techniques is

quite challenging.

Fig. 2. Joint probability distribution applied to harmonic currents drawn by the monitor and PC [23].
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(b) 9th current harmonic spread of the PC

Empirical bivariate histogram (EBH) distribution is another approach that divides data into predefined

bins. The EBH distribution data is normalized by using Eq. 10 to create a probability density mesh:

Px,y =
C(x,y)

N ·Wx ·Wy
. (10)

Here, Px,y is the probability density of a bin at (x,y), C(x,y) are the number of samples in the bin and Wx, Wy
defines the area of the bin. N defines the total number of data points. Figure 3b demonstrates the histogram

distribution applied to the 5th harmonic current of a PC under stress test. The advantage of EBH over KDE

distribution is that it requires less computational power. However, both EBH and KDE distributions generate

unused data space in the PDF when clusters are present in the data. Data sampling for these techniques is

quite challenging.

(a) KDE distribution (b) Histogram distribution

Fig. 3. KDE and histogram distributions applied to the 5th harmonic current of the PC [23].
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(a) KDE distribution (b) Histogram distributionKDE distribution

Fig. 3a, the KDE is applied to the 5th harmonic current measured during the PC stress test. This method 
requires intensive calculations, and high computational power is needed for even a smallscale harmonic analysis.

           (a) 15th harmonic current of the display monitor
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3. ACCURACY AND UNCERTAINTIES

Current harmonic emission could be affected by several factors, including network configurations, load

variations, appliance parameters, and measurement uncertainties [30]. The power system uncertainties are

widely addressed in the literature. The network uncertainty includes variation in supply voltage, frequency,

and resonance. They are difficult to model as various factors, including generation, dispatch, and network

topologies, affect the estimations [31,32].

The load connected to each bus in the distribution network is comprised of various linear and nonlinear

loads. During different times in the day, various loads are connecting and disconnecting to the buses. The

researchers use varied stochastic approaches to predict network load behaviour [33,34]. Modern electrical

appliances work in various modes that generate different harmonic emission profiles. Different parameters

associated with the appliances also vary due to the variations incorporated during the manufacturing process

[35]. The environmental conditions and aging of the equipment play their role as well [36].

The measurement uncertainties are associated with the environment, measuring instrument uncertainties,

and variations in the test equipment. As the current harmonic profiles vary under different operating modes

of the devices, the measurement results should include these variations. The supply voltage distortion also

alters the current harmonics of different loads. Therefore, it is challenging to measure specific electrical

equipment on different modes under different supply variations. The thermal stability also changes the

current harmonics of the electrical appliances. The thermal stability effect on light-emitting diode (LED)

lamps shows a significant variation in current harmonics during the stability time. The effect of current

harmonic estimation displays a significant error as well [37]. Similarly, power supplies also show a more

than 20% and 12% variation in the THD and the total RMS current, respectively [38].Likewise, the harmonic

current cancellation affects the outcome of harmonic analysis. The higher-order harmonic indicates a more

prominent reduction if the harmonic cancellation is taken into account [7]. The harmonic currents are also

affected by the cable impedance [39]. Therefore, all of these uncertainties should be included in the model

to estimate current harmonic emission.

4. PROPOSED STOCHASTIC MODELLING APPROACH

The modern electronic equipment operates in different modes, and their current harmonic spread is irreg-

ular with clustered data. The probabilistic approach of modelling current harmonics has the advantage of

tackling any sporadic variations. The stochastic models to estimate the current harmonic described in the

previous section have several limitations in terms of accuracy or computational complexity. Most of the

models use a normal distribution or joint normal distribution fit, not appropriate for most of the current har-

monic measurement data as they show different distribution spreads. The KDE and histogram distribution

algorithms require a bandwidth selection and become inefficient if the data has clusters.

A novel empirical bivariate probability distribution (EBPD) approach is applied in this research as a

part of the proposed bivariate stochastic (BS) model to estimate the current harmonics in the low voltage

network. The current harmonic magnitude data is used to generate the empirical cumulative distribution

function (ECDF) for the harmonics under consideration. The ECDF will provide the groups of the real and

complex components with their probabilities. The model consists of three parts: appliance usage model,

measurement database, and empirical bivariate harmonic current model. The algorithm of the model is de-

scribed with a flow chart in Fig. 4.

The model will simulate the required number of houses for a given number of days to estimate the

magnitude and phase angles of the harmonic currents generated by each house appliance. During each

day, all houses are populated with the appliance stock, and the current harmonics of every appliance are

estimated using the EBPD model. The appliance stock and usage pattern of that appliance are provided by

the appliance usage (AU) model further described in this section. Every appliance is simulated individually,

and the total harmonic emission of an individual household is aggregated in each iteration. The harmonic
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Fig. 4. Flow chart of the proposed model.

currents are aggregated in a complex plane. Therefore, the model also estimates real and complex (X and

Y) components of each current harmonic.

4.1. Appliance usage model

An efficient current harmonic estimation model should take into account the load variation in the distribution

grid. Harmonic injection in a network at a given time depends on the type and amount of the load connected

to the grid on that particular instant. However, the load prediction is a complex task as it is difficult to esti-

mate when the consumer is going to use a particular appliance. The occupant behaviour of using electrical

appliances is challenging to model as it depends on many factors. Occupants interact with the electrical and

nonelectric systems installed in the building, altering thus the energy usage patterns [40]. The International

Energy Agency (IEA) also regards occupant actions as the primary cause of controlling the environmental

parameters to maintain a comfortable living atmosphere [41]. These occupant actions are responsible for

71% variation in the building’s energy consumption [42]. However, various factors influence the resident’s

behaviour, including their age, income, social status, and cultural background [43]. The building structure,

insulation quality, climate conditions also play their role. Therefore, universal occupancy modelling is near

to impossible.

The electricity consumption models can be broadly classified into three categories: top-down models,

bottom-up models, and hybrid models [44]. The top-down modelling approach is based on data collected

on the macro-level. It may include an electricity billing database, national census, or survey data. The

researchers have frequently used the Time Use Survey (TUS) data collected in Europe, Britain, and America

for their energy consumption models. These surveys collect data from the targeted groups based on different

parameters. The models based on similar data have many drawbacks and lack the capability to provide a

detailed analysis of the physical behaviour of the building systems.

The bottom-up models are based on physical measurements at the device or building level. Nevertheless,

these models provide accurate information regarding energy consumption in a building but are complicated

to construct due to the involvement of several variables. These variables include occupancy, occupant be-

haviour, climate conditions, building structure, and an extensive database of appliance’s measurements. As
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it is difficult to consider each variable in detail, a compromise is required to make a specific model for a

particular research problem. Another approach is to combine the benefits of both bottom-up and top-down

approaches to improve efficiency. These models are termed as hybrid models [45].

We need a residential electricity consumption model to estimate current harmonic emissions from the

building. Therefore, a high-resolution bottom-up model is required to provide usage patterns of domestic

appliances that can be compared with the power quality (PQ) measurements. Figure 5 illustrates the abstract

diagram of our appliance usage model for residential buildings.

Fig. 5. Abstract diagram of the appliance usage model.

For this study, a residential building in Estonia is measured at the device level for one month. The data

is used to construct a probabilistic model to estimate the switching behaviour of the appliance. The model

consists of active occupancy profiles, appliance stock in the households, and the electricity consumption

measurements as shown in Fig. 5.

Active occupancy profiles are created based on the electricity consumption of the appliance that comes

under the direct influence of the occupant’s activities. The usage of lighting, media, kitchen, cleaning, and

laundry appliances directly depends on the occupant’s behaviour. Electricity consumption metre data has

been used for occupancy modelling in many studies [46–49]. A similar approach is applied here to create a

two state active occupancy profile. ECDFs are created for both weekdays and weekends occupancy status

based on the electricity consumption data. A survey related to the occupant’s daily activities is also used to

improve these occupancy profiles.

Every household has different appliances depending on the family size, geographical location and so-

cioeconomic status. Appliances are also available from different manufacturers with various specifications.

Manufacturers introduce new models every year with improved functionality and energy ratings. The appli-

ance ownership information can be extracted from several surveys conducted on national level in different

countries. A domestic energy model was created on the basis of a set of common appliances based on

national ownership statistics for the United Kingdom (UK) in [50]. Similar surveys are also conducted in

Europe and the USA.

The appliance usage model (AU) will provide the information when a particular appliance is switched

ON in the house. The ECDFs are used to generate switching and duration intervals of each appliance in the

house. The total electricity consumption of a single housing unit can be determined from the Eq. 11:

E =
D

∑
day=1

[
n

∑
ap=1

(Pa ×da)+(Ps ×ds)

]
. (11)

Here, Pa denotes the active power of the appliance ap in its active mode and Ps is its active power in the

standby mode. da and ds are the time duration of an appliance operating in active or standby modes during

a day.

For this study, a residential building in Estonia is measured at the device level for one month. The data

is used to construct a probabilistic model to estimate the switching behaviour of the appliance. The model

consists of active occupancy profiles, appliance stock in the households, and the electricity consumption

measurements as shown in Fig. 5.

Active occupancy profiles are created based on the electricity consumption of the appliance that comes

under the direct influence of the occupant’s activities. The usage of lighting, media, kitchen, cleaning, and

laundry appliances directly depends on the occupant’s behaviour. Electricity consumption metre data has

been used for occupancy modelling in many studies [46–49]. A similar approach is applied here to create a

two state active occupancy profile. ECDFs are created for both weekdays and weekends occupancy status

based on the electricity consumption data. A survey related to the occupant’s daily activities is also used to

improve these occupancy profiles.

Every household has different appliances depending on the family size, geographical location and so-

cioeconomic status. Appliances are also available from different manufacturers with various specifications.

Manufacturers introduce new models every year with improved functionality and energy ratings. The appli-

ance ownership information can be extracted from several surveys conducted on national level in different

countries. A domestic energy model was created on the basis of a set of common appliances based on

national ownership statistics for the United Kingdom (UK) in [50]. Similar surveys are also conducted in

Europe and the USA.

The appliance usage model (AU) will provide the information when a particular appliance is switched

ON in the house. The ECDFs are used to generate switching and duration intervals of each appliance in the

house. The total electricity consumption of a single housing unit can be determined from the Eq. 11:

E =
D

∑
day=1

[
n

∑
ap=1

(Pa ×da)+(Ps ×ds)

]
. (11)

Here, Pa denotes the active power of the appliance ap in its active mode and Ps is its active power in the

standby mode. da and ds are the time duration of an appliance operating in active or standby modes during

a day.

Fig. 5. Abstract diagram of the appliance usage model.
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4.2. Measurement database

The measurement database contains the current harmonic measurements of different household appliances

operating at different working modes on various voltage waveforms. We have used sinusoidal, peak-top,

flat-top, and real-time grid voltage waveforms as an input to measure current harmonics.

For the real-time grid voltage waveforms, a low voltage residential network is measured at 5-minute

intervals for a day to record the voltage harmonic magnitude and phase angles. Figure 6 shows the volt-

age waveform used to measure the current harmonic emission from the household appliances using the

measurement test bench.

(a) Synthetic voltage waveforms

0 5 ms 10 ms 15 ms 20 ms

Time

-400

-200

0

200

400

V
o

lt
a
g

e
 (

V
)

Pure sine
Flat top
Peak top

(b) Grid voltage waveforms

4 ms 5 ms 6 ms

Time

305

310

315

320

325

330

V
o

lt
a
g

e
 (

V
)

7:00 PM
4:00 AM
8:00 AM

Fig. 6. Voltage waveforms used for current harmonics measurements.

The measurement test bench consists of a PC with MATLAB program and a data acquisition (DAQ)

module from National Instruments to generate a reference signal for the controllable power supply. The

reference signal VR has enabled us to generate the required voltage waveform VO using the Eq. 12

VO =
VR ×Vrange

VC
. (12)

Here Vrange is 300V and VC is 7.07. VR is generated using the voltage harmonic magnitudes and phase angles

using the Eq. 13.

Vout =
n

∑
i=1

√
2 ×Ai sin(2π fits +αi) . (13)

Here, Ai represents the root mean square values of the voltage harmonics and αi indicates the phase differ-

ence from the fundamental frequency. fi, ts is the harmonic frequency for the ith harmonic and sampling

interval, respectively.The sampling frequency of the reference signal is 100 kHz and it is indicated by fs.

Figure 7 demonstrates the schematic of the measurement setup.

The harmonic current estimation model is based on the power quality measurement data of the appliance

portfolio. The device usage patterns from Section 3.1 are compared with the harmonic current profiles of

each household appliance. The model can be used to evaluate the total harmonic emission of a multiple

house as illustrated in Fig. 8.

4.3. Empirical bivariate harmonic current model

The empirical bivariate harmonic current modelling approach is suitable for harmonic analysis of loads with

the dynamic profile of harmonic emission and is also capable of addressing different uncertainties respon-
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4.2. Measurement database

The measurement database contains the current harmonic measurements of different household appliances

operating at different working modes on various voltage waveforms. We have used sinusoidal, peak-top,

flat-top, and real-time grid voltage waveforms as an input to measure current harmonics.

For the real-time grid voltage waveforms, a low voltage residential network is measured at 5-minute

intervals for a day to record the voltage harmonic magnitude and phase angles. Figure 6 shows the volt-

age waveform used to measure the current harmonic emission from the household appliances using the

measurement test bench.
The measurement test bench consists of a PC with MATLAB program and a data acquisition (DAQ)

module from National Instruments to generate a reference signal for the controllable power supply. The

reference signal VR has enabled us to generate the required voltage waveform VO using Eq. 12:

VO =
VR ×Vrange

VC
. (12)

Here, Vrange is 300 V and VC is 7.07. VR is generated by using the voltage harmonic magnitudes and phase

angles by means of Eq. 13:

Vout =
n

∑
i=1

√
2 ×Ai sin(2π fits +αi) . (13)

Here, Ai represents the root mean square values of the voltage harmonics and αi indicates the phase differ-

ence from the fundamental frequency. fi, ts is the harmonic frequency for the ith harmonic and sampling

interval, respectively. The sampling frequency of the reference signal is 100 kHz and it is indicated by fs.

Figure 7 demonstrates the schematic of the measurement setup.

The harmonic current estimation model is based on the power quality measurement data of the appliance

portfolio. The device usage patterns from Section 3.1 are compared with the harmonic current profiles of

each household appliance. The model can be used to evaluate the total harmonic emission of a multiple

house as illustrated in Fig. 8.

4.3. Empirical bivariate harmonic current model

The empirical bivariate harmonic current modelling approach is suitable for harmonic analysis of loads with

the dynamic profile of harmonic emission and is also capable of addressing different uncertainties responsible
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Fig. 7. SSchematic of the measurement setuup.
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pm(X ≤ x) =
1

m

m

∑
k=1

1[xk ≤ t]. (14)

Here, pm is the cumulative probability function of m groups. The 1 is called indicator function and has two

possible values as shown by Eq. 15:

1 [xk ≤ t] =
{

1 f or xk ≤ x
0 f or xk > x . (15)

Figure 9 demonstrates how ECDFs of real and imaginary components of the current harmonics can be used

to create distribution of the current harmonic in the complex plane. The red line shows the ECDF of the real
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7.png

Fig. 9. EBPD applied to the 5th harmonic of the PC under stress test [23].

component of the harmonics and each blue line indicates the ECDF of the imaginary components at each

group of the real component’s ECDF.

5. CASE STUDY OF HARMONIC ESTIMATIONS

The proposed bivariate stochastic model was used to estimate current harmonic emission from the lighting

load in the low voltage residential grid. The lighting usage profiles were made utilizing the AU model with

a 1-minute resolution. The lighting measurements from the measured residential building were analysed for

this purpose. The active occupancy profiles and electricity consumption data were the inputs of our lighting

usage model. Total lighting load was segregated into the usage profile of each switch to control the electrical

lights in the building. The load curves were divided into morning, day, and evening cycles. Each cycle was

simulated separately.

The ECDFs were created to generate the probability distribution function of the switching and noise

events. The switching events occur when a lamp is turned ON for more than 10 minutes. All events with a

lamp usage of less than 10 minutes are considered noise events. The time duration of switching and noise

events for all lamps in a house can be aggregated to find the total lighting power demand. Equation 16 can

be used to calculate the total energy consumed by each lamp during any cycle in a residential building:

El =
T

∑
t=1

[
m

∑
se=1

(dse ×Pl)+
n

∑
ne=1

(dne ×Pl)

]
. (16)

Here, El is the total energy consumed by a lamp in one cycle of T minutes duration with m and n switching

and noise events, respectively. dse refers to the duration of each switching event and dne is the duration of

one noise event. The 60 houses were simulated for 100 days, and each house was populated with different

LED lamps depending on the lumens needed in each room. The usage pattern from the AU model provided

the time at which a particular lamp would switch ON as well as the ON time duration. A Monte Carlo based

approach was applied to calculate the current harmonics injected by the lighting from all the 60 houses. The

lamps operate in a single working mode (ON or OFF state) if dimming circuits are not used. Therefore,

bivariate harmonic estimation is simplified. The lamps were measured on different voltage waveforms.

These waveforms were regenerated using the measurement test bench described in Section 4.3. Lamps were

warmed up for 1 hour to eliminate the measurement variation because of thermal instability. The voltage

waveforms included sinusoidal, peak-top, flat-top, and real grid waveforms during different times of a day.

The probabilities were assigned to each voltage waveform, as shown in Table 1.
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Table 1. Waveform probability used in the model

Waveform Probability

Sinusoidal 0.15

Flat-top 0.06

Peak-top 0.04

Grid waveform 1 0.25

Grid waveform 2 0.25

Grid waveform 3 0.25

After selecting the voltage waveform during each iteration, the real components of the current harmonics

were selected for the particular voltage waveform. In the next step, the complex component of the current

harmonics was generated based on the group assigned to the selected real component. The real and imag-

inary components of current harmonics for all lamps were generated for a day with 1-second resolution.

Figure 10 illustrates the total RMS current drawn by the lighting usage of 60 houses. The bold black line

shows the mean value of the RMS current, and the blue dotted line indicates the 90 percentile value of the

RMS current consumed by the lighting in 60 houses. The minimum value of the RMS current drawn by the

lighting usage in all 60 houses is illustrated by the red dotted line.

The high-frequency current harmonics can also be estimated in a similar process. Figure 11 shows the

3rd, 5th, 7th, and 9th current harmonic represented by black, red, blue, and green colours, respectively. The

bold line indicates the mean value, and the dotted line shows the 90th percentile value.
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Fig. 10. Total RMS current estimated for the lighting load of 60 houses for 100 days.
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Fig. 11. Harmonic current estimation of the lighting load of 60 houses for 100 days.

The results reveal the effectiveness of the proposed approach as it is simple to evaluate, and any uncer-

tainty could be added at any step. The model provides flexibility to evaluate present and future appliances

by expanding the measurement database with power quality measurements of devices on different voltage

waveforms.

6. CONCLUSIONS

A novel bottom-up stochastic model to assess the current harmonic emission is presented in this paper.

The bivariate empirical distribution approach is used to model harmonic currents. It provides a simple

and flexible option to evaluate different aspects of harmonic emission in the distribution grid. The model is

capable of handling any uncertainty associated with the distribution grid by considering its stochastic nature.

The stochastic approach has made the model more efficient in handling variations and uncertainties

than the traditional numerical or probabilistic methods. The bivariate approach is applied to model current

harmonics, making the model capable of processing data with high variations and clusters.

An appliance usage model is also presented based on the real-time measurements at the device level. The

occupancy and appliance stock data can be used to create usage profiles of different electrical appliances in

a residential building. Thermal stability, cable impedance, and grid side variation are considered during the

measurements. The model is flexible to include additional future loads such as electric vehicles. It provides

an accurate assessment of the power quality aspects from the perspective of the low voltage distribution

under dynamic load and network conditions. The case study provides the effectiveness of the model by

estimating the current harmonic emission due to the lighting load of sixty houses. The measurement database

could be extended in the future by including measurements of different household appliances.
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Madalpinge-jaotusvõrgus esinevate vooluharmoonikute kahemõõtmeline stohhastiline
modelleerimine

Muhammad Naveed Iqbal, Lauri Kütt, Kamran Daniel, Marek Jarkovoi, Bilal Asad ja
Noman Shabbir

On esitatud kahemõõtmeline stohhastiline analüüs vooluharmoonikute hindamiseks alt-üles viisil, mis ar-

vestab võrgu ja koormuste muutumist. Vooluharmoonikute hindamine praeguste ja tulevikus rakedatava-

te mittelineaarsete koormustega on oluline, et määrata nende mõju jaotusvõrgule. Traditsioonilised har-

moonikute analüüsi mudelid arvestavad ainult püsivaid koormusi ja jätavad kõrvale harmoonikute omava-

helise mõju. Soojuslik stabiilsus, harmoonikute tühistamine ja võrgu dünaamilised parameetrid mõjutavad

samuti vooluharmoonikute hinnanguid. Antud artiklis on esitatud tõenäosuslik lähenemine, millega mo-

delleerida vooluharmoonikute emissiooni madalpinge-jaotusvõrkudes võrgu ja koormuse määramatuse kor-

ral. Esitatud mudeli tõhusust on näidatud juhtumipõhise analüüsiga.


