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Abstract. Decision-making in bridge management has changed considerably in the past two decades and owners are additionally 
considering what types of interventions to implement, but correct decisions still need certain input. In Estonia, like in many countries, 
bridge management is based on inventory records and condition information. The main emphasis of this investigation is on improving 
the regular condition assessment. More accurate non-destructive testing methods and optimised inspection scheduling are proposed, 
to reduce condition assessment uncertainties. A conversion matrix for translating additional assessment results to the rating scale of 
the current Estonian Transport Administration management system is introduced and uncertainties in the condition state are analysed 
probabilistically. In addition, stochastic degradation models based on existing information are investigated to help considering 
uncertainties as a part of the overall management process. What impact the adopting of quantitative assessment, rather than qualitative 
visual inspection, may have on the suggested interventions schedule is also analysed. The probabilistic characteristics of the condition 
profiles of the most common bridge elements are computed using Markov Chain Monte Carlo stochastic simulation. The optimisation 
of inspection scheduling is performed considering the uncertainty of the initial deterioration model. When a threshold value, defined 
by the owner, is reached, the model is updated with assessment data to maintain the level of uncertainty below that threshold. The 
results confirm that deviations in the degradation model and assessment results influence the bridge condition uncertainty. Likewise, 
times of both inspection and intervention are influenced, which will ultimately impact the overall management reliability and costs. 
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1. INTRODUCTION 

 
Bridges are one of the most critical components of the transport network and they require regular investments 
to maximise economic and societal benefits. Efficient bridge management should meet the present and future 
needs of the users, normally under the pressure of limited funding. In the past three decades, these investments 
have been planned, managed, and technically supported by bridge management systems (BMS). BMS basic 
components are the following: inventory database, deterioration models, optimisation models and update 
functions (AASHTO 1993). Hence, the management process starts with a correctly formulated database, 
where relevant condition information is also stored.  
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In most countries, the condition information is obtained from visual inspections (Kušar and Šelih 2014; 
Mirzaei et al. 2014), a method that is the most basic level in the hierarchy of structural assessment of existing 
structures (Rücker et al. 2006) and is based on qualitative expert judgement. It is a vague measure for the 
deviation of the inspected bridge from the “as new” condition as described by Hajdin et al. (2018). While 
this quick and cost-effective procedure, particularly when large bridge stocks are being managed, remains 
the main assessment method in the next years (Kušar et al. 2019), it has been criticised for being an unreliable 
method for the evaluation of the condition state of bridges (Phares et al. 2004). 

The main source of uncertainty in visual inspections is related to its subjectivity, which means that different 
inspectors, under similar conditions, may evaluate differently the condition state of the bridge (Corotis et al. 
2005; Kušar 2014; Sein et al. 2019). On the other hand, visual inspection outcome does not consider safety 
and serviceability aspects (Hajdin et al. 2018). The additional problem with the subjective visual inspection 
method is related to triggering maintenance actions without revealing information about the bridgeʼs inner 
structure. Thus, the results of inspections alone do not allow medium- or long-term planning and additional 
strategies must be developed (Neves, Frangopol and Cruz 2006; Neves, Frangopol and Petcherdchoo 2006; 
Taffe 2018). With qualified inspectors and proper guidelines, valuable information can be provided regarding 
construction methods, weathering, mechanical damage, deterioration, deficiencies, or other faults. To 
minimise the error arising from subjectivity, it is important to define standard assessment procedures (Rücker 
et al. 2006), as already done in a  number of countries (Mirzaei et al. 2014). Moreover, throughout the past 
years, there have been numerous international projects concentrating on the development of advanced 
approaches for bridges both at the European level, such as quantifying the value of structural health 
monitoring (COST Action TU1402. 2015) or standardising the overall quality control of existing roadway 
structures (COST Action TU1406. 2015), and at the national level, projects like forming a bridge management 
system called the LeCIE_tool in Austria (Zambon et al. 2018).  

To quantify the uncertainty of inspection, it is suggested that probabilistic values be used like the 
probability of detection, probability of false alarm (Rouhan and Schoefs 2003), probability of false indications 
(Straub and Faber 2003) or even the probability of good or wrong assessment (Sheils et al. 2012), with the 
main target to minimise the service life costs. Other approaches have tried to cover the inspection uncertainty 
related issues with overall asset management problems like rehabilitation timing (Zhang et al. 2008) or 
optimisation of lifecycle costs of bridge utilisation (Ghodoosi et al. 2018). All previous approaches can 
provide additional value to decision-making, but the methods are not causally linked to ownersʼ needs, e. g. 
the time between inspections or differences between assessment methods. 

Taffe (2018) listed different methods for condition assessment and proposed a procedure of how data 
would meet the demands of the owner as customer. Although the work concentrated on the information of 
the inner structure, the issues regarding the definition of the measurand, identification of the method, location 
and timing of condition assessment are relevant. The proposed procedure targets accuracy of the results to 
guarantee their reliability, which means that precision should be ensured with the uncertainty of the 
measurement, which should be statistically evaluated using Guide to the Expression of Uncertainty in 
Measurement (GUM) (JCGM 2008) and the trueness must be provided by well-trained personnel (Taffe 
2018). The main idea behind the quantification of knowledge is to identify the quantities influencing the 
results (Fig. 1) and allow to draw reliable conclusions (Taffe and Gehlen 2009), which should meet the 
minimum requirements of the client, not minimal in absolute (Taffe 2018). The framework was used in static 
calculations, but a similar approach and calculation methods can be utilised in the condition assessment of 
existing bridges because the outcome is also statistically evaluated. 

The credibility of the measurand varies in correlation with the uncertainty of measurement, since the 
condition index is a value without an exact result and the result of the measurement is unknown. The 
uncertainty of measurement in the context of the condition index shows that the obtained value is better 
estimated with presently available knowledge (Hofer 2018). For the decision-maker, the effect of subjective 
visual inspection on the condition profile is especially important and may show high impact. Ilbeigi and 
Pawar (2020) developed a two-dimensional Markov process model that involved the current condition and 
the number of years an element has been in this condition. In combination with risk tolerance, they detected 
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the optimal interval of visual inspections. The results indicated that the typical inspection interval was 
pessimistic and the optimal inspection interval for bridges in good condition could be 10 to 20 years, which 
is a notable difference from the common 4- or 5-year interval. 

To improve the quality and reliability of collected information, appropriate quantitative and repeatable 
non-destructive testing (NDT) has been suggested (Kušar et al. 2019). Identification and selection of 
appropriate methods depend highly on the needs of the operator or owner, but overall, the accuracy of results 
needs to be assured, which, in turn, can only be estimated when they are correct and reasonably precise 
(Hässelbarth et al. 2006). Visual inspections are imprecise, and it is difficult to investigate the trueness of 
assessment even if the design information is available. Contrary to visual inspections, NDT has quantitative 
results, which makes it more precise, and if as-built information and environmental data are available, it is 
easier to assess the trueness of the results. In addition to trueness, there are environmental factors, age of 
different elements and deterioration rates of materials that introduce additional uncertainties that can be 
investigated using analytical models.  

In the current research, the main measurand is the condition state of a specific bridge element group, but 
overall, the measurand can be any stochastic value representing the condition of a bridge or element. Since 
the true value of the condition is not known and the assessment of the accuracy of the best estimate is based 
on expert judgement, different assessment methods are compared within the context of the uncertainties, as 
well as time interval between inspections and interventions. The best estimate of the condition state is described 
by using a mean value, while the parameter of uncertainty is the standard deviation of the assessment method. 
Also, to combine NDT results with visual inspection data, a conversion matrix is proposed with clear threshold 
values helping the owner to translate the output to the condition. The degradation process is modelled using 
Markov processes combined with Bayesian updating considering the current condition with a probability 
distribution and the assessment result with standard deviation based on benchmark testing. Optimisation is 
performed by using one-dimensional interpolation of time with limit values for condition and uncertainty. 
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Fig. 1. Flowchart of knowledge about the measurement process and quantities influencing the outcome presented by Taffe and Gehlen 
(2009), based on GUM (JCGM 2008). 
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Although the examples are based on Estonian data, the outcome of this study intends to introduce 
uncertainty as a part of performance assessment, which helps to determine the inspection intervals and decide 
which type of assessment should be carried out. 
 
 
2. PERFORMANCE  ASSESSMENT  IN  ESTONIA  

 
The investigated measurand, the condition state, is one of the performance indicators for the national bridge 
network of the Estonian Transport Administration (ETA), which helps to make decisions regarding 
intervention actions and restrictions to heavy vehicles. The input data has been collected from the ETA 
database, including registration and condition information for around 1000 bridges. Regarding condition 
assessment, the national regulatory documents state that the inspection interval should be three years (Minister 
of Economic Affairs and Infrastructure 2018) but since 2005 the interval of ETA bridge inspections has been 
four years. The overall bridge management process is not standardised and does not have clear manuals. It 
is mainly based on the PONTIS computer program with the numerical rating system (from 1 to 4) that uses 
the element inspection data (Roberts and Shepard 2000).   

The performance assessment is mainly based on visual inspections performed with a 4-year interval. 
During the inspection, all element units of a bridge are assessed on a 4-level condition state, which means 
that one element can have many condition states. For example, a 10-metre-long beam can have 5 metres in 
the condition state “1” and 5 metres in the condition state “2”. The states are also related to intervention 
activities where the condition state “1” means that the element is as good as new and needs only maintenance, 
whereas “4” means that the elements are deteriorated and need to be replaced. All the elements are taken 
from a pre-specified list containing more than 100 inputs, which are like commonly recognised bridge 
elements introduced by AASHTO (Thompson and Shepard 2000).  

At the bridge level, as well as at the network level, the main performance parameter is the Condition 
Index (CI), which is a number between 0 and 100, computed similarly to the Health Index (HI) used in most 
of the Departments of Transportations in the USA. The HI is defined as a normalised weighted average of 
the conditions of various elements,  providing an overall indication of the health of the structure (AASHTO 
2011), but for the CI the overall bridge index is calculated using element weight factors instead of the failure 
cost of the element. The index should still show the signs of deterioration unless adequate funding is obtained. 

Although PONTIS included Markov chain-based degradation models and investment planning (Roberts 
and Shepard 2000), these modules have never been implemented in Estonian practice due to lack of relevant 
data preparation. Despite the first steps in the statistical analysis of the collected element information (Sein 
et al. 2017), using a multivariate methodology, the deterioration is still predicted with linear function or the 
annual average decay rate. However, before a substantive decision some non-destructive testing is also 
employed. This approach has been tolerated because in statistical representation the average bridge in Estonia 
is a small, simply supported beam structure built in 1974, made from reinforced concrete, has a median length 
of 14.2 metres, and annual investments related to bridge intervention activities have been around 5 to 
8 million euros. Nevertheless, the introduced analysis shows clearly that there is room for improvement in 
performance assessment. 
 
 
3. INVESTIGATION  METHODOLOGY 

 
The current research consists of three separate analyses, where the first two are related to real data. The first 
one is carried out to verify that the data-based degradation models of the historical condition are fit for 
purpose. In the second analysis, the differences in the interpretation of assessment results used for updating 
the model are presented and compared. Finally, the third analysis tests the application of optimal inspection 
scheduling based on the condition and uncertainty threshold.  

The division is necessary because the condition information is estimated on real data, where data regarding 
all maintenance actions is missing and the results should be verified before using them in optimal inspection 
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scheduling. In both of the first two analyses, the details from previously published studies were combined. 
The flowchart in Fig. 2 shows the different parts of the proposed framework. 

The flowchart contains the main parts which can generally be divided into four, but the following steps 
are taken in more detail: 
(1) Preparation of historical information to filter out typical bridges without registered interventions; 
(2) Calculation of transition probability matrices for main element groups using the Markov model and 

Monte Carlo simulation; 
(3) Verification of degradation models; 
(4) Collection of additional information by means of inspections and non-destructive testing; 
(5) Calculation of the condition with updated information; 
(6) Comparison of model output based on the assessment method; 
(7) Setting limits to the condition state; 
(8) Determination of the maximal time frame to the next intervention action by combining the deterioration 

model and uncertainties in the model; 
(9) Setting a limit to uncertainty in performance assessment; 
(10) Determination of optimal inspection intervals to keep the uncertainty and condition state under the desired level. 
 
 
4. DEGRADATION  MODEL 

 
The condition degradation model is a probabilistic model based on transition probabilities. In general, the 
values can be obtained either from accumulated condition data or by using an expert judgement elicitation 
procedure, which requires the participation of several experienced bridge engineers (Thompson and Shepard 
2000). In this paper, the transition probabilities are obtained from accumulated condition data employing 
continuous-time Markov processes. The degradation models were calculated using a part of the software 
developed by Denysiuk et al. (2017), which were based on the details of Ferreira et al. (2014). These processes 
are used for two reasons (Kallen and van Noortwijk 2006):  
(1) these models are suitable to implement when intervals between inspections are not regular; 
(2) it is possible to include the uncertainty associated with irregular times between inspections in the model results. 
 
 
5. FORMULATION  OF  THE  MARKOV  MODEL 

 
A continuous Markov chain defines the condition state of an element in terms of a discrete variable and the 
transition between condition states is defined by an intensity matrix Q (Eq.1) (Jackson 2011):   
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Fig. 2. Flowchart of the main elements of the proposed framework.  
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(1) 

The intensity matrix Q defines the average instantaneous transition probability θ
𝑖
 of moving from one 

condition state to another and allows that the transitions between the different states can occur on a continuous 
timescale. The initial estimation of transition probability from historical data is calculated as below (Eq. 2) 
(Jackson 2011): 

(2) 

where 𝑛
𝑖𝑗
 is the number of elements that moved from state i to state j and ∑Δ𝑡

𝑖
 is the sum of intervals between 

observations. In a continuous Markov chain, the transition probability 𝑃 and the time Δ𝑡 to move from one 
condition state to the next is characterised by the exponential distribution of the Chapman–Kolmogorov 
equation (Eq. 3) (Kallen and van Noortwijk 2006): 

 (3)
 

To allow the consideration of uncertainties in the condition evaluation process, the final condition state 
profiles are computed using Monte Carlo simulation (Neves and Frangopol 2005) and the quality of fit is 
improved through an optimisation process by maximising the log-likelihood function (Eq. 4) (Denysiuk et 
al. 2017): 

(4)
 

where 𝑚 is equal to the number of transitions observed in the element group, 𝑛 is equal to the number of analysed 
elements and 𝑝

𝑖𝑗
 is the transition probability of the observed transitions predicted by the Markov model. 

 
5.1. Verification  of  the  degradation  models 

 

In the current investigation, the initial condition database consists of information for one of the most common 
bridge types, which is a simply supported reinforced concrete beam bridge with mostly precast elements. 
The elements are categorised differently from the condition state element classification into 16 groups 
including structural and non-structural elements (Table 1), using the classification of Sein et al. (2017). Since 
these groups had not been used in the system, the results of Markov models were verified with a goodness-
of-fit test under the assumption that the goodness-of-fit follows a 𝑋2 distribution. In a typical deterioration 
model, only natural transitions from one condition to another are considered, and transitions that might occur 
because of maintenance actions are excluded. However, in Estonia the maintenance actions have not been 
recorded correctly and thus may affect the overall decay rate. The goodness-of-fit is measured by the 
discrepancy between the observed number of transitions and the expected number of transitions (Eq. 5): 

 
(5) 

where 𝑇 is the goodness-of-fit metric, 𝐶 denotes the number of possible condition state transitions 
(10 transitions), 𝑂

𝑖
 refers to the observed number of transitions and 𝐸

𝑖
 is the expected number of transitions 

of each time. The null hypothesis was assumed similarly to Ferreira et al. (2014), where Markov models 
were considered correct if the probability of goodness-of-fit is better than 5% of the sample value (Eq. 6): 

(6) 
The overall results are presented in Table 1. The limit value of X2 distribution for 5% significance level was 
calculated as below (Eq. 7): 

(7) 
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Based on the results presented in Table 1, only the non-structural element group designated “Other” did not 
pass the test, which means that there is adequacy between the sample and the model of all other element 
groups. 
 
 
6. MODEL  UPDATING 

 
To include information from additional assessment, the initial deterioration model should be successively 
updated. The updating approach is based on the use of Bayesian updating combined with simulation and 
expert judgement proposed by Neves and Frangopol (2005). There are two differences in the current model 
compared to the initial work: 
(1) the performance of structures was defined in terms of lifetime probabilistic condition, safety, and cost 

profiles. The condition index was combined with more consistent indicators such as the safety index, but 
in the current work only the condition index profile is used.  

(2) the initial model did not include any information resulting from inspections or non-destructive tests, as it 
was based on the performance evolution over time obtained by using expert judgement alone. However, 
in the current analysis, additional information is included. 

Similarly to the initial work, the mean, standard deviation, histograms, and percentiles of the life-cycle 
condition index are computed employing Monte Carlo simulation. 
 
6.1. Formulation  of  the  inference  process 

 

At the time of an inspection, the condition index can be characterised as a probabilistic variable, with a 
probability density function dependent on the results obtained by the inspector, but also on the quality of the 
inspection. Common practice defines the results of an inspection in terms of a set of possible outcomes 
(0, 1..., n). However, deterioration is considered a continuous or almost continuous evolution, and the results 
presented based on the simulation are a simplification of reality towards a pessimistic approach. In other 
words, this means that the real condition is always assumed to be worse than the average value. Based on the 
Bayes theorem, the probability density function of the condition including the results of the inspection can 
be defined as below (Eq. 8) (Neves and Frangopol 2008): 

(8) 
where 𝑓˝(𝐶

𝑇
) is the probability density function of the condition at the time T by considering both inputs that 

are present in posterior distribution, 𝑓´(𝐶
𝑇
) represents the probability density function of the condition at the 

time T by considering only assessment, 𝐿(𝐶
𝑇
) is the likelihood function. 
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Non-Structural 
Elements 

Observations Discrepancy 
(T) 

Structural 
elements 

Observations Discrepancy (T) 

Overlay 222           1.87  Deck plate 253 1.34 
Barriers 198           4.37  Edge beam 189 1.21 
Handrails 169           0.69  Piles and  

   columns 
  64 0.78 

Drainage   43           0.13  Supporting beam 212 4.73 
Slopes 231           2.31  Wing wall,  

   abutments 
203 2.42 

Deformation joints 177           0.67  Diaphragms 155 0.85 
Other (riverbed,  
  signs, etc.) 

155         29.79  Main girder 215 1.06 

Waterproofing 253         16.75  Bearings 121 0.89 

Table 1. Goodness-of-fit test of deterioration models 

   ,   (8)          , 𝑓˝

 elements



For the Monte Carlo simulation, the mean and standard deviation of assessments at the time τ were 
calculated as below (Eq. 9) and (Eq. 10) (Neves and Frangopol 2008): 

 
(9) 

        

(10)
 

where uTi and uTi are the mean and standard deviations of the condition at the time τ including the model and 
assessment, 𝐶𝑖

𝜏
 is the condition at the time τ connected to the sample i, 𝐶𝑖

𝜏
 is the condition at the time T 

connected to sample i and n is the number of samples. 
 
6.2. Conversion  matrix 

 

Visual inspections of existing structures are a prime source of information in every assessment and a part of 
a management system. The observations can give reliable information on the structures and are normally 
integrated with prediction models for the assessment of deterioration in the infrastructure network. 
Nevertheless, using only visual inspections in decision-making makes the overall process less rational and 
more based on engineering judgement. While moving from prescription-based to performance-based quality 
control, the tendency to carry out additional non-destructive testing has increased. It can provide a more 
complete evaluation and might suggest maintaining the load-bearing components of the structure instead of 
more costly repair or reconstruction. 

One reason why additional testing was not implemented in initial decision-making is related to the missing 
connection between different assessment results. For example, in Estonia the condition state description has 
an additional intervention suggestion, but NDT standards or manuals have only procedure descriptions and 
thus additional expert knowledge is needed. To enhance the use of NDT, the authors have compiled a table 
of suggested threshold values for some basic methods (Table 2). 

The values in Table 2 are suggested by the authors based on the previous tests or research carried out in 
Estonia, the table is not complete and may be expanded with additional suitable NDT. The identification of 
criteria for potential NDT has been investigated by Kušar et al. (2019), where the suitable method was chosen 
based on the resultsʼ reliability, test duration, results’ interpretation complexity, cost, usability, and 
standardisation. 
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    ,    (9)             ,

                              , (10)                                              ,

 and     

Condition state, 
intervention 

recommendation 

Carbonation depth [mm] Chloride content [%] Resistance of concrete 
(Andrade and Alonso 

2004) [kOhmcm] 
1  very good, regular 
maintenance 

Average carbonation depth is 
less than 25% of measured 
cover depth 

Average measured value is 
less than 100% of the 
normative threshold value 

     Above 100 

2  good, local repairs Average carbonation depth is 
between 25% and 50% of 
measured cover depth 

Average measured value is 
between 101% to 150% of 
the normative threshold 
value 

     Between 50 and 100 

3  poor, overall 
repair 

Average carbonation depth is 
between 50% and 100% of 
measured cover depth 

Average measured value is 
between 151% to 200% of 
the normative threshold 
value 

     Between 10 and 49 

4  extremely poor, 
replacement or 

Average carbonation depth is 
more than measured cover 

Average measured value 
more than 200% of the 

     Less than 10 

 

 
Table 2. Conversion matrix of the NDT result to the condition state 

maintenance less than 25% of measured 
cover depth 

less than 100% of the 
normative threshold value 

between 25% and 50% of 
measured cover depth 

between 101% to 150% of 
the normative threshold 
value 

repair between 50% and 100% of 
measured cover depth 

between 151% to 200% of 
the normative threshold 
value 

replacement or 
reconstruction 

more than measured cover 
depth 

more than 200% of the 
normative threshold value 

is



6.3. Assessment  outcome  comparison 

 

To present the use of the conversion matrix and draw attention to the difference of the potential outcome as 
intervention activity for one specific element group, several bridges have been tested in the past years. The 
data presented in Table 3 were collected from the precast beams of  nine bridges with the following common 
properties: made of reinforced concrete, simply supported beam bridges without additional diaphragms, 
constructed between 1965–1989 and designed according to the standard design of the Soviet Union, Catalogue 
No. 56-addition (USSR Mintransstroy 1962) or Catalogue No. 167 (USSR Mintransstroy 1963). The 
condition states of inspections (CS) are calculated based on the assessment result of element units and for 
carbonation depth, the result is interpolated. Possible intervention activities are regular maintenance (M), 
repair (Rep) or renovation/renewal (Ren).  

It is possible to notice that only one bridge has the same potential intervention outcome, but in most cases, 
different assessment types have different outcomes. With two exceptions the inspection-based condition state 
is lower than the carbonation depth-based condition state, which means that the element should be repaired 
but is maintained instead (4 out of 9) or the element should have already been replaced or renovated but is 
repaired (2 out of 9). 

The obtained results justify the question about the knowledge of uncertainties in the interpretation of data, 
because using only one assessment result as a trigger for intervention may lead to inefficient management. 
To consider the different assessment results, a confidence level of 95% is used in finding the optimal 
inspection interval and the inspection result is assumed to be the same as the average degradation model 
value. To improve the quality of data interpretation, it is suggested that the stochastic model should be 
combined with analytical models. For example, Zambon et al. (2019) has presented a framework where the 
analytical model of carbonation was combined with a Markov chain model. 
 
 
7. UNCERTAINTIES  IN  PERFORMANCE  ASSESSMENT 

 
Apart from the non-trivial combination of different methods, also the uncertainty of assessment plays an 
important role in more accurate results and in moving towards optimal inspection intervals. When the value 
of a bridge condition is reported, in addition to the best estimate of its value, the best evaluation of the 
associated uncertainty should also be given, as it is not normally possible to decide in which direction the 
realistic condition of the bridge element is from the assessed condition and whether it performs as intended. 
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Bridge  
No. 

Construction 
year 

Reconstruction 
year 

Inspection-based Carbonation depth CS 
differences Time of 

inspection 
CS  

intervention 
Average 

measurement 
mm 

CS  
intervention 

883 1989 2002 2015    1.1  M   6.9 1.4  M +0.3 

826 1969 2010 2019    1.1  M 18.7 2.3  Rep +1.2 

907 1967 2001 2019    1.2  M 20.0 2.8  Rep +1.6 

911 1970 1998 2019    1.3  M 28.0 2.8  Rep +1.5 

908 1967 2001 2019    1.7  M 13.6 2.6  Rep +0.9 

503 1969  2019 2.1  Rep 26.2 3.5  Ren +1.4 

252 1965 2000 2018 2.3  Rep   3.2 1.2  M 1.1 

909 1974  2019 2.3  Rep 37.5 3.5  Ren +1.2 

306 1969  2019 3.0  Ren 10.8 2.2  Rep 0.8 

 

Table 3. Assessment results of typical bridges 

,



If the uncertainties are understated, then too much trust might be put in the values reported, which may lead 
to undesired consequences. Likewise, the overstatement of uncertainties could also have undesirable 
repercussions. For example, it could cause unnecessary interventions, making structure maintenance more 
costly. 

Uncertainty, namely epistemic uncertainty, originates from various sources, and based on the classification 
of Regan et al. (2002), it can be divided into six classes: 
● Inherent randomness, which is the uncertainty related to the randomness of the inherent nature affecting 

the outcome. This type of uncertainty can be quantified using probabilistic models; 
● Measurement error, which is the uncertainty related to measured quantity and errors. This type of 

uncertainty can be quantified using probabilistic models if the measurement error is estimated; 
● Systematic error, which is the uncertainty related to the bias of measurements or sampling. This type of 

error can be quantified but is difficult to notice and use in probabilistic models; 
● Natural variation, which is the uncertainty related to natural conditions. Since the changes in natural 

conditions are unknown, careful consideration is needed before quantification of this type of uncertainty; 
● Model uncertainty, which is the uncertainty related to the model abstraction of the real process. This type 

of uncertainty also needs careful consideration before quantification. Additionally, cause-and-effect 
relationships are exceedingly difficult to quantify; 

● Subjective judgement, which is the uncertainty related to the interpretation of data. This type of uncertainty 
is difficult to quantify, similarly to model uncertainty. 

In bridge management, all the described types of uncertainty are present, and it is impossible to separate 
them from each other. To help the bridge owners to make justified decisions and be aware of various sources 
of uncertainty, it is proposed that a limit to expanded uncertainty should be obtained which defines an interval 
with a specified level of confidence, and which satisfies their needs. However, the Joint Committee for Guides 
in Metrology (JCGM) suggests in their guidance (Bich et al. 2006) that such factors must be applied to the 
uncertainty as determined by a realistic method, where the uncertainty has been determined, the interval 
defined by the expanded uncertainty has the level of confidence required and the operation may be easily 
reversed. There are three distinct advantages of adopting an interpretation of probability based on the degree 
of belief, standard deviation, and the law of propagation of uncertainty as the basis for evaluating and 
expressing the uncertainty in measurement (JCGM 2008): 
● The law of propagation of uncertainty allows the combined standard uncertainty of one result to be readily 

incorporated in the evaluation of the combined standard uncertainty of another result in which the first is 
used; 

● The combined standard uncertainty can serve as the basis for calculating intervals that correspond in a 
realistic way to their required levels of confidence; 

● It is unnecessary to classify components as “random” or “systematic” (or in any other manner) when 
evaluating uncertainty because all components of uncertainty are treated in the same way. 

Although the JCGM (2008) guide states that when the standard uncertainty of an input quantity cannot be 
evaluated by an analysis of the results of an adequate number of repeated observations (stated as Type A 
evaluation), a probability distribution must be adopted based on knowledge or expert judgement (stated as 
Type B evaluation) which is much less extensive than might be desirable. That does not, however, make the 
distribution invalid or unreal; like all probability distributions, it is an expression of what knowledge exists. 
Therefore, measurement-based evaluations of standard uncertainty are not necessarily more reliable than 
knowledge-based evaluations (JCGM 2008). In the current framework, both types of evaluations are possible 
to use, but to increase the reliability of results, a comparison between uncertainties obtained by different test 
methods, with multiple benchmarking tests involving experts and novice users, was carried out by Sein et al. 
(2019). Based on those results, the measurement-based uncertainty is expressed as the coefficient of variation 
in Eq. 11: 

 (11)
 

where σ is the standard deviation, µ denotes the mean of the measurement and 𝐶𝑜𝑉 is the ratio or relative 
standard deviation. Inspection related uncertainty values are based on benchmarking and presented as a 
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,  (11) ,



standard deviation of condition assessment (Table 4). The same values are used in the optimal inspection 
scheduling.  

Inspectors with previous expertise can obtain condition state results with lower standard deviation than 
less experienced ones, but more accurate NDT methods give better results, even for inexperienced users. 

If the assessment is combined, then the combined standard uncertainty is calculated by Eq. 12 and used 
in the likelihood function instead of the standard deviation of a single assessment: 

 (12)
 

where 𝑢
𝑐
 is the combined uncertainty and (𝑢)

1,2...𝑛 are the standard deviations of separate assessments. For 
example, when combining cover depth measurement with carbonation depth measurement carried out by 
experts, the combined standard uncertainty is 0.40.  
 
 
8. INSPECTION  SCHEDULING  

 
The main goal of the inspection scheduling is to keep the level of uncertainty under the desired threshold 
value by maximising the time between inspections. Based on the investigation of benchmark tests in Estonia 
(Sein et al. 2019), the inspections are an important part of the bridge management process and even assessment 
performed by an inexperienced inspector decreases the level of uncertainty in condition prediction. 
Unfortunately, the visual inspections have limitations due to their subjectivity and to increase the quality of 
assessment, it is necessary to combine the evaluation with quantitative measurements. 

Finding the optimal solution is based on linear interpolation and the outcome is the time of inspection or 
intervention. The main goal of the optimisation is to maximise the time between inspections while keeping 
the level of uncertainty under a specified threshold value. As an additional result, the potential intervention 
can be triggered if the knowledge of the measurand minimises the costs of overall management processes.   

The optimisation is based on the linear interpolation of the condition profile with 95% confidence. Linear 
interpolation can be expressed in general (Eq. 13): 

 (13)
 

where 𝑥
0,1

, 𝑦
0,1

 are the coordinates of two known points and 𝑥, 𝑦 are the coordinates of the unknown point. 
The known points are the time and error of predicted or updated conditions and the unknown point is partially 
defined with the limit value. Limit values for the condition state and uncertainty in the model are related to 
owners’ policies or needs and need to be defined separately. The limit value for the condition state is one main 
trigger for potential intervention activity or in-depth assessment and the limit value for uncertainty is one main 
trigger for inspection but can also be used for triggering in-depth assessment or preventive intervention.  

To investigate which of the proposed inspection scheduling gives optimal output, two parameters are 
compared. For uncertainty, a trapezoidal numerical integration is used to calculate the approximate area of 
uncertainties during the designed service life of 100 years. To simulate costs for the agency, total costs of 
element inspection and potential intervention are summarised.  
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Method Expertise Standard deviation 
(  

Visual inspection 
Inexperienced students 1.49 
Engineers 0.61 
Experts 0.50 

Carbonation depth with phenolphthalein method Inexperienced students 0.47 
Experts 0.35 

Cover depth using electromagnetic cover meter All 0.19 

 

Table 4. Overview of uncertainties of different assessment methods (Sein et al. 2019) 

 ,  (12)  ,

 ,  (13)  ,



9. CASE  STUDY  

 
Case study analysis concentrates on the same precast beams of the most common bridges as introduced in 
Chapter 6.3. The input is based on real values, but the investigation of different assessment methods is 
theoretical. Different inspection scheduling and assessment methods are compared during the service life of 
100 years using the condition limit for triggering intervention. The emphasis is put on the total number of 
inspections, intervals, overall costs, area of uncertainty and the years when uncertainty is above a threshold 
value. 

The limit values used for the condition and error are set based on the current maintenance policy of the 
ETA and expert judgement under the assumption that both variables follow a normal distribution and have a 
confidence level of 95%. Hence, the following restraints are applied: 
● Condition state is limited to 3.0 (poor) because the elements look visually bad and most likely a renewal 

will be triggered within the next few years. Since the investigation is concentrated on inspection interval 
scheduling, only the decrease in the condition state is considered the only effect of maintenance action. 
As stated before, then the regular maintenance is included in the initial condition degradation profile. 

● Uncertainty of a condition state is only limited to 1.0 because this gives the confidence that the assessed 
condition stays within the limits of one value. Additionally, currently used non-destructive testing methods 
are not fully accurate and limiting the uncertainty to lower values triggers inspections every year. 

● The initial condition and uncertainties are included in the initial probability distribution, which is based 
on the expert judgement. For example, Kang and Adams (2010) used random errors of ± 10%, ± 20% and 
± 50% in their sensitivity analysis of bridge HI related element condition assessment. In this investigation, 
the initial condition accuracy is ± 10%, which means that if the initial condition state is one, then the 
vector of probability distribution is P(0)=[0.90 0.10  0  0]. 

● The standard deviation of the degradation model σmodel = 0.50. 
● For regular visual inspection with σ = 0.50, a price of 150 EUR is estimated; for cover and carbonation 

depth measurements with σ = 0.40, a price of 400 EUR is estimated; for advanced NDT assessment 
including chloride content and resistivity measurements having σ = 0.3, the price is estimated to be 800 
EUR. 

● Intervention activity is the renewal of a beam during an overall bridge reconstruction and the cost is 
estimated to be 10 000 EUR. 

Since the analysis is based on a specific bridge element group, the verified transition intensity matrix is used 
(Eq. 14). 

 

(14) 

The transition probabilities are low because there are only three different visual inspection inputs since 
2005 and many new structures are still evaluated in the condition state 1. Based on the presented values, an 
average condition degradation profile is calculated. Further analyses are carried out using the probabilistic 
degradation model with a confidence level of 95% and the previously stated restrictions (Fig. 3). 

Due to the low transition probabilities, the average degradation profile is almost linear, which makes the 
scheduling of intervention activities unrealistic. Nevertheless, considering the errors of the model with 95% 
confidence, the renewal of concrete beams is triggered after 43 years in service. In Fig. 4, the probability 
mass distribution of the degradation model in year 42 is presented, the initial standard deviation has increased 
from 0.30 to 0.85. From an optimistic point of view, it means that there is a possibility that the real condition 
state is still 1.0, but intervention activity is nonetheless triggered. In comparison, taking into consideration 
that the inspected condition affects the final condition probability mass function, inspection with the result 
equal to 1.60 is presented.   

It is clear that the model with updated information has a lower level of uncertainty and if the result of the 
assessment is true, then intervention activity can also be postponed. Currently, the condition assessment is 
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 . (14)  0  0 

 0

 0
 –0.0137

 0



only visual inspection based, with 4-year intervals. Since the cost of an inspection is low, it is still possible 
to make the current assessment regulation more optimal with clearer inspection scheduling. The average 4-
year inspection interval is compared with the optimal inspection interval and the condition profiles are 
presented in Fig. 5.   

Comparing the 4-year interval profile to the initial condition degradation profile in Fig. 3, it is possible to 
postpone the intervention by 41 years to year 82 with only better knowledge about the condition state. The 
limit of uncertainty in the optimal inspection interval triggers intervention in year 69, which is earlier than 
the current system, but without more accurate inspections the intervention is needed. If the trigger were based 
on the condition state, then the time of intervention would be in year 76. It is possible to see that before the 
intervention there are six inspections with an annual interval and this situation could be avoided with a more 
accurate assessment with the standard deviation σ = 0.3 as presented in Fig. 6. 

Although accurate assessment is more expensive, it reduces the uncertainty and extends the time of the 
next inspection from 3 years to 6 years. Since the level of uncertainty is still high because of the uncertainties 
in the model, next inspections should also be performed with additional testing, and eventually it is not 
possible to postpone the intervention with a more accurate assessment. 

Alternatively, it is possible to add cover depth and carbonation measurements to all inspections, with this 
addition it is possible to decrease the combined standard deviation to 0.40. The cost of the intervention will 
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Fig. 3. Condition degradation profile of concrete beams. 

Fig. 4. Probability mass function of the initial and updated models on year 42. 



be higher, but in return, the intervention will be triggered later. As in Fig. 5, the average 4-year inspection 
interval is compared with the optimal inspection interval. The condition profiles are presented in Fig. 7. 

In both cases, the intervention is triggered in year 90 due to the condition limit. The main difference 
between the two approaches is the time between inspections, which is longer with optimal scheduling, as 
well as the number of inspections. With a 4-year interval, there were 22 inspections, but with the optimised 
approach, there were only 12 inspections with the intervals ranging from 5 to 19 years. Inspection intervals 
triggered by the uncertainty limit for visual inspections presented in Fig. 5 varied from 1 year to 20 years, 
which interestingly corresponds to the results based on optimising the inspection interval for New York 
bridges (Ilbeigi and Pawar 2020).  

In the context of overall management, the overall costs should also be minimised, because more expensive 
and accurate tests can postpone more costly intervention. However, the situation where the assessment costs 
are higher than the intervention should be avoided. Assessment methods were compared during the service 
life of 100 years and an overview of the results is shown in Table 5. 

S. Sein et al.: Condition assessment optimisation 185

Fig. 5. Condition profiles of 4-year and optimal interval visual inspections. 

Fig. 6. Uncertainties in year 55 with different assessments. 

interval



Comparing the triggered interventions, only the most accurate 4-year interval inspections can lead to a 
situation where no intervention is needed since the intervention is triggered due to the condition in year 103. 
Contrarily, the approach with no inspections triggered two interventions. The total cost is only 4.17% higher 
without any inspections. The lowest total cost results from visual inspections with the optimal interval. Most 
commonly one intervention is triggered, which means that the cost of intervention affects most of the 
approaches with the same amount. Although the area of the uncertainty of the optimal approaches is always 
higher, the uncertainty of the condition is always below the threshold value 1.0, which means that inspections 
are triggered only when needed and not based on a strict schedule. In the current 4-year interval approach, 
the inspections are triggered too quickly in the first 55 years and after that the level of uncertainty is higher 
than the threshold value, meaning that the condition could differ more than one state and intervention or 
more accurate testing is needed. Improving visual inspections by means of more accurate NDT is also justified 
because the uncertainty is lower than the threshold value, but the area of uncertainty is higher. Also, after 
55 years the time between inspections can only be extended with better knowledge.      
 
 
10. CONCLUSIONS 

 
This paper has focused on intervention-related decision-making and inspection scheduling triggered by 
uncertainties in regular performance assessment. To integrate more accurate non-destructive testing methods 
with the currently common visual assessment, a condition conversion matrix and an overview of carried out 
tests has been presented. The different assessment method of the existing structure will probably lead to 
different intervention activity. Moreover, the data were theoretically analysed as probabilistic values of the 
beam condition of the most common bridge type in Estonian national roads. For computation, a Markov 
Chain Monte Carlo simulation was employed and verified with the Estonian Transport Administration’s 
database.  
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Fig. 7. Condition profiles of 4-year and optimal interval inspections with additional testing. 

Assessment type No 
inspections 

4-year 
 0.5 

Optimal  
 0.5 

4-year  
 0.4 

Optimal  
 0.4 

4-year  
 

Optimal  
 0.3 

Total number of inspections [ ]             0    24    14      24     12       24       7 
Total number of interventions [ ]             2      1      1        1       1         0       1 
Total cost [EUR]    20 000 13 600 12 100 19 600 14 800 19 200 15 600 
Area of uncertainty curve [ ]       141.5        75.5       82.4      73.2       84.0    68.7       80.1 
Uncertainty above 1.0 [years]      81     21      1        0       0         0       0 

Table 5. Overview of total costs and uncertainties with different assessment approaches  

 73.2        84.0    68.7       80.1

 0.3 
.

interval



Using one-dimensional interpolation of the uncertainty of the deterioration model, it was detected that, 
although the overall level of uncertainty is lower, the current condition scheduling policy is too pessimistic 
in the first 55 years after construction and too optimistic afterwards. This finding correlates with suggestions 
given by Ilbeigi and Pawar (2020) based on the New York bridge network inspection scheduling. The main 
conclusions about the knowledge of the uncertainty regarding the assessment are as follows: 
● Probabilistic expression of assessment results helps to numerically present the knowledge about 

measurement process, prediction and uncertainties related to the result. Additionally, results that are 
presented based on the simulation of the degradation process are a simplification of reality, which means 
that the assessed condition must decrease the uncertainty. Using the condition profile of 95% confidence 
level instead of the average condition profile in a situation where transition probabilities are low is justified 
as this helps to keep the structure on the safe side by triggering interventions based on the condition state 
limit. 

● Inspections help to reduce the uncertainty and generally postpone the time for intervention. Adding a limit 
to the uncertainty of the condition can cause a situation where intervention is triggered due to the 
uncertainty limit.  

● Non-destructive testing methods are more accurate than visual inspections and are useful in extending 
the time interval between inspections due to a higher reduction rate of uncertainties.  

● In addition to a reduction of uncertainty, improved assessment can have a different intervention outcome 
and the differences in the average condition state of visual assessment and common non-destructive tests 
can vary from –20% (–0.8) to +40% (+1.6). 

● Compared to the 4-year inspection interval, optimal inspection scheduling keeps the level of uncertainty 
under the desired threshold value. Additional assessment based on cover and carbonation depth 
measurements is justified because the area of uncertainty is maximised and after 55 years, the time between 
inspections can only be extended with a better assessment. 
Considering all the factors, it can be concluded that with simple improvements in assessment methodology 

it is possible to reduce the level of uncertainty in decision-making regarding the intervention activities of 
existing structures.    
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Sildade  haldamise  optimeerimine  lähtuvalt  seisukorra  hindamisega  

kaasnevast  määramatusest   
 

Sander Sein, Jose Campos Matos, Juhan Idnurm, Martti Kiisa ja Mário Coelho  
 
Sildade haldamine on viimase paarikümne aastaga märkimisväärselt muutunud, sest oma otsuste tegemisel arvestavad 
omanikud lisaks seisukorra infole ka alternatiivsete parendustegevustega. Vaatamata muutunud olukorrale vajavad õiged 
otsused piisavalt täpset sisendit, mis jätkuvalt põhinevad registri- ja seisukorrainfol. Antud töös on keskendutud seisu-
korra hindamisele, tutvustades võimalusi selle edasiarendamiseks täpsemate mittepurustavate katsemetoodikatega ja 
analüüsides eri võimalusi, muutmaks hindamistevaheline aeg optimaalsemaks, tagades samal ajal, et otsuse aluseks 
oleva prognoosimudeli määramatus jääb alla piirväärtuse. Täpsemate mittepurustavate katsemetoodikate hõlpsamaks 
kasutuselevõtuks on autorid välja pakkunud üleminekumaatriksi, mis on koostatud lähtuvalt Transpordiameti praegusest 
kvalitatiivsel visuaalsel ülevaatusel põhinevast hindamissüsteemist. Töös on analüüsitud kolme erinevat seisukorra hin-
damisega kaasneva määramatuse aspekti, mis kõik põhinevad reaalsetel andmetel ja mis näitavad, kui oluline on arves-
tada sildade haldamisel määramatusega. Näited on koostatud Eesti riigiteedel enam levinud sildadelt kogutud andmete 
alusel, mida Markovi ahelate Monte Carlo algoritmide simulatsiooni tulemusena väljendatakse tõenäosuslike seisukorra 
väärtustena ja mille uuendamisel kasutatakse Bayesi meetodit. Tulemused kinnitavad, et seisukorra prognoosimise ja 
hindamisega kaasnevad kõrvalekalded mõjutavad elemendi seisunditaseme määramatust. Viimane omakorda mõjutab 
planeeritud ülevaatuse ja parendustegevuse aega ja seeläbi üldisi kulusid ning otsuste usaldusväärsust.   
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