
Proceedings of the Estonian Academy of Sciences,
2021, 70, 2, 122–134

https://doi.org/10.3176/proc.2021.2.02
Available online at www.eap.ee/proceedings THEORY

RING

Morita contexts and unitary ideals of rings

Kristo Väljako∗ and Valdis Laan

Institute of Mathematics and Statistics, University of Tartu, Narva mnt.18, 51009 Tartu, Estonia

Received 1 December 2020, accepted 23 February 2021, available online 23 March 2021

c© 2021 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).

Abstract. In this paper we study Morita contexts between rings without identity. We prove that if two associative rings are connec-
ted by a Morita context with surjective mappings, then these rings have isomorphic quantales of unitary ideals. We also show that
the quotient rings by ideals that correspond to each other under that isomorphism are connected by a Morita context with surjective
mappings. In addition, we consider how annihilators and two-sided socles behave under that isomorphism.
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1. INTRODUCTION

Morita theory of rings has been a very fruitful area of research. Although originally only rings with identity
were considered, starting from [1] and [2], also rings without identity have been studied. Morita equivalence
is usually defined by requiring the equivalence of certain module categories (see, e.g. [6] and [7]), but a fun-
damental observation indicates that if the rings are “sufficiently good”, then the equivalence of these modules
categories is equivalent to the existence of a Morita context with certain properties. From the results of [7]
it follows that two idempotent rings are Morita equivalent if and only if they are connected by a unitary
surjective Morita context. In [11] we showed that these two conditions are also equivalent to the fact that
the two rings have a joint enlargement. Morita contexts and enlargements are usually easier to use than the
equivalence functors when we want to study properties of Morita equivalent rings.

Properties that are shared by all rings in the same Morita equivalence class are called Morita invariants.
Studying such invariants has always been an important part of Morita theory. There are many properties of
rings that are defined in terms of operations and the inclusion order of ideals. Such operations are multipli-
cation, intersection (meet) and sum (join), and with these operations the set of ideals of a ring is equipped
with the structure of quantale (Chapter 4 in [13] is an introduction to how quantales can be used in the ideal
theory of rings). In several papers ([2, Proposition 3.3], [7, Proposition 3.5], [3, Theorem 3.3]) it has been
shown that lattices of certain ideals of Morita equivalent rings (of some type) are isomorphic. In this paper,
taking inspiration from the recent developments in semigroup theory [10], we study under which conditions
on a Morita context the quantales of unitary ideals are isomorphic.

Section 2 presents our main definitons and some basic results. In Section 3 we show that if two rings are
connected by a surjective (but not necessarily unitary) Morita context, then their quantales of unitary ideals
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are isomorphic. In addition, we study how annihilators of modules behave with respect to that isomorphism.
Then we prove that if two idempotent rings are Morita equivalent, then also the corresponding quotient rings
are Morita equivalent. Section 3 concludes with considering socles of Morita equivalent rings and in Section
4 we demonstrate that Morita contexts induce a certain semifunctor in a natural way.

2. PRELIMINARIES

Unless stated otherwise, R and S will stand for associative rings in this paper.
As usual, denote

NS′ :=

{
k∗

∑
k=1

nksk

∣∣∣∣∣k∗ ∈ N, n1, . . . ,nk∗ ∈ N, s1, . . . ,sk∗ ∈ S′
}
,

where N is a right S-module and S′ ⊆ S. If N is an (R,S)-bimodule, then R′N and R′NS′ (where R′ ⊆ R) are
defined analoguously.

Definition 2.1. A left R-module N is called unitary (see, e.g. [2]) if RN = N. Unitary right modules are
defined analogously. An (R,S)-bimodule M is called unitary if RM = M and MS = M.

Lemma 2.2. A bimodule RMS is unitary if and only if RMS = M.

Proof. Necessity. It is clear.

Sufficiency. Let m ∈M = RMS. Then there exist r1, . . . ,rk∗ ∈ R, s1, . . . ,sk∗ ∈ S and m1, . . . ,mk∗ ∈M, such
that m = r1m1s1 + . . .+ rk∗mk∗sk∗ . Now

m =
k∗

∑
k=1

rk(mksk) ∈ RM and m =
k∗

∑
k=1

(rkmk)sk ∈MS.

Definition 2.3. A right (left) ideal IER is called unitary if IR = I (RI = I). An ideal IER is called unitary
if I is unitary both as a right and as a left ideal.

Remark. Unitary ideals of a ring without identity are also studied in [3], but there they are called lower
closed ideals (Def. 3.1).

We denote the set of all unitary ideals of a ring R by UId(R). According to Lemma 2.2, an ideal IER is
unitary if and only if RIR = I.

Definition 2.4 ([16]). A ring R is called s-unital if for every r ∈ R there exist u,v ∈ R such that r = ru = vr.

For example, every ring with local units (see [2]), including every von Neumann regular ring, is s-unital.
We also need the following result (see [16]).

Proposition 2.5. A ring R is s-unital if and only if for every finite subset F ⊆ R there exist u,v ∈ R such that
r = ru = vr for every r ∈ F.

Definition 2.6. An ideal I ER is generated by a subset X ⊆ R if I is the smallest ideal that contains X. In
that case we write I = (X)g. An ideal I ER is finitely generated if it is generated by a finite set X ⊆ R.



124 Proceedings of the Estonian Academy of Sciences, 2021, 70, 2, 122–134

One can give an explicit description of ideals generated by a nonempty subset X ⊆ R. Denote

ZX :=

{
h∗

∑
h=1

khxh

∣∣∣∣∣h∗ ∈ N, k1, . . . ,kh∗ ∈ Z, x1, . . . ,xh∗ ∈ X

}
⊆ R.

According to [14] (page 5), the ideal (X)g is

(X)g = ZX +RX +XR+RXR. (2.1)

Lemma 2.7. If a unitary ideal I ER is generated by a set X ⊆ R, then I = RXR.

Proof. Let (X)g = I ∈ UId(R). Then we have

I = RIR = R(ZX +RX +XR+RXR)R = ZRXR+RRXR+RXRR+RRXRR⊆ RXR.

On the other hand, we see from the equality (2.1) that RXR⊆ I. Therefore, we have I = RXR.

Next we will prove that s-unital rings can be described as follows.

Proposition 2.8. A ring R is s-unital if and only if all right ideals of R are unitary and all left ideals of R
are unitary.

Proof. Necessity. If I is a right ideal and i ∈ I, then i = iu for some u ∈ R. Hence, I = IR. Analogously,
I = RI if I is a left ideal.

Sufficiency. Take an element r ∈ R. Since the right ideal I = Zr+ rR is unitary, there exist zk ∈ Z,rk,uk ∈ R
such that

r =
k∗

∑
k=1

(zkr+ rrk)uk =
k∗

∑
k=1

(zkruk + rrkuk) =
k∗

∑
k=1

(r(zkuk)+ rrkuk) = r
k∗

∑
k=1

(zkuk + rkuk) .

Similarly, r = vr for some v ∈ R.

Corollary 2.9. All ideals of an s-unital ring are unitary.

Definition 2.10 ([13]). A complete lattice A is called a quantale if it is equipped with a binary algebraic
operation ∗ : A× A // A, such that for every set I and for every x,yi ∈ A, where i ∈ I, the following
conditions hold:

x∗

(∨
i∈I

yi

)
=
∨
i∈I

(x∗ yi) and

(∨
i∈I

yi

)
∗ x =

∨
i∈I

(yi ∗ x).

A quantale A is called unital if there exists an element e ∈ A such that a∗ e = e∗a = a for every a ∈ A.
The element e is called the identity element of the quantale A.

Let A and B be quantales. A mapping f : A //B is called an isomorphism of quantales if it is an
isomorphism of lattices and f (a1 ∗ a2) = f (a1) ∗ f (a2) for every a1,a2 ∈ A. An isomorphism of unital
quantales has to also preserve the identity element.

In the following proposition we will show that for any ring R the set of its unitary ideals possesses a
natural quantale structure.

Proposition 2.11. If R is a ring, then UId(R) is a quantale.
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Proof. The poset (UId(R),⊆) is a complete lattice where for every subset U ⊆ UId(R) we have

∨
U = ∑

I∈U
I and

∧
U =

∨{
V ∈ UId(R)

∣∣∣∣∣V ⊆ ⋂
I∈U

I

}
.

By Proposition 3.2 in [3], any sum of unitary ideals is also a unitary ideal.
Define the operation ∗ : UId(R)×UId(R) // UId(R) as (I1, I2) 7→ I1I2. If J ∈UId(R) and U ⊆UId(R),

then

J ∗

(∨
I∈U

I

)
= J

(
∑
I∈U

I

)
= ∑

I∈U
JI =

∨
I∈U

(J ∗ I).

The other compatibility condition in the definition of a quantale holds analogously.

A ring R is called idempotent ([7]) if RR = R.

Proposition 2.12. If R is an idempotent ring, then UId(R) is a unital quantale with identity element R.

Proof. If R is an idempotent ring, then R is a unitary ideal of itself. It is also clear from the definition of a
unitary ideal that for every I ∈ UId(R) we have RI = IR = I.

Meets are calculated here as follows: for any subset U ⊆ UId(R)

∧
U = R

(⋂
I∈U

I

)
R.

3. QUANTALES OF UNITARY IDEALS AND MORITA CONTEXTS

In this section we will study the quantales of unitary ideals of rings connected by a surjective Morita context.
It is proved that these quantales are isomorphic. First, let us recall the definition of a Morita context.

Definition 3.1. A six-tuple (R,S,RPS, SQR,θ ,φ), where R and S are rings and RPS, SQR are bimodules, is
called a Morita context, if

θ : R(P⊗S Q)R // RRR, φ : S(Q⊗R P)S // SSS

are bimodule homomorphisms such that

θ(p⊗q)p′ = pφ(q⊗ p′), (3.1)
qθ(p⊗q′) = φ(q⊗ p)q′ (3.2)

for every p, p′ ∈ P and q,q′ ∈ Q.

We say that a Morita context (R,S,RPS, SQR,θ ,φ) is unitary, if the bimodules RPS and SQR are unitary;
and surjective, if the homomorphisms θ and φ are surjective. Unitary surjective Morita contexts connect
only idempotent rings (see, e.g. [4]).

The following theorem is a ring theoretic analogue of Theorem 3.4 in [10].

Theorem 3.2. If rings R and S are connected by a surjective Morita context (R,S,RPS, SQR,θ ,φ), then their
quantales of unitary ideals UId(R) and UId(S) are isomorphic. This isomorphism takes finitely generated
ideals to finitely generated ideals. If the rings R and S are idempotent, then the previous isomorphism is a
morphism of unital quantales.
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Proof. 1. Let (R,S,RPS, SQR,θ ,φ) be a surjective Morita context. Note that, for every unitary ideal J ∈
UId(S), the set

θ(PJ⊗Q) =

{
θ

(
k∗

∑
k=1

pk jk⊗qk

)∣∣∣∣∣ ∀k : pk ∈ P, jk ∈ J, qk ∈ Q

}
⊆ R

is an ideal, because θ is an (R,R)-bimodule homomorphism. Additionally, we have

θ(PJ⊗Q) = θ(PSJS⊗Q) = θ(PSJ⊗SQ) = θ(P Im(φ)J⊗ Im(φ)Q)

= θ(Im(θ)PJ⊗Q Im(θ)) = θ(RPJ⊗QR) = Rθ(PJ⊗Q)R.

Therefore, the ideal θ(PJ⊗Q) is unitary. Analogously, we can show that, for every I ∈ UId(R), the set
φ(QI⊗P) is a unitary ideal of S. This allows us to define the mappings

Θ : UId(S) // UId(R), Θ(J) := θ(PJ⊗Q), (3.3)
Φ : UId(R) // UId(S), Φ(I) := φ(QI⊗P). (3.4)

Let J1,J2 ∈ UId(S) be such that J1 ⊆ J2. Then we have Θ(J1) = θ(PJ1⊗Q)⊆ θ(PJ2⊗Q) = Θ(J2), which
means that the mapping Θ preserves the order. Analogously, the mapping Φ preserves the order. Note that
if J ∈ UId(S), then

Φ(Θ(J)) = φ(Qθ(PJ⊗Q)⊗P) = φ(φ(Q⊗P)JQ⊗P) = φ(Q⊗P)Jφ(Q⊗P) = SJS = S.

Analogously, Θ(Φ(J)) = I holds for every I ∈UId(R), which means that the mappings Φ and Θ are inverses
of each other. Hence, the mappings Φ and Θ are actually isomorphisms of lattices.

If J1,J2 ∈ UId(S), then

Θ(J1)Θ(J2) = θ(PJ1⊗Q)θ(PJ2⊗Q) = θ(PJ1⊗Qθ(PJ2⊗Q)) = θ(PJ1⊗φ(Q⊗PJ2)Q)

= θ(PJ1⊗φ(Q⊗P)J2Q) = θ(PJ1⊗SJ2Q) = θ(PJ1⊗ J2Q) = θ(P(J1J2)⊗Q) = Θ(J1J2).

Analogously, we can show that, for every I1, I2 ∈ UId(R), the equality Φ(I1)Φ(I2) = Φ(I1I2) holds. Hence,
Θ and Φ are isomorphisms of quantales.

2. Let J ∈ UId(S) be a finitely generated ideal. Then there exists a finite set X = {x1, . . . ,xn} ⊆ J such
that J = SXS (see Lemma 2.7). Fix an index k ∈ {1, . . . ,n}. Then the element xk can be written as

xk =
h∗

∑
h=1

skhxkhs′kh,

where sk1,s′k1, . . . ,skh∗ ,s′kh∗ ∈ S and xk1, . . . ,xkh∗ ∈ X . Considering that the mapping φ is surjective, we can
also express xk as follows:

xk =
t∗

∑
t=1

φ(qt ⊗ pt)ξtφ(q′t ⊗ p′t),
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where q1,q′1, . . . ,qt∗ ,q′t∗ ∈Q, p1, p′1, . . . , pt∗ , pt∗ ∈ P and ξ1, . . . ,ξt∗ ∈ X . Now, for every p ∈ P and q ∈Q, we
have

θ (pxk⊗q) = θ

(
p

(
t∗

∑
t=1

φ(qt ⊗ pt)ξtφ(q′t ⊗ p′t)

)
⊗q

)

=
t∗

∑
t=1

θ(pφ(qt ⊗ pt)ξtφ(q′t ⊗ p′t)⊗q)

=
t∗

∑
t=1

θ(θ(p⊗qt)ptξt ⊗φ(q′t ⊗ p′t)q)

=
t∗

∑
t=1

θ(θ(p⊗qt)ptξt ⊗q′tθ(p′t ⊗q))

=
t∗

∑
t=1

θ(p⊗qt)θ(ptξt ⊗q′t)θ(p′t ⊗q) ∈ RY R,

where
Y = {θ(ptξt ⊗q′t) | t ∈ {1, . . . , t∗}} ⊆ R

is a finite set. Note that

Θ(J) = θ(PJ⊗Q) =

{
θ

(
`∗

∑
`=1

p` j`⊗q`

)∣∣∣∣∣∀` : p` ∈ P,q` ∈ Q, j` ∈ J

}

=

{
θ

(
`∗

∑
`=1

p`

(
h∗

∑
h=1

sh`xh`s′h`

)
⊗q`

)∣∣∣∣∣∀`,h : p` ∈ P;q` ∈ Q;xh` ∈ X ;sh`,s′h` ∈ S

}

=

{
θ

(
`∗

∑
`=1

h∗

∑
h=1

(p`sh`)xh`⊗ (s′h`q`)

)∣∣∣∣∣∀`,h : p` ∈ P;q` ∈ Q;xh` ∈ X ;sh`,s′h` ∈ S

}

=

{
`∗

∑
`=1

h∗

∑
h=1

θ
(
(p`sh`)xh`⊗ (s′h`q`)

)∣∣∣∣∣∀`,h : p` ∈ P;q` ∈ Q;xh` ∈ X ;sh`,s′h` ∈ S

}
⊆ RY R.

On the other hand, Y ⊆Θ(J). Since Θ(J) is an ideal of R which contains Y ,

(Y )g ⊆Θ(J)⊆ RY R⊆ (Y )g,

which implies that Θ(J) = (Y )g. Hence, Θ(J) is a finitely generated ideal.
3.Let the rings R and S be idempotent. Then, by Proposition 2.12, the quantales UId(R) and UId(S) are

unital quantales with identity elements R and S, respectively. Since lattice isomorphisms preserve the largest
elements, Θ(S) = R and Φ(R) = S.

Remark. In Proposition 3.5 in the article [7], it has been shown that if idempotent rings R and S are
connected by a unitary surjective Morita context, then the lattices UId(R) and UId(S) are isomorphic. Ad-
ditionally, we have proved that they are isomorphic as quantales and that these isomorphisms behave well
with respect to finitely generated ideals.We have also shown that assuming the idempotence of rings and the
unitariness of bimodules in the Morita context is not necessary.

Theorem 3.2 implies that the isomorphisms Θ and Φ preserve all the properties of unitary ideals that are
defined by using multiplication of ideals, inclusion relation, joins or meets. For example, if I is a semiprime
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element in the quantale UId(R) ([13, Def. 3.2.5]), then Φ(I) is semiprime in UId(S). An analogous statement
holds for prime elements ([13, Def. 3.2.8]). In [15], the radical of a complete lattice is defined as the meet
of all coatoms. Thus, Φ takes the radical of the lattice UId(R) to the radical of UId(S).

Here is another application of Theorem 3.2. Let Matn(R) denote the full matrix ring of (n×n)-matrices
over a ring R.

Corollary 3.3. If R is an idempotent ring and n a natural number, then UId(R) and UId(Matn(R)) are
isomorphic quantales.

Proof. By Corollary 3.7 in [11], R is Morita equivalent to the full matrix ring Matn(R).The last ring is idem-
potent by Proposition 2.6 and Proposition 2.2 in [11]. As mentioned in the introduction, Morita equivalence
in this case means that the rings R and Matn(R) are connected by a unitary surjective Morita context. Now
the claim follows from Theorem 3.2.

Corollary 3.4. If R is an s-unital ring and n a natural number, then Id(R) and Id(Matn(R)) are isomorphic
quantales.

Proof. If R is s-unital, then by using Proposition 2.5, one can show that also Matn(R) is an s-unital ring.
The claim follows from Corollary 3.3 and Corollary 2.9.

Recall that the annihilator of an R-module MR is defined as:

ann(MR) := {r ∈ R | ∀m ∈M : mr = 0}= {r ∈ R |Mr = 0}.

It is easy to see that, for any R-module MR, its annihilator ann(MR) is an ideal of R. An R-module MR is
called faithful if ann(MR) = 0.

Now we will prove a result which generalizes Proposition 18.47 in [12].

Proposition 3.5. Let R and S be s-unital rings. If R and S are connected by a surjective Morita context
(R,S,RPS, SQR,θ ,φ), then there exists an isomorphism Φ : Id(R) // Id(S). Moreover, for every R-module
MR,
• Φ(ann(MR)) = ann(M⊗PR);
•MR is faithful if and only if the module M⊗P is faithful.

Proof. If R and S are s-unital rings, then, by Corollary 2.9, Id(R) = UId(R) and Id(S) = UId(S). Due to
Theorem 3.2, we now have Id(R)∼= Id(S), where the isomorphism Φ is defined as in (3.4). Note that

(M⊗P)Φ(ann(M)) = (M⊗P)φ(Qann(M)⊗P) = M⊗θ(P⊗Q)ann(M)P
= M⊗Rann(M)P = MRann(M)⊗P⊆M ann(M)⊗P = 0⊗P = 0.

Therefore, we have Φ(ann(M))⊆ ann(M⊗P). Analogously, we can show that Θ(ann(M⊗P))⊆ ann(M⊗
P⊗Q), where Θ : Id(S) // Id(R) is defined as in (3.3).

Now, let r ∈ ann(M⊗P⊗Q) ⊆ R. Since R is s-unital, there exists u ∈ R such that r = ru and, due to
surjectivity of θ , there exist elements p1, . . . , pk∗ ∈ P and q1, . . . ,qk∗ ∈ Q such that u = ∑

k∗
k=1 θ(pk⊗ qk).

Note that, for any m ∈M, we have

mr = mur = µM(m⊗u)r =
k∗

∑
k=1

µM(m⊗θ(pk⊗qk))r =
k∗

∑
k=1

µM((idM⊗θ)(m⊗ pk⊗qk))r

=
k∗

∑
k=1

µM((idM⊗θ)((m⊗ pk⊗qk)r)) =
k∗

∑
k=1

µM((idM⊗θ)(0)) = 0,
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where µM : M⊗R //M, µM(m⊗ r) = mr is a homomorphism of right R-modules. Hence, r ∈ ann(MR).
Now we have proved the inclusions

Θ(ann(M⊗P))⊆ ann(M⊗P⊗Q)⊆ ann(M).

Applying the lattice isomorphism Φ to the previous sequence of inclusions, we obtain

ann(M⊗P) = Φ(Θ(ann(M⊗P)))⊆Φ(ann(M)).

In conclusion, we have shown that Φ(ann(M)) = ann(M⊗P).
If MR is faithful, then 0 = ann(M) = Θ(ann(M⊗P)), which implies that ann(M⊗P) = 0 because Θ is

an isomorphism.

If RMS is a bimodule, then by USub(M) we denote the set of all unitary sub-bimodules of M.

Proposition 3.6. If RMS is a bimodule, then USub(M) is a complete lattice. If R and S are idempotent rings,
then this lattice is modular.

Proof. It is easy to see that the sum of any set of unitary sub-bimodules of M is unitary. Hence, USub(M)
is a complete lattice.

Assume that R,S are idempotent and let us prove that the lattice is modular. Let A,B,C ∈USub(M) such
that A⊆C. Then (A+B)∩C = A+B∩C because the lattice of all submodules of M is modular. Hence,

(A∨B)∧C = R((A+B)∩C)S = R(A+(B∩C))S = RAS+R(B∩C)S = A+R(B∩C)S = A∨ (B∧C).

It follows that UId(R) is a modular lattice when R is an idempotent ring.
In [3] Buys and Kyuno showed that the lattices UId(R) and UId(S) are also isomorphic to the lattices

USub(P) and USub(Q), where P and Q are taken from the Morita context.

Theorem 3.7 ([3, Theorem 3.3]). Let the rings R and S be connected by a surjective Morita context
(R,S,RPS, SQR,θ ,φ), then the following lattices are isomorphic:

1. UId(R),
2. UId(S),
3. USub(RPS),
4. USub(SQR).

The isomorphisms in the previous theorem are obtained by using the following mappings:

Ψ : UId(R) // USub(P), Ψ(I) := IP,
Ω : USub(P) // UId(R), Ω(A) := θ(A⊗Q);

Ψ
′ : UId(R) // USub(Q), Ψ

′(I) := QI,
Ω
′ : USub(Q) // UId(R), Ω

′(B) := θ(P⊗B).

Remark. Among other things, Theorem 3.7 implies that if R and S are s-unital rings, then

R is uniform ⇐⇒ S is uniform ⇐⇒ RPS is uniform ⇐⇒ SQR is uniform,

where uniformity means that the intersection of every two non-zero ideals (sub-bimodules) is non-zero. An
analogous claim holds for the dual notion – hollowness.
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The following theorem is a generalization of Corollary 18.49 in [12]. It will imply that if R and S are
Morita equivalent idempotent rings, then every quotient ring of R is Morita equivalent to a certain quotient
ring of S.

Theorem 3.8. Let Γ= (R,S,RPS, SQR,θ ,φ) be a Morita context. Then, for every ideal I ∈ Id(R), the quotient
rings R/I and S/Φ(I) are connected by a Morita context ΓI = (R/I,S/Φ(I),P/Ψ(I),Q/Ψ′(I),ζ ,η), where

Φ : Id(R) // Id(S), Φ(I) := φ(QI⊗P),
Ψ : Id(R) // Sub(P), Ψ(I) := IP,

Ψ
′ : Id(R) // Sub(Q), Ψ

′(I) := QI.

Moreover,
• if Γ is surjective, then ΓI is surjective;
• if Γ is unitary, then ΓI is unitary.

Proof. Let I ∈ UId(R). First, we must show that the abelian group P/Ψ(I) is an (R/I,S/Φ(I))-bimodule.
Consider the mappings

R/I×P/Ψ(I) //P/Ψ(I), ([r], [p]) 7→ [rp], (3.5)
P/Ψ(I)×S/Φ(I) //P/Ψ(I), ([p], [s]) 7→ [ps]. (3.6)

Let p1, p2 ∈ P and s1,s2 ∈ S be such that [p1]Ψ(I) = [p2]Ψ(I) and [s1]Φ(I) = [s2]Φ(I). Then we have p1− p2 ∈
Ψ(I) = IP and s1− s2 ∈Φ(I) = φ(QI⊗P). Note that

p1s1− p2s1 = (p1− p2)s1 ∈ IPS⊆ IP,
p2s1− p2s2 = p2(s1− s2) ∈ Pφ(QI⊗P) = θ(P⊗Q)IP⊆ RIP⊆ IP,

which implies that
[p1s1]Ψ(I) = [p2s1]Ψ(I) = [p2s2]Ψ(I).

Therefore, the mapping (3.6) is well defined. Analogously, the mapping (3.5) is well defined. Now it is easy
to see that with the mappings (3.5) and (3.6) P/Ψ(I) is a bimodule.

Analogously, the abelian group Q/Ψ′(I) is an (S/Φ(I),R/I)-bimodule.
Define the mappings ζ and η as follows:

ζ : P/Ψ(I)⊗Q/Ψ
′(I) //R/I,

t∗

∑
t=1

[pt ]⊗ [qt ] 7→
t∗

∑
t=1

[θ(pt ⊗qt)],

η : Q/Ψ
′(I)⊗P/Ψ(I) //S/Φ(I),

t∗

∑
t=1

[qt ]⊗ [pt ] 7→
t∗

∑
t=1

[φ(qt ⊗ pt)].

To show that these mappings are well defined, we consider the following two mappings:

ζ̂ : P/Ψ(I)×Q/Ψ
′(I) //R/I, ([p], [q]) 7→ [θ(p⊗q)],

η̂ : Q/Ψ
′(I)×P/Ψ(I) //S/Φ(I), ([q], [p]) 7→ [φ(q⊗ p)].

Let p1, p2 ∈P and q1,q2 ∈Q be such that [p1] = [p2] and [q1] = [q2]. Then p1− p2 ∈Ψ(I) = IP and q1−q2 ∈
Ψ′(I) = QI, therefore there exist elements λ1, . . . ,λk∗ ∈ P, κ1, . . . ,κh∗ ∈ Q and ι1, . . . , ιk∗ , ι

′
1, . . . , ι

′
h∗ ∈ I such

that p1− p2 = ι1λ1 + . . .+ ιk∗λk∗ and q1−q2 = κ1ι ′1 + . . .+κh∗ι
′
h∗ . Now

ζ̂ ([p1], [q1])− ζ̂ ([p2], [q1]) = [θ((p1− p2)⊗q1)]I =

[
k∗

∑
k=1

ιkθ(λk⊗q1)

]
I

= [0]I,

ζ̂ ([p2], [q1])− ζ̂ ([p2], [q2]) = [θ(p2⊗ (q1−q2))]I =

[
h∗

∑
h=1

θ(p2⊗κh)ι
′
h

]
I

= [0]I.
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Therefore, we have
ζ̂ ([p1], [q1]) = ζ̂ ([p2], [q1]) = ζ̂ ([p2], [q2]),

which shows that the mapping ζ̂ is well defined. Since ζ̂ is also S/Φ(I)-balanced, then, due to the definition
of tensor product, the mapping ζ is also well defined. Analogously, the mappings η̂ and η are well defined.
Also, ζ and η are bimodule homomorphisms because θ and φ are bimodule homomorphisms.

Now, for every p, p′ ∈ P and q,q′ ∈ Q, we have

ζ ([p]⊗ [q])[p′] = [θ(p⊗q)][p′] = [θ(p⊗q)p′] = [pφ(q⊗ p′)] = [p]η([q]⊗ [p′]),
[q′]ζ ([p]⊗ [q]) = [q′][θ(p⊗q)] = [q′θ(p⊗q)] = [φ(q′⊗ p)q] = η([q′]⊗ [p])[q].

In conclusion, we have shown that (R/I,S/Φ(I),P/Ψ(I),Q/Ψ′(I),ζ ,η) is a Morita context.
If θ and φ are surjective, then also ζ and η are surjective. If P and Q are unitary, then their quotient

bimodules are unitary, too.

In [3, Def. 4.1], the two-sided socle of a ring R was defined as

Soc(R) := ∑{I | I is a minimal ideal of R}.

Minimal ideals of R are precisely the atoms of the lattice Id(R).

Definition 3.9. We define the unitary two-sided socle of a ring R as

USoc(R):= ∑{I | I ∈ UId(R), I = 0 or I is an atom of the lattice UId(R)}
=
∨
{I | I ∈ UId(R), I = 0 or I is an atom of the lattice UId(R)},

where the join is calculated in the lattice UId(R) (see also [15], Section 2).
If R and S are connected by a surjective Morita context, then, by Theorem 3.2 we have a lattice isomor-

phism Θ : UId(S) // UId(R), and it follows that

Θ(USoc(S)) = USoc(R).

If the ring R (and analogously S) satisfies the condition

∀r ∈ R : (RrR = 0 =⇒ r = 0), (3.7)

then every minimal ideal of R is unitary ([3, Prop. 3.5]). Hence, USoc(R) = Soc(R) and we may write

Θ(Soc(S)) = Soc(R).

Definition 3.10 ([3, Def. 4.5]. A ring R is called completely reducible if Soc(R) = R.

The fact that the ring R is completely reducible means that R is the join of all atoms in the lattice Id(R).

Propositionn 3.11. Let two idempotent rings R and S be connected by a surjective Morita context. Then R
is completely reducible if and only if S is completely reducible.

Proof. Assume that S is completely reducible. Note that if R is idempotent, then it satisfies (3.7). Hence,
Soc(R) =USoc(R) and analogously Soc(S) =USoc(S). Due to Theorem 3.2, we have a lattice isomorphism
Θ : UId(S) // UId(R). Now

Soc(R) = Θ(Soc(S)) = Θ(S) = R,

yielding that R is completely reducible. The other direction is similar.
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4. MORITA CONTEXTS INDUCE A SEMIFUNCTOR

Consider the following category, which we denote by Ltc:
• Objects are lattices.
•Morphisms L //L′ are pairs ( f ,g) of order-preserving mappings f : L //L′ and g : L′ //L such that
(g f )(a)≤ a for every a ∈ L and ( f g)(b)≤ b for every b ∈ L′.
• The composite of morphisms ( f ,g) : L //L′ and ( f ′,g′) : L′ //L′′ is defined as

( f ′,g′)( f ,g) := ( f ′ f ,gg′) : L //L′′.

This category is somewhat similar to the category of lattices and Galois connections (see page 21 in [8]),
although the pairs ( f ,g) do not form a Galois connection.

Next, we wish to construct a semicategory by using Morita contexts. We say that two Morita contexts
Γ = (R,S,RPS, SQR,θ ,φ) and ∆ = (R,S,RP′S, SQ′R,θ

′,φ ′) are isomorphic if there exist biact isomorphisms
h : RPS // RP′S and k : SQR // SQ′R such that the diagrams

R

P′⊗Q′

??

θ ′

������������

P⊗Q

R

θ

��????????????P⊗Q

P′⊗Q′

h⊗k

��

S

Q′⊗P′

??

φ ′

������������

Q⊗P

S

φ

��????????????Q⊗P

Q′⊗P′

k⊗h

��

commute (cf. [5], page 5). We write Γ∼= ∆. It is easy to see that the relation ∼= is an equivalence relation on
the class of all Morita contexts connecting R and S. We denote the equivalence class of Γ by [Γ].

Now consider the semicategory RngMC with the following ingredients:
• Objects are rings.
•Morphisms R //S are equivalence classes of Morita contexts between R and S.
• Let R,S,T be rings and [Γ] : R // S, [Γ′] : S // T be morphisms, where Γ = (R,S,RPS, SQR,θ ,φ) and

Γ′ = (S,T, SP′T ,T Q′S,θ
′,φ ′). The composite of [Γ] and [Γ′] is defined as the equivalence class of the Morita

context
Γ
′ ◦Γ = (R,T,RP⊗S P′T ,T Q′⊗S QR,θ ,φ) : R //T,

where

θ : (P⊗S P′)⊗T (Q′⊗S Q) //R, p⊗ p′⊗q′⊗q 7→ θ(pθ
′(p′⊗q′)⊗q),

φ : (Q′⊗S Q)⊗R (P⊗S P′) //T, q′⊗q⊗ p⊗ p′ 7→ φ
′(q′φ(q⊗ p)⊗ p′).

A straightforward verification shows that this composition of morphisms is well defined and associative.
Also, it can be seen that Ltc is a category with involution where ( f ,g)† = (g, f ) and RngMC is a semi-

category with involution, where

[(R,S,RPS, SQR,θ ,φ)]
† = [(S,R, SQR,RPS,φ ,θ)].

Proposition 4.1. The assignment

S Id(S)� //

R

S

[Γ]

��

R Id(R)� // Id(R)

Id(S)

(ΦΓ,ΘΓ)

��

defines an involution preserving semifunctor Id : RngMC
//Ltc.
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Proof. First we need to check that the mapping [Γ] 7→ (ΦΓ,ΘΓ) is well defined. Suppose that Γ∼= ∆, where
Γ and ∆ are as indicated above. Then, for every I ∈ Id(R), q ∈ Q, i ∈ I and p ∈ P,

φ(qi⊗ p) = φ
′(k(qi)⊗h(p)) = φ

′(k(q)i⊗h(p)) ∈ φ
′(Q′I⊗P′),

so φ(QI⊗P)⊆ φ ′(Q′I⊗P′). Analogously, φ ′(Q′I⊗P′)⊆ φ(QI⊗P), and thus

ΦΓ(I) = φ(QI⊗P) = φ
′(Q′I⊗P′) = Φ∆(I).

A similar argument demonstrates that ΘΓ = Θ∆.Therefore, the mapping [Γ] 7→ (ΦΓ,ΘΓ) is indeed well defi-
ned.

Let now Γ and Γ′ be as indicated above. Then Id([Γ′ ◦Γ]) = (Φ,Θ), where

Φ(I) = φ((Q′⊗Q)I⊗ (P⊗P′)) =

{
k∗

∑
k=1

φ
′(q′kφ(qkik⊗ pk)⊗ p′k)

∣∣∣∣∣ q′k ∈ Q′,qk ∈ Q, ik ∈ I, pk ∈ P, p′k ∈ P′
}

for every I ∈ Id(R), and Θ is defined analogously. On the other hand,

Id([Γ′])◦ Id([Γ]) = (ΦΓ′ ,ΘΓ′)◦ (ΦΓ,ΘΓ) = (ΦΓ′ΦΓ,ΘΓΘΓ′),

where
(ΦΓ′ΦΓ)(I) = ΦΓ′(φ(QI⊗P)) = φ

′(Q′φ(QI⊗P)⊗P′) = Φ(I).

We see that ΦΓ′ΦΓ = Φ and, similarly, ΘΓΘΓ′ = Θ. Thus, Id([Γ′ ◦Γ]) = Id([Γ′])◦ Id([Γ]). Also,

Id([Γ]†) = (ΘΓ,ΦΓ) = (ΦΓ,ΘΓ)
† = Id([Γ])†.

Remark. Note that if we do not consider sub-bimodules as in Theorem 3.7, but only one-sided submodules,
then a Morita context (R,S,RPS, SQR,θ ,φ) induces in a natural way certain contravariant Galois connections
between the lattices of left ideals of S, right ideals of S, submodules of RP and submodules of QR (see [9]).

5. CONCLUSIONS

We have proved that if two associative rings are connected by a surjective Morita context, then the quantales
of unitary ideals of those rings are isomorphic and finitely generated ideals correspond to finitely generated
ideals under that isomorphism. This implies that all the properties of rings that are defined by using uni-
tary ideals and quantale operations are Morita invariants. We have also shown that quotient rings of Morita
equivalent idempotent rings by ideals that correspond to each other under isomorphism are Morita equiva-
lent. In Section 4 we have demonstrated that Morita contexts induce in a natural way a certain semifunctor
between semicategories.
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Ringide Morita kontekstid ja unitaarsed ideaalid

Kristo Väljako ja Valdis Laan

On uuritud ühikuta ringide Morita kontekste. On tõestatud, et kui kaks assotsiatiivset ringi on seotud Morita
kontekstiga, mille kujutused on sürjektiivsed, siis nende ringide unitaarsete ideaalide kvantaalid on iso-
morfsed. Samuti on näidatud, et faktoringid selliste ideaalide järgi, mis on üksteisega vastavuses selle
isomorfismi korral, on ka seotud Morita kontekstiga, mille kujutused on sürjektiivsed. Lisaks on vaadeldud,
kuidas annullaatorid ja soklid käituvad selle isomorfismi suhtes.
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