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ABSTRACT

This paper investigates the consensus problem of disturbed second-order nonlinear multi-

agent systems (MASs) under directed topology. A reset event-triggered control (RETC) is

proposed that combines the reset mechanism with dynamic event-triggered control (ETC)

strategies. The introduction of RETC overcomes the limitation of the traditional ETC that

frequently triggers when approaching the consensus position. The external dynamic vari-

ables in the trigger conditions can be adjusted according to the predefined reset conditions.

When the local state deviation reaches the preset threshold, the dynamic variable is reset to

the initial value, greatly reducing the frequency of event triggering, and the strategies are

fully distributed. The parameters and reset threshold depend only on the local state of the

agents, without global information. The paper applies the Lyapunov stability theory to conduct

a rigorous theoretical analysis of control strategies and verifies its effectiveness in improving

transient consensus and reducing communication burden through simulations.

1. Introduction

As a prominent research focus in the field of control, the cooperative control of
multi-agent systems (MASs) has shown significant potential in diverse appli-
cations, including consensus control [20,28], distributed optimization [1,12],
and cluster collaboration [7]. This method refers to the approach where multi-
ple agents with perception, communication, and mobility capabilities achieve
the desired objectives collectively through local information exchange in a
distributed environment. As the basis of collaborative control, the consensus
problem has received extensive attention [19,21,23]. The core of cooperative
control lies in establishing the relationship between individual agent behav-
iors and the overall group objective, with consensus providing the theoretical
foundation for realizing this relationship [23].

The main task of the consensus problem of the MAS is to design the
controller so that all the agents in the system tend to the same state [8,15].
Based on the graph theory, the convergence properties of linear systems with
connected topology were proved by [15]. By analyzing delay effects in discrete-
time multi-intelligent systems, a new mathematical tool was proposed by [8]
to define consistency boundaries. In order to solve the influence of external
disturbance, more complex system models were considered in [18] and [14],
and the control method was further extended. The problem of non-matching
disturbance was discussed in [25]. Yet, most existing approaches assume
that the agents can continuously communicate with each other. However,
in practical application scenarios, MASs often cannot fulfill this condition.

To reduce the consumption of communication resources under the premise
of system stability, an event-triggered mechanism has been introduced into
the consensus control of multi-agents [4,13]. Different from the traditional pe-
riodic triggering, this approach adopts a state-driven communication strategy
in which communication links are activated and control protocols are updated
only when specific triggering conditions are satisfied. This mechanism en-
ables a dynamic trade-off between control accuracy and communication load.

Proceedings of the

Estonian Academy of Sciences

2026, 75, 1, 34–46

https://doi.org/10.3176/proc.2026.1.04

www.eap.ee/proceedings

Estonian Academy Publishers

CONTROL THEORY,

MULTI-AGENT SYSTEMS

RESEARCH ARTICLE

Received 21 April 2025

Accepted 26 August 2025

Available online 26 January 2026

Keywords:

multi-agent system, reset event-triggered

control, nonlinear dynamics, state error,

consensus

Corresponding author:

Xingjian Fu

fxj@bistu.edu.cn

Citation:

Cheng, Y. and Fu, X. 2026. Distributed

consensus for second-order multi-agent

systems based on reset event-triggered

mechanism. Proceedings of the Estonian

Academy of Sciences, 75(1), 34–46.

https://doi.org/10.3176/proc.2026.1.04

© 2026 Authors. This is an open

access article distributed under the

terms and conditions of the Creative

Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0).



Event-triggered consensus of second-order MASs 35

According to the type of trigger function, event-triggered mechanisms are generally classified into
static and dynamic categories. To address errors arising from system uncertainties, Deng et al. [4]
investigated the tracking problem of nonlinear MASs and developed an adaptive controller for all
subsystems based on a specially designed observer. However, with the growing complexity of practi-
cal applications, the limitations of static thresholds have become increasingly evident. For example,
an excessively high threshold may delay system convergence, whereas an overly low threshold can
lead to redundant communications [13].

Subsequently, a dynamic event-triggered algorithm was proposed by introducing dynamic vari-
ables [9–11]. The dynamic event-triggered mechanism makes the threshold of the event-triggered
function change adaptively with the measurement error, which effectively avoids the situation
that the trigger threshold is invariable under the static event-triggered mechanism. In recent years,
the dynamic event-triggered mechanism has become a key technique for meeting the requirements
of saving communication resources and flexible design [11]. In [9], dynamic threshold parame-
ters were introduced into the queuing control problem of a MAS, and an optimal balance was
achieved between the communication efficiency of the system and the desired queuing performance.
However, the research focused on the idealized formation task and did not address the impact of
system dynamic complexity on the robustness of the triggering mechanism.

To address these challenges, Ge et al. [10] applied a dynamic event-triggered mechanism to
the complex energy system of islanded microgrids. For multi-unmanned boat systems with limited
communication, Ding et al. [6] designed a distributed control protocol based on adaptive algorithms
and slip film control. The problem of time delay in a second-order MAS was improved in [16].
However, most of the studies assumed that external disturbances were negligible and did not account
for adaptability under persistent perturbations. This limitation was solved in [22]. For MASs with
external disturbances, Ruan et al. adopted a dynamic threshold event-triggered method in the channels
from sensor to observer and from control protocol to actuator, thereby effectively avoiding excessive
updates of the control protocol. Eventually, the system stated index could converge to a bounded
range.

Dynamic event-triggered mechanisms have proven effective, but a key limitation remains:
while they perform well when the system is far from equilibrium, frequent triggering still occurs
near consensus due to the time-decaying nature of dynamic variables. To ensure stability, con-
servative parameter settings were adopted in [3], yet this approach failed to eliminate the Zeno
phenomenon within a prescribed time. Subsequently, a new time-varying function was used to solve
this problem [2]. Further, Liu et al. [17] extended the study to second-order MASs to realize the
pre-determined time utility consensus and verified the validity of the results by using the example
of self-driving cars on the internet. However, most existing work has concentrated on asymptotic
consensus, with limited attention to transient performance. Therefore, the problem of improving the
transient performance of the system while ensuring consensus has received widespread attention.

In order to address these challenges, this paper proposes a reset-based event-triggered mechanism,
providing a novel perspective for improving the transient performance of the system [5,24,26,27].
The advantage of this method is that when the system state satisfies the preset conditions, the dynamic
process is reconstructed by the strategy of finite amplitude state reset. The dependence of traditional
continuous control on the monotonicity of the Lyapunov function is overcome, and the convergence
process is accelerated. For this reason, the reset control is innovatively introduced into the dynamic
variable update process: when the system state enters the Y neighborhood, the state reset of the
auxiliary variable [8(t) with limited amplitude is performed, rather than the continuous variable
decay strategy in the traditional event trigger.

The main contributions of this article are as follows:
1. A novel hybrid reset event-triggered mechanism is proposed that overcomes the dependence

of the traditional dynamic event-triggered mechanism on the monotonicity of the Lyapunov function
through the Y neighborhood partitioning and the finite amplitude reset operation, and has the potential
to improve the transient consensus performance of MASs.

2. Event-triggered mechanisms that rely on global parameters are required by [22]. A completely
distributed control law is proposed in this paper. Triggering parameters are based only on local
neighboring state errors, which significantly enhances the adaptability of the algorithm to dynamic
topologies.
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3. Existing studies [9–11] mostly use a single control mechanism, making it difficult to bal-
ance communication efficiency and anti-jamming capability. This paper achieves consensus while
eliminating the Zeno phenomenon through the coupled design of perturbation compensation and
reset-triggering conditions.

In summary, this paper innovatively combines reset control and event-triggered mechanisms in
the consensus control of MASs, and proposes a solution that effectively improves the performance
of transient consensus and provides a new perspective for system analysis and design.

2. Problem formulation and preliminaries

The information interaction between agents can be described by the topology graph G = (V, E,A).
For a topology graph composed of # agents, V = {E1, E2, . . . , E=} represents the set of nodes, and
E = {(E8, E9) | E8 ∈ V, E9 ∈ V, 8 ≠ 9} denotes the set of edges. A directed edge (E8, E

This paper investigates second-order nonlinear MASs, where the dynamics of the leader and the
follower 8 are described as follows.{

¤G0(C) = a0(C)
¤a0(C) = 5 (C, G0(C), a0(C))

, (1){
¤G8 (C) = E8 (C)
¤E8 (C) = D8 (C) + 38 (C) + 5 (C, G8 (C), E8 (C))

, 8 = 1, 2, · · · , =, (2)

where G0(C) ∈ '<, E0(C) ∈ '< are respectively expressed as the state and speed of the leader at
the moment C; G8 (C) ∈ '<, E8 (C) ∈ '<, and D8 (C) ∈ '< are the state, speed, and control inputs of
the follower 8, respectively; 5 (C, G0(C), E0(C)) and 5 (C, G8 (C), E8 (C)) denote the unknown nonlinear
continuous functions of the leader and the follower 8, respectively; 38 (C) denotes the unknown
perturbations of the follower and satisfies ‖3 (C)‖ ≤ �, 3 (C) =

[
3T

1 (C), 3
T
2 (C), · · · , 3

T
#
(C)

]T, where
� is a positive constant.

The main lemmas and assumptions employed in the proof are summarized as follows:

Assumption 1. At least one follower can obtain the navigator’s information; that is, the navigator–
follower adjacency matrix � ≠ 0.

Assumption 2. For a nonlinear continuous function 5 (·) in a second-order nonlinear MAS, which
satisfies the Lipschitz condition, ∀G, H, E, I ∈ R, there exist two positive constants ? and @ such that
the following inequality holds:

| 5 (C, G, E) − 5 (C, H, I) | ≤ ? |G − H | + @ |E − I |. (3)

Lemma 1. [16] (Young’s inequality) Let ? > 1, 1
?
+ 1

@
= 1. Then, for any f1f2 > 0, f1f2 ≤ f

?

1
?
+ f

@

2
@

.

Lemma 2. [2] (Sliding-mode interference compensation inequality) Set constant � > 0 such that
the jamming signal 3 (C) satisfies the boundedness condition 3 (C) ≤ �, where � is the upper bounds
of known interference. For any time-varying signal f(C) = ḠT(C) + ĒT(C), the following inequality
holds:

f(C) (3 (C) − �sgn(f(C))) ≤ 0. (4)

Lemma 3. [26] Let H ∈ '=×= be a symmetric positive definite matrix, and eigenvalues satisfy
0 < _min(H) ≤ _max(H). For any vector G ∈ '=, the following inequality holds:

_min(H)‖G‖2 ≤ GTHG ≤ _max(H)‖G‖2, (5)

where ‖G‖2 = GTG, _min(H), and _max(H) are the minimum and maximum eigenvalues of H ,
respectively.

Lemma 4. [27] For ∀G, H ∈ ' and U > 0, the following properties hold true:

|GH | ≤ U

2
G2 + 1

2U
H2. (6)
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Lemma 5. [24] Consider the system described by Eqs (1) and (2). The MAS can achieve leading–
following consensus if and only if the initial state of any agent satisfies the following conditions:

lim
C→∞

‖G8 (C) − G0(C)‖ = 0, 8 = 1, 2, · · · , =,

lim
C→∞

‖E8 (C) − E0(C)‖ = 0, 8 = 1, 2, · · · , =.
(7)

3. Main result

This paper investigates the consensus problem of second-order MASs under a reset event-triggered
strategy. To facilitate the design of the event-triggering condition, the state measurement error is
defined as follows (which also follows the idea in [13]):

Δ8 (C) =
∑
9∈N8

08 9 (G8 (C) − G9 (C) + E8 (C) − E9 (C)) + 18
1
U
(G8 (C) − G0(C) + E8 (C) − E0(C))U. (8)

Define the triggering error of agent 8 as:

48 (C) = Δ8 (C:) − Δ8 (C). (9)

The consensus error of agent 8 is:

Ḡ8 (C) = G8 (C) − G0(C),
Ē8 (C) = E8 (C) − E0(C).

(10)

The control law for agent 8 is designed as follows:

D8 (C) = − :
∑
9∈N8

08 9 (G8 (C8:) − G9 (C8:) + E8 (C8:) − E9 (C8:))

+ 18
1
U

(
G8 (C8:) − G0(C8:) + E8 (C8:) − E0(C8:)

)U − �sgn
(
ḠT(C) + ĒT(C)

)
,

(11)

where : > 0 is the control gain to be designed, �sgn
(
ḠT(C) + ĒT(C)

)
is the disturbance compen-

sation term, C8
:

is the triggering time of the k-th event of agent 8, and the trigger time sequence is{
C80, C

8
1, . . . , C

8
:
, . . .

}
.

Define the trigger conditions for the reset event of agent 8:

‖48 (C)‖2 >

[
2U
:
_min: (! + � ⊗ �<) −

2Ul
:

− U (2U + 1)
]
Ω(C) − 2U(�1�2)2 + [8 (C), (12)

where Ω(C) =
=∑
8=1

(
‖Ḡ8 (C)‖2 + ‖Ē8 (C)‖2

)
, 0 < U < 1, and [8 (C) is a dynamic adjustment function,

designed as:

[8(t) =
{

[8(0),Ω(C) < Y

[8(0)4−U(C−C: ) ,Ω(C) ≥ Y
, (13)

where V > 0, [8 = 0, Y is an adjustable parameter that determines when the variable [8 (t) will be
reset to its initial value, and C: is the most recent trigger moment. Combined with the error definition,
the system equation can be rewritten as:

¤̄G8 (C) = Ē8 (C),

¤̄E8 (C) = −:48 (C) − :

[ ∑
9∈N8

08 9 (Ḡ8 (C) − Ḡ 9 (C) + Ē8 (C) − Ē 9 (C)) + 18
1
U
(Ḡ8 (C) + Ē8 (C))U

]
+ 5 (C, G8 (C), E8 (C)) − 5 (C, G0(C), E0(C)) + 38 (C) − �sgn(ḠT(C) + ĒT(C)).

(14)
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Using the Kronecker inner product, Eq. (14) can be further rewritten as:
¤̄G8 (C) =Ē(C),

¤̄E8 (C) = − :4(C) − :

[
(! ⊗ �<) (Ḡ(C) + Ē(C)) + 1

U
(� ⊗ �<) (Ḡ8 (C) + Ē8 (C))U

]
+ � (C, G8 (C), E8 (C)) − � (C, G0(C), E0(C)) + 38 (C) − �sgn(ḠT(C) + ĒT(C)),

(15)

where

Ḡ(C) = (ḠT
1 (C), Ḡ

T
2 (C), · · · , Ḡ

T
= (C))

T
,

Ē(C) = (ĒT
1 (C), Ē

T
2 (C), · · · , Ē

T
= (C))

T
,

4(C) = (4T
1 (C), 4

T
2 (C), · · · , 4

T
= (C))

T
,

� (C, G8 (C), E8 (C)) = ( 5 (C, G1(C), E1(C)), 5 (C, G2(C), E2(C)), · · · , 5 (C, G= (C), E= (C)))T.

Theorem 1. Under Assumptions 1 and 2, consider the MAS described by Eqs (1) and (2). If the
parameter U satisfies the conditions, then:

0 < U <
_min (: (! + �) ⊗ �<) − l

:
− 1

2
. (16)

Under the consensus protocol (7) and the reset event-triggered mechanism (10) and (11), the MAS
can achieve leader–following consensus.

Proof. Choose the Lyapunov function

+ (C) = 1
2
YT(C)%Y(C), (17)

where Y(C) =
[
ḠT(C) ĒT(C)

]T , % =

[
2: (! ⊗ �<) �= ⊗ �<
�= ⊗ �< �= ⊗ �<

]
.

The derivation of Eq. (17) yields:
¤+ (C) = ¤+ (C) = YT(C)% ¤Y(C)

=
[
ḠT(C) ĒT(C)

] [2: (! ⊗ �< + � ⊗ �<) �= ⊗ �<
�= ⊗ �< �= ⊗ �<

]


Ē(C)

− :4(C) − :

[
(! ⊗ �<) (Ḡ(C) + Ē(C)) + 1

U
(� ⊗ �<) (Ḡ(C) + Ē(C))U

]
+ � (C, G8 (C), E8 (C)) − � (C, G0(C), E0(C)) + 38 (C) − �sgn(Ḡ(C) + Ē(C))


= ĒT(C)Ē(C) + 2:ḠT(C) (! ⊗ �< + � ⊗ �<) Ē(C)

− :

(
ḠT(C) + ĒT(C)

)
4(C) − :

(
ḠT(C) + ĒT(C)

)
(! ⊗ �<) (Ḡ(C) + Ē(C))

− :

U

(
ḠT(C) + ĒT(C)

)
(� ⊗ �<) (Ḡ(C) + Ē(C))U

+
(
ḠT(C) + ĒT(C)

)
(� (C, G8 (C), E8 (C)) − � (C, G0(C), E0(C)))

+
(
ḠT(C) + ĒT(C)

) (
3 (C) − �sgn(ḠT(C) + ĒT(C)

)
.

(18)

According to Lemma 1, expand the nonlinear terms:

− :

(
ḠT(C) + ĒT(C)

)
(! ⊗ �<) (Ḡ(C) + Ē(C))

− :

U

(
ḠT(C) + ĒT(C)

)
(� ⊗ �<) (Ḡ(C) + Ē(C))U

≤ −:
(
ḠT(C) + ĒT(C)

)
(! ⊗ �<) (Ḡ(C) + Ē(C))

− :

U

(
ḠT(C) + ĒT(C)

)
(� ⊗ �<) U (Ḡ(C) + Ē(C)) + [1 − U]<×1

= −:
(
ḠT(C) + ĒT(C)

)
(! ⊗ �< + � ⊗ �<) (Ḡ(C) + Ē(C))

− :

(
ḠT(C) + ĒT(C)

)
(� ⊗ �<)

[
1 − U

U

]
<×1

.

(19)
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Combine the results with similar terms in Eq. (18) and process−:
(
ḠT(C) + ĒT(C)

)
(� ⊗ �<)

[ 1−U
U

]
<×1:

2:ḠT(C) (! ⊗ �< + � ⊗ �<) Ē(C) + ĒT(C)Ē(C)

− :

(
ḠT(C) + ĒT(C)

)
(! ⊗ �< + � ⊗ �<) (Ḡ(C) + Ē(C))

= 2:ḠT(C) (! ⊗ �< + � ⊗ �<) Ē(C)
− :ḠT(C) (! ⊗ �< + � ⊗ �<) Ē(C) − :ĒT(C) (! ⊗ �< + � ⊗ �<) Ḡ(C)
− :ḠT(C) (! ⊗ �< + � ⊗ �<) Ḡ(C) − :ĒT(C) (! ⊗ �< + � ⊗ �<) Ē(C) + ĒT(C)Ē(C)
= ĒT(C)Ē(C) − :ḠT(C) (! ⊗ �< + � ⊗ �<) Ḡ(C) − :ĒT(C) (! ⊗ �< + � ⊗ �<) Ē(C)

(20)

−:
(
ḠT(C) + ĒT(C)

)
(� ⊗ �<)

[
1 − U

U

]
<×1

≤ :

(
‖Ḡ8 (C)‖2 + ‖Ē8 (C)‖2

)
‖� ⊗ �<‖





1 − U

U





 , (21)

where 0 < U < 1, �1 =


1−U

U



 , �2 = ‖� ⊗ �<‖. Using the variation 01 ≤ 02

2n + n 12

2 (n > 0 ) of
Lemma 1 and taking n = 1

:
, we get:

: (‖Ḡ8 (C)‖ + ‖Ē8 (C)‖) �1�2 ≤ 1
2n

=∑
8=1

(
‖Ḡ8 (C)‖2 + ‖Ē8 (C)‖2

)
+ n (:�1�2)2

≤ :

2

=∑
8=1

(
‖Ḡ8 (C)‖2 + ‖Ē8 (C)‖2

)
+ : (�1�2)2.

(22)

Handling ĒT(C)Ē(C) − :ḠT(C) (! ⊗ �< + � ⊗ �<) Ḡ(C) − :ĒT(C) (! ⊗ �< + � ⊗ �<) Ē(C) and ac-
cording to Lemma 3, we get:

− ḠT (! + �) ⊗ �<Ḡ ≤ 0, −āT (! + �) ⊗ �<ā ≤ 0.
− :ḠT (! + �) ⊗ �<Ḡ ≤ 0, −:āT (! + �) ⊗ �<ā ≤ 0.

(23)

According to the properties of the eigenvalues of a diagonal matrix, we have

ĒT(C)Ē(C) − :ḠT(C) (! ⊗ �<) (Ḡ(C)) − :ĒT(C) (! ⊗ �<) (Ē(C))

≤
=∑
8=1

‖Ē8 (C)‖2 − _min (: (! + �) ⊗ �<)
=∑
8=1

(
‖Ḡ8 (C)‖2 + ‖Ē8 (C)‖2

)
≤ 0,

(24)

where _min(!) denotes the smallest non-zero eigenvalue of !.
Based on Assumption 2 and the basic inequality 2GH ≤ G2 + H2, we obtain:

(Ḡ(C) + Ē(C)) (� (C, G8 (C), E8 (C)) − � (C, G0(C), E0(C)))

≤
=∑
8=1

|Ḡ8 (C) + Ē8 (C) | [? |G8 (C) − G0(C) | + @ |E8 (C) − E0(C) |]

≤
=∑
8=1

|Ḡ8 (C) + Ē8 (C) | [? |Ḡ8 (C) | + @ |Ē8 (C) |]

=

=∑
8=1

[
?‖Ḡ8 (C)‖2 + (? + @)Ḡ8 (C)Ē8 (C) + @‖Ē8 (C)‖2]

≤ 3? + @

2

=∑
8=1

‖Ḡ8 (C)‖2 + ? + 3@
2

=∑
8=1

‖Ē8 (C)‖2

= l1

=∑
8=1

‖Ḡ8 (C)‖2 + l2

=∑
8=1

‖Ē8 (C)‖2,

(25)

where l1 =
3?+@

2 , l2 =
?+3@

2 .
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Remark 1. Many engineering systems operate within bounded-rate domains, such as robot swarms
and unmanned aerial vehicle (UAV) formations constrained by actuator and sensor limits, as well as
sensor networks whose state variables (e.g., temperature, voltage) evolve at restricted rates, leading
naturally to locally Lipschitz dynamics. As noted in [16], the framework extends to local or piecewise
Lipschitz continuity and broader input-to-state stability (ISS)-type conditions.

According to Lemma 2, we have (Ḡ(C) + Ē(C)) (3 (C) − �sgn (Ḡ(C) + Ē(C))) ≤ 0.
To handle the error term −:

(
ḠT(C) + ĒT(C)

)
4(C), Lemma 4 |GH | ≤ U

2 G
2 + 1

2U H
2 is applied,

yielding:

− :

=∑
8=1

[(
ḠT
8 (C) + ĒT

8 (C)
)
48 (C)

]
≤ U:

2

=∑
8=1

(
‖Ḡ8 (C)‖2 + 2 ‖Ḡ8 (C)‖ ‖Ē8 (C)‖ + ‖Ē8 (C)‖2

)
+ :

2U

=∑
8=1

‖48 (C)‖2

≤ 0:

=∑
8=1

(
‖Ḡ8 (C)‖2 + ‖Ē8 (C)‖2

)
+ :

2U

=∑
8=1

‖48 (C)‖2.

(26)

Therefore,

¤+ (C) ≤
=∑
8=1

‖Ē8 (C)‖2 − _min (: (! + �) ⊗ �<)
=∑
8=1

(
‖Ḡ8 (C)‖2 + ‖Ē8 (C)‖2

)
+ :

2

=∑
8=1

(
‖Ḡ8 (C)‖2 + ‖Ē8 (C)‖2

)
+ : (�1�2)2

+ l1

=∑
8=1

‖Ḡ8 (C)‖2 + l2

=∑
8=1

‖Ē8 (C)‖2

+ 0:

=∑
8=1

(
‖Ḡ8 (C)‖2 + ‖Ē8 (C)‖2

)
+ :

2U

=∑
8=1

‖48 (C)‖2

+
(
ḠT(C) + ĒT(C)

) [
3 (C) − �sgn(ḠT(C) + ĒT(C))

]
≤

[
U: + l − _min (: (! + �) ⊗ �<) +

:

2

] =∑
8=1

(
‖Ḡ8 (C)‖2 + ‖Ē8 (C)‖2

)
+ : (�1�2)2 + :

2U

=∑
8=1

‖48 (C)‖2,

(27)

where l = max {l1, l2 + 1}.
When the parameters satisfy

U: + l − _min (: (! + �) ⊗ �<) +
:

2
< 0

=∑
8=1

‖48 (C)‖2 ≤
[
2U
:
_min(: (! + � ⊗ �<) −

2Ul
:

− U (2U + 1)
]

=∑
8=1

(
‖Ḡ8 (C)‖2 + ‖Ē8 (C)‖2

)
− 2U(�1�2)2,

(28)

then
¤+ (C) ≤ :

2U
‖48 (C)‖2 −

[
_min(: (! + � ⊗ �<) − l − U: − :

2

]
=∑
8=1

(
‖Ḡ8 (C)‖2 + ‖Ē8 (C)‖2

)
+ : (�1�2)2 ≤ 0. (29)

�
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The proof of the Zeno phenomenon is provided in the following.

Theorem 2. Consider the MAS described by Eqs (1) and (2). If the reset event-triggered condition (13)
and the condition of Theorem 1 are satisfied, the Zeno phenomenon can be avoided. In this case,
there exists a positive minimum trigger interval ΔCminso that the interval between the two consecutive
trigger moments for any agent A satisfies CA

:+1 − CA
:
≥ ΔCmin > 0. The minimum trigger interval ΔCmin

is:

ΔCmin = gA =

√
Υ1 − Υ2 + [max

W2 , (30)

where Υ1 =
[ 20
:
_min (: (! + �) ⊗ �<) − 20l

:
− U (2U + 1)

]
Ωmax, Υ2 = 2U(�1�2)2.

Proof. Assume that the rate of change of the state error is bounded: ‖ ¤Δ8 (C)‖ ≤ W (W > 0) . Integrate
the state error and obtain

‖48 (C)‖ = ‖Δ8 (C:) − Δ8 (C)‖ ≤ W(C − C8:). (31)
When the reset event-triggered condition is satisfied, the above equation can be rewritten as

follows:
W2(C − C8:)

2
>

[
20
:
_min (: (! + �) ⊗ �<) −

20l
:

− U (2U + 1)
]
Ω(C)

− 2U(�1�2)2 + [8 (C).
(32)

According to Theorem 1, the above equation satisfies the system consensus condition, Ω(C) is
bounded, there is Ωmax > 0 such that Ω(C) ≤ Ωmax, and when Ω(C) ≥ n , [8 (C) = 4−UC ≤ [max =

[8 (0).
Accordingly, there exists at least a minimum event-trigger gA for agent A to satisfy

W2gA
2 >

[
20
:
_min (: (! + �) ⊗ �<) −

20l
:

− U (2U + 1)
]
Ωmax − 2U(�1�2)2 + [max. (33)

The minimum trigger interval satisfies

ΔC:A >

√
Υ1 − Υ2 + [max

W2 ¬ gA > 0. (34)

The time interval between any two triggering instants satisfies ΔC:A > ΔC<8= > 0. Therefore,
the minimum event-trigger interval is strictly greater than zero, and no Zeno phenomenon occurs.

Remark 2. Unlike traditional dynamic event-triggered mechanisms, which typically require a trade-
off between reducing triggering frequency and preserving system-dynamic performance, the proposed
reset-based triggering strategy can dynamically adjust the triggering conditions while effectively
reducing the number of communications. More importantly, the proposed method achieves a lower
triggering frequency without compromising convergence performance, and the Zeno behavior is
also effectively avoided.

4. Simulation

This section validates the effectiveness of the proposed reset event-triggered consensus algorithm
through simulation experiments. A MAS with one leader and four followers is considered. The system
dynamics of the leader and the follower are described by Eqs (1) and (2), respectively, and the
communication topology is shown in Fig. 1.

The nonlinearity function and the external disturbance of agent 8 are (2E8 (C)) + 0.01G8 (C) and
38 (C) = 0.1 cos G8 (C), respectively. From the communications topology of Fig. 1, the Laplacian
matrix !, the leader–follower matrix �, and the adjacency matrix � are:

! =


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 , � =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , � =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .
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The initial position and speed of the leader agent are set to G0(0) = 6, E0(0) = 3, and E0(0) = 3,
respectively. The initial position and speed of the leader agent are set to G(0) = [−6 1 0.5 −3.5]
and E(0) = [−5.1 −1 3.2 4.5] . According to the condition (26), choose Y = 0.1, : = 1. It can
be derived from the Laplacian matrix that _min (: (! + �) ⊗ �<) ≈ 0.382. According to Eq. (14),
0 < U < 1.6. Therefore, we set U = 1. The experimental results are shown in Figs 2–6. Figure 2a
shows the system state convergence curves, and Fig. 2b presents the control inputs and triggering
moments for [8 (0) = 0. Under the action of the controller (7), the speed and position of the agent
gradually converge to a uniform state. Figure 2b shows the corresponding triggering moments, where
agents 1–4 triggered 1053, 918, 753, and 1588 times, respectively.

(a) (b)

Fig. 1. System communication topology: 5-agent communication topology (a) and 11-agent communication topology (b).
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Fig. 2. Performance of 5 agents under static event-triggered control (SETC): system state convergence curves (a), control inputs D8 (C ) and
triggering moments C: (b).
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Fig. 3. Performance of 5 agents under reset event-triggered control (RETC): system state convergence curves (a), control inputs D8 (C ) and
triggering moments C: (b).
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Let [8 (0) = 0.01, while keeping all other control parameters unchanged. The experimental results
are presented in Fig. 3a,b. It can be observed that the number of triggering events is significantly
reduced without compromising the original control performance. Specifically, agents 1–4 triggered
438, 180, 279, and 508 times, respectively.

(a) (b)
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Fig. 4. Performance of 5 agents under RETC: system state convergence curves (a), control inputs D8 (C ) and triggering moments C: (b).

(a) (b)

Fig. 5. Performance of 11 agents under SETC: system state convergence curves (a), control inputs D8 (C ) and triggering moments C: (b).

(a) (b)

Fig. 6. Performance of 11 agents under RETC: system state convergence curves (a), control inputs D8 (C ) and triggering moments C: (b).

Table 1 compares the distinction in the number of triggers between the proposed method and the
general method in detail. Specifically, RETC represents the method proposed in this paper, while
SETC denotes the conventional triggering approach without dynamic reset strategies. Figure 4b
shows that the proposed method has a significant effect on reducing the number of triggers after
the system state converges. When [8 (0) = 0, agents 1–4 trigger 670, 788, 546, and 1272 times,
respectively, during 5–10 s. When [8 (0) = 0.01, the numbers are 207, 68, 80, and 244, respectively.
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Table 1. Comparison of the number of triggers between RETC and SETC for 5 agents. Only follower agents are counted; the leader does not

trigger events

Agent 1 2 3 4 Total
RETC 438 180 279 508 1405
SETC 1053 918 753 1588 4312

Table 2. Comparison of the number of triggers between RETC and SETC for 11 agents. Only follower agents are counted; the leader does not

trigger events

Agent 1 2 3 4 5 6 7 8 9 10 Total
RETC 358 341 398 227 125 162 85 157 94 85 2032
SETC 1266 1219 959 525 146 318 43 186 48 45 4755

By using the reset event-triggering strategy proposed in this paper, the number of triggering decreases
by 19.6% in the period of 0–5 s, 82.2% in the period of 5–10 s, and 67.4% in the whole period.

The issue of frequent triggering of event-triggering laws in the later stage of system convergence
has been resolved. The occupation of communication resources has been greatly reduced. This is
very important in large-scale clusters and complex environments.

After that, take U = 11/7. The experimental results are shown in Fig. 4. With the increase
of U, the convergence speed of the system is accelerated. At the same time, it can be seen from the
triggering moments that the agents’ triggering moments are asynchronous. The effectiveness of the
distributed event-triggered mechanism has been verified.

Similarly, the simulation for the 11-agent topology is conducted under both SETC and RETC.
The results presented in Figs 5 and 6 show that the proposed reset event-triggered mechanism signifi-
cantly reduces the number of triggers, effectively minimizing communication overhead. The detailed
comparison for 11 agents is provided in Table 2.

5. Conclusion

The consensus problem of second-order nonlinear multi-agent systems (MASs) under directed topol-
ogy is investigated based on a reset event-triggered mechanism. A hybrid control strategy combining
dynamic event triggering and reset control is introduced, where the event-triggering conditions and
the initial values of external dynamic variables are constructed from the state information of each
agent and its neighbors at the triggering instants. By tuning the interaction strength parameters of the
system, it is determined when the dynamic variables should be reset to their initial values, thereby
effectively reducing the triggering frequency as the system approaches consensus. The asymptotic
stability of the closed-loop system and the exclusion of the Zeno behavior are rigorously established
using the Lyapunov stability theory. Numerical simulations under external disturbances are con-
ducted, with comparisons to the event-triggered methods in [5] and [6]. The results confirm the
effectiveness of the proposed reset event-triggered mechanism and demonstrate its superiority in
reducing communication burden.
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Jaotatud konsensus teist järku multiagent-süsteemide jaoks

lähtestusega sündmuspõhise mehhanismi baasil

Yi Cheng ja Xingjian Fu

Uuritud on teist järku mittelineaarsete multiagent-süsteemide konsensusprobleemi suunatud topoloogia korral,

tuginedes lähtestusega sündmuspõhisele mehhanismile. Kasutusele on võetud hübriidne juhtimisstrateegia,

mis ühendab dünaamilise sündmuspõhise käivitamise ja lähtestusjuhtimise. Sündmuste käivitamise tingimused

ja väliste dünaamiliste muutujate algväärtused konstrueeritakse iga agendi ja tema naabrite seisunditeabe

põhjal käivitamishetkedel. Süsteemi interaktsioonitugevuse parameetrite konfigureerimisega määratakse kind-

laks, millal dünaamilised muutujad tuleks lähtestada algväärtustega, vähendades seeläbi käivitamissagedust

süsteemi konsensuse poole liikumisel. Ljapunovi stabiilsusteooria abil on rangelt tõestatud suletud ahelaga

süsteemi asümptootiline stabiilsus ning Zeno-käitumise välistamine. Läbi on viidud numbrilised simulatsioonid

väliste häiringute korral ning tulemusi on võrreldud töödes [5] ja [6] esitatud sündmuspõhiste meetoditega.

Tulemused kinnitavad pakutud lähtestusega sündmuspõhise mehhanismi tõhusust ja näitavad selle eeliseid

kommunikatsioonikoormuse vähendamisel.
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