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ABSTRACT
We consider semigroup amalgams ((;)1 , )2 ) in which )1 and )2 are inverse semigroups and ( is
a non-inverse semigroup. They are known to be non-embeddable if )1 and )2 are both groups
(Clifford semigroups), but ( is not such. We prove that ((;)1 , )2 ) is non-embeddable if ( is
a non-inverse ample semigroup. By introducing the notion of rich ampleness, we determine
some necessary and sufficient conditions for the weak embedding of ((;)1 , )2 ) in an inverse
semigroup. In particular, ((;)1 , )2 ) is shown to be weakly embeddable in a group if )1 and )2 are
groups. A rudimentary analysis of the novel classes of rich ample semigroups is also provided.

1. Motivation
The amalgamation problem of semigroups has its origins in the early work
of J. M. Howie from the 1960s. The inspiration thereof came from group
amalgams, which were considered earlier by O. Schreier. The topic was then
extensively studied by various mathematicians during the second half of the
previous century. References to this work may be found in Howie’s celebrated
monograph [4], of which the last chapter is also dedicated to semigroup amal-
gams. The main emphasis, during all these years, had been on determining the
embeddability conditions for semigroup amalgams. Non-embeddable amal-
gams were discovered sporadically, usually as by-products. One of Howie’s pi-
oneering articles [5], however, provided an important class of non-embeddable
amalgams that may essentially be viewed as groups intersecting in semigroups.
Generalizing Howie’s result, Rahkema and Sohail [7] came up in 2014 with
two more classes of non-embeddable semigroup amalgams. The current article
furthers the same line of research of investigating the (non-embeddability of)
amalgams that may essentially be viewed as inverse semigroups intersecting in
a non-inverse semigroup. We also consider the question of weak amalgamation
for these amalgams.

The study of ample semigroups and their variants has been an active area
of research for many decades, see for instance [2] and its references. As every
ample semigroup ( gives rise to an amalgam ((;)1,)2), where )1 and )2 are
inverse semigroups, it was natural for us to consider the amalgams ((;)1,)2)
such that )1 and )2 are inverse semigroups and ( belongs to some class of
ample semigroups. In fact, we introduce in this connection the notions of rich
and ultra-rich ample semigroups; the intersection of the latter class with that
of inverse semigroups is precisely the class of all groups.

2. Introduction and preliminaries
Given a semigroup (, an element G 2 ( is called invertible if there exists a
unique element G�1

2 ( such that GG�1
G = G and G

�1
GG

�1 = G
�1. We call (

an inverse semigroup if every G 2 ( is invertible. Inverse monoids are defined
similarly. Let - be a non-empty set. Then the set I- of all partial bijections
of - is an inverse semigroup under the usual composition of partial maps.
We call I- the symmetric inverse semigroup over - . By the Wagner–Preston
representation theorem (see for instance [4], Theorem 5.1.7), any inverse
semigroup ( can be embedded in the symmetric inverse semigroup I( . If (
is a subsemigroup of an inverse semigroup ) , then the inverse subsemigroup
of ) generated by ( is called the inverse hull of ( in ) . Homomorphisms of
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inverse semigroups (monoids) are precisely the semigroup homomorphisms. We shall adopt the
convention of writing the maps to the right of their arguments throughout this article. Also, we shall
omit parentheses around the arguments if there is no risk of confusion. For further details about
inverse semigroups and other standard definitions in semigroup theory, the reader may refer to the
texts [4,6].

A semigroup ( is called right ample if it can be embedded in an inverse semigroup ) (typically,
in the symmetric inverse semigroup I- of a non-empty set -) such that the image of ( is closed
under the unary operation B 7�! B

�1
B, where ( is identified with its isomorphic copy in ) , and

B
�1

2 ) denotes the inverse of B 2 (. We shall call ) an inverse semigroup associated with (. Left
ample semigroups are defined analogously. We say that ( is ample if it is both right and left ample.
If ( is a subsemigroup of an associated inverse semigroup ) , then we shall say that ( is (right, left)
ample in ) . Given a semigroup (, we denote by ⇢ (() the set of idempotents of (. A subsemigroup
( of a semigroup ) is called full if ⇢ ()) ✓ (. Every full subsemigroup of an inverse semigroup )

is ample in ) . The converse is not true; for example, N is ample but not full in the multiplicative
monoid Q. It is possible that ( is made into a left and a right ample semigroup by different associated
inverse semigroups. In such a case, the problem of finding a single (associated) inverse semigroup
making ( into a left as well as a right ample semigroup is, in general, undecidable ([3], Theorem 3.4
and Corollary 4.3). If )1 and )2 are inverse semigroups admitting a homomorphism q : )1 �! )2,
and ( is right (respectively, left) ample in )1, then one can easily verify that (q is right (respectively,
left) ample in )2. More information about ample semigroups may be found in [2] and the references
contained therein.

A semigroup amalgam is a 5-tuple A ⌘ ((;)1,)2; q1, q2) comprising pair-wise disjoint semi-
groups (, )1, )2 and monomorphisms:

q8 : ( �! )8, 1  8  2.

We say that A is embeddable (or strongly embeddable, for emphasis) if there exists a semigroup )

admitting monomorphisms k8 : )8 �! ) , 1  8  2, such that

(8) q1k1 = q2k2,

(88) 8 C1 2 )1, 8 C2 2 )2, C1k1 = C2k2 =) 9 B 2 ( such that C1 = Bq1, C2 = Bq2.

If condition (88) is not necessarily satisfied, then A is said to be weakly embeddable. We call
((;)1,)2; q1, q2) a special amalgam if )1 and )2 are isomorphic, say, via a : )1 �! )2, such that
Bq1a = Bq2 for all B 2 (. Any special amalgam is weakly embeddable, for instance in )1. It is
customary to denote a semigroup amalgam by ((;)1,)2) if no explicit mention of q1 and q2 is
needed. We shall also call ((;)1,)2) an amalgam over (. Every ample semigroup ( gives rise to
an amalgam ((;)1,)2) in which ( is right (respectively, left) ample in the inverse semigroup )8

(respectively, )9), where {8, 9} = {1, 2}. We shall consider these amalgams in Theorem 3.4.
Let )1 ⇤ )2 denote the free product of semigroups )1 and )2. Then, by the amalgamated co-

product of ((;)1,)2; q1, q2) we mean the quotient semigroup ()1 ⇤ )2) /\', where \' denotes the
congruence on )1 ⇤ )2 generated by the relation

' = {(Bq1, Bq2) : B 2 (}.

We denote ()1 ⇤ )2) /\' by )1 ⇤( )2. In fact, the following diagram is a pushout in the category of
all semigroups, where the homomorphisms

[8 : )8 �! )1 ⇤( )2, 1  8  2

send G 2 )8 to the congruence class (G)\' 2 )1 ⇤( )2.

Theorem 2.1 ([4], Theorem 8.2.4). A semigroup amalgam ((;)1,)2) is (weakly) embeddable if and
only if it is (weakly) embedded in )1 ⇤( )2 via the homomorphisms [8 : )8 �! )1 ⇤( )2, 8 2 {1, 2},
defined above.

Proof. Follows immediately from the properties of a pushout. É
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Fig. 1. Amalgamated coproduct.

A semigroup ( is called an amalgamation base for a class (equivalently, category) C of semi-
groups if every amalgam ((;)1,)2), with )1,)2 2 C, is embeddable in some ) 2 C. Given a
semigroup )1 2 C containing an isomorphic copy of a semigroup (, we say that ((;)1) is an
amalgamation pair for C if for all )2 2 C the amalgam ((;)1,)2) is embeddable in some ) 2 C.
Weak amalgamation bases (pairs) are defined similarly.

Theorem 2.2 ([4], Theorems 8.6.1 and 8.6.4). Inverse semigroups are amalgamation bases for the
classes of all semigroups and inverse semigroups.

Let ( be an inverse semigroup and ) be an arbitrary semigroup. Then, by the above theorem,
((;)) is an amalgamation pair for the class of all semigroups. If ( and ) are both inverse, then
((;)) is also an amalgamation pair for the class of inverse semigroups. All of the assertions made
in this section about semigroups are also true for monoids.

3. Amalgamation over ample semigroups
It was shown by Howie [5] that a semigroup amalgam ((;)1,)2) does not embed if )1 and )2 are both
groups but ( is not such. Generalizing this result, Rahkema and Sohail [7] showed that ((;)1,)2) is
non-embeddable if )1 and )2 are both completely regular (respectively, Clifford) semigroups, but (
is not completely regular (respectively, Clifford). In this section, we shall consider the amalgams
((;)1,)2) in which )1 and )2 are both inverse semigroups but ( is not such – the non-embeddability
of such amalgams was left as an open problem in [7]. We begin by introducing the notion of an
antiamalgamation pair.

Definition 3.1. Let C be a class of semigroups. Suppose that )1 2 C contains an isomorphic copy
of a semigroup ( via q1 : ( �! )1. Then the pair ((;)1) will be called an antiamalgamation pair
for C if for every )2 2 C and every monomorphism q2 : ( �! )2 the amalgam ((;)1,)2; q1, q2) is
non-embeddable (in any semigroup).

Recall that in every inverse semigroup, the idempotents commute (see for instance [4], Theorem
5.1.1).

Theorem 3.2. Let )1 be an inverse semigroup and q1 : ( �! )1 be a monomorphism such that (q1
is right as well as left ample in )1. If ( is non-inverse, then ((;)1) is an antiamalgamation pair for
the class of inverse semigroups.

Proof. Let (, )1 and q1 be as described in the statement of the theorem. Let )2 be an inverse
semigroup admitting a monomorphism q2 : ( �! )2. Given B 2 (, let us denote Bq1 and Bq2 by B1
and B2, respectively. Identifying ( with its isomorphic copies (q1 and (q2 and using the properties
of inverses, we may calculate in )1 ⇤( )2:

BB
�1
1 BB

�1
2 = BB

�1
2 , BB

�1
2 BB

�1
1 = BB

�1
1 ,

B
�1
2 BB

�1
1 B = B

�1
2 B, B

�1
1 BB

�1
2 B = B

�1
1 B.

(1)

Since (q1 is right and left ample in )1, the identification of ( with (q1 also gives

BB
�1
1 , B

�1
1 B 2 (.

By the commutativity of idempotents in )2, we may write from (1):
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BB
�1
1 = BB

�1
2 , B

�1
1 B = B

�1
2 B. (2)

Now, using (2), we calculate in )1 ⇤( )2:

B
�1
1 = B

�1
1 (BB

�1
1 ) = B

�1
1 (BB

�1
2 ) = (B

�1
1 B)B

�1
2 = (B

�1
2 B)B

�1
2 = B

�1
2 . (3)

Because (q1 and (q2 are non-inverse, there exists B 2 ( such that B�1
8 8 )8, 1  8  2. The

amalgam ((;)1,)2), therefore, fails to embed by (3). É

Example 3.3. Let L denote the lattice of ample submonoids of the symmetric inverse semigroup
I= over a finite chain ⇠= : 1 < 2 < · · · < =, given in [8] (Fig. 1). The chain LINV : {]} ✓ OI= ⇢

RI= ⇢ I
0
= ⇢ I= constitutes the sublattice of L comprising the inverse submonoids of I=. This gives

a (finite) set
{((,)) : ( 2 L r LINV, ) 2 LINV with ( ✓ )}

of antiamalgamation pairs for the class of inverse semigroups.

Theorem 3.4. Let a non-inverse semigroup ( be made into a right (respectively, left) ample semi-
group by an associated inverse semigroup )1 (respectively, )2). Then the amalgam ((;)1,)2) is not
embeddable (in any semigroup).

Proof. Let (, )1 and )2 be as given in the statement of the theorem. Then, as before, the identification
of ( with its isomorphic copies in )1 and )2 gives (1). Since ( is right ample in )1 and left ample
in )2, we have B

�1
1 B, BB

�1
2 2 (. Subsequently, BB�1

1 , BB�1
2 commute in )1 and B

�1
1 B, B�1

2 B commute
in )2. Using the argument from the proof of Theorem 3.2, we can once more deduce (2) from (1).
However, (2) gives B�1

1 = B
�1
2 , implying (as in the said proof) that ((;)1,)2) is non-embeddable. É

4. Weak amalgamation
Given a subsemigroup ( of an inverse semigroup ) , we define its dual to be the subsemigroup

(
0 = {B

�1
2 ) : B 2 (}.

Defining U : ( �! (
0 by B 7! B

�1, we have:

(GH)U = (GH)
�1 = H

�1
G
�1 = (H)U(G)U,8 G, H 2 (,

whence ( and (
0 are anti-isomorphic. Clearly, if non-empty, ( \ (

0 is an inverse subsemigroup of (
and (

0 with ⇢ (() = ⇢ ((
0
) ✓ ( \ (

0. Also, if ( is right (respectively, left) ample in ) , then (
0 is a

left (respectively, right) ample subsemigroup of ) .

Lemma 4.1. Let )1 and )2 be inverse semigroups containing isomorphic copies, say (1 and (2, of a
semigroup (. Then there exists a bijection k : (1 [ (

0

1 �! (2 [ (
0

2 such that for all G 2 (1 [ (
0

1 one
has:

(G
�1
)k = (Gk)

�1
.

Proof. Let q be the isomorphism from (1 to (2. Then q
0 = U

�1
1 � q � U2 is an isomorphism from (

0

1
to (

0

2, where U8 : (8 �! (
0

8 , 8 = 1, 2, are the anti-isomorphisms defined by B8 7! B
�1
8 , B8 2 (8. Let

G 2 (1 \ (
0

1. Then G
�1

2 (1 \ (
0

1 and, in particular, G, G�1
2 (1. Now, using the assumption that q is

an isomorphism, we have

Gq = (GG
�1
G)q = (G)q(G

�1
)q(G)q,

(G
�1
)q = (G

�1
GG

�1
)q = (G

�1
)q(G)q(G

�1
)q,

(4)

whenever G, G�1
2 (1. Using, next, the uniqueness of inverses in )2, we have (G

�1
)q = ((G)q)

�1 for
all G 2 (1 \ (

0

1. We may, therefore, calculate:

Gq = ((G
�1
)
�1
)q = ((G

�1
)q)

�1 = Gq
0
, 8G 2 (1 \ (

0

1.
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This implies that q and q
0 agree on (1 \ (

0

1. Consequently, the map

k = q [ q
0 : (1 [ (

0

1 �! (2 [ (
0

2

is well-defined. Using a dual argument, one may also construct

k
�1 = q

�1
1 [ (q

0

1)
�1 : (2 [ (

0

2 �! (1 [ (
0

1,

such that k � k
�1 and k

�1
� k are both identity functions. This implies that k is a bijection, as

required.
It remains to show that (G�1

)k = (Gk)
�1. If G (and hence G�1) belong to (1 \ (2, then (G

�1
)k =

(G
�1
)q = (Gq)

�1 = (Gk)
�1. On the other hand, when G 2 (1 r (

0

1 (and consequently G
�1

2 (
0

1 r (1),
then

(G
�1
)k = (G

�1
)q

0 = (G
�1
)U

�1
1 � q � U2 = (G)q � U2 = (Gq)

�1 = (Gk)
�1
.

That (G�1
)k = (Gk)

�1 when G 2 (
0

1 r (1 follows by symmetry. É

Proposition 4.2. Let ( be any semigroup and )8, 1  8  2, be inverse semigroups admitting
monomorphisms q8 : ( �! )8. Then the amalgam ((,)1,)2; q1, q2) is weakly embeddable in an
inverse semigroup if and only if ((;+1,+2) constitutes a special amalgam, where +8 is the inverse
hull of (q8 in )8.

Proof. ( =) ) Let (, )1, )2, +1, +2 and q1, q2 be as described in the statement of the theorem. We
shall denote (q8, 1  8  2, by (8. Assume that ((;)1,)2) is weakly embeddable in an inverse
semigroup , via monomorphisms `1 : )1 �! , and `2 : )2 �! , .

Observe that any element of +1 may be written in the form G1G2 · · · G=, where G1, G2, . . . , G= 2

(1 [ (
0

1, and, for all 1  8  = � 1, the elements G8, G8+1 are not both in (1 or (01 r (1. Similarly,
the elements of +2 can be written as H1H2 · · · H<, where H1, H2, . . . , H< 2 (2 [ (

0

2, and, for all
1  8  < � 1, the elements H8, H8+1 do not both belong to (2 or (02 r (2. Also, for each 8 2 {1, 2}
and G 2 (8, we have:

(G
�1
)`8 = (G`8)

�1
, where G

�1
2 (

0

8 .

We define \ : +1 �! +2 by

(G1G2 · · · G=)\ = (G1G2 · · · G=)`1`
�1
2 .

Then \ is clearly an isomorphism from +1 to +2. Moreover, for every Gq1 2 (1, we have:

(Gq1)\ = (Gq1)`1`
�1
2 = (Gq1`1)`

�1
2 = (Gq2`2)`

�1
2 = (Gq2)`2`

�1
2 = Gq2.

Thus, ((,+1,+2) is a special amalgam.
( (= ) Let ((;+1,+2; q1, q2) be made into a special amalgam by the isomorphism a : +1 �! +2.
Then

q1 � a = q2. (5)
Consider a semigroup + admitting isomorphisms W8 : + �! +8 , for each 1  8  2, with + \+8 = ;

and
W1 � a = W2; (6)

that is (+ ;+1,+2) is a special amalgam. Then, being an inverse semigroup amalgam, (+ ;)1,)2; W1, W2)
is embeddable in an inverse semigroup, say, , via monomorphisms, say `8 : )8 �! , . This implies
that

W1 � `1 = W2 � `2. (7)
Now, using (5) and (6), we have:

q1 � W
�1
1 = q1 � (a � W

�1
2 ) = (q1 � a) � W

�1
2 = q2 � W

�1
2 . (8)

Finally, using (7) and (8), we may calculate:

q1 � `1 = q1 � W
�1
1 � W1 � `1 = q2 � W

�1
2 � W2 � `2 = q2 � `2.

Hence, ((;)1,)2) is weakly embeddable. É
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4.1. Weak amalgamation over rich ample semigroups
In this subsection, we introduce the notion of rich (right, left) ample semigroups. Given inverse
semigroups )1 and )2, we show that an amalgam ((;)1,)2) is weakly embeddable in an inverse
semigroup if ( is rich ample in )1 and )2. It follows that ((;)1,)2) is weakly embeddable in a group
if )1 and )2 are both groups. We begin by recalling that any inverse semigroup ( comes equipped
with the natural partial order:

8G, H 2 (, G  H iff G = 4H, for some 4 2 ⇢ (().

Remark 4.3. Let * be an inverse semigroup. Then DD
�1 is the minimum idempotent with respect to

the natural partial order such that (DD�1
)D = D. To see this, let 4D = D for some idempotent 4 2 *.

Then D
�1
4 = D

�1, and we have DD�1 = DD
�1
4. This implies that DD�1

 4, and hence the assertion.

Definition 4.4. A subsemigroup ( of an inverse semigroup ) is called rich right ample in ) if

8G, H 2 (, G
�1
H 2 ( [ (

0
,

where (
0 = {I

�1
2 ) : I 2 (} is the dual of (. We say that ( is rich left ample in ) if

8G, H 2 (, GH
�1

2 ( [ (
0
.

A subsemigroup of ) is called rich ample in ) if it is both rich right and rich left ample in ) . A sub-
monoid ( of an inverse semigroup ) is rich (right, left) ample in ) if it is such as a subsemigroup.
By saying that ( is a rich (left, right) ample subsemigroup of ) , we mean that ( is rich (right, left)
ample in ) .

Lemma 4.5. Let (, (0 and ) be as defined above. Then

1. ( is rich right (respectively, left) ample in ) if and only if (its dual) (0 is rich left (respectively,
right) ample in ) ,

2. ( is (rich) ample in ) if and only if (0 is (rich) ample in ) .

Proof. The proof is straightforward. É

Proposition 4.6. Let ( be a subsemigroup of an inverse semigroup ) . Then ( is rich ample in ) if
and only if the inverse hull of ( in ) equals ( [ (

0.

Proof. The proof is straightforward. É

Lemma 4.7. Let ( be a rich ample subsemigroup of an inverse semigroup ) . Then ( and (
0 are the

down-closed subsemigroups of ( [ (
0 with respect to the natural partial order.

Proof. We show that ( is down-closed in ( [ (
0. It will follow from the symmetry that (0 is also

such. Let  denote the natural partial order on the inverse semigroup ( [ (
0. Then, clearly, it suffices

to prove that
(9B

0
2 (

0
) (9B 2 () (B

0
 B) =) B

0
2 (.

Assuming the premise of the above implication, we have B0 = 4B for some idempotent 4 2 ⇢ (( [ (
0
).

Now, because 4 2 ( \ (
0, it follows (in particular, from 4 2 () that B0 = 4B 2 (. É

Proposition 4.8. A subsemigroup ( of an inverse semigroup ) is rich right ample if and only if

1. ( is right ample in ) , and

2. for all G, H 2 (, G�1
H = G

�1
G0, where 0 2 ( [ (

0.

Proof. ( =) ) Let ( be rich right ample in ) . Then for all G 2 *, the element G�1
G belongs to ( [ (

0.
Because G�1

G is an idempotent, we in fact have G�1
G 2 ( \ (

0
✓ (, meaning that ( is right ample in

) . Next, let G, H 2 (, and observe that

G
�1
H = G

�1
GG

�1
H = G

�1
G0,
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where 0 = G
�1
H 2 ( [ (

0. Hence, the second condition is also satisfied.
( (= ) Let ( be a subsemigroup of an inverse semigroup ) satisfying both conditions of the
proposition. Let G, H 2 (. Then, by the second condition, G�1

H = G
�1
G0, where 0 2 ( [ (

0. Now,
G
�1
G 2 ( \ (

0 because, by the first condition, ( is right ample. This implies that

G
�1
H = G

�1
G0 2 ( [ (

0,

whence ( is rich right ample in ) . É

Proposition 4.9. A subsemigroup ( of an inverse semigroup ) is rich left ample if and only if

1. ( is left ample in ) , and

2. for all G, H 2 (, GH�1 = 1HH
�1, where 1 2 ( [ (

0 .

Proof. Similar to the proof of the above proposition. É

Remark 4.10. If q : )1 �! )2 is a homomorphism of inverse semigroups and ( is rich right (left)
ample in )1, then it can be easily verified that such is (q in )2.

Theorem 4.11. Let )1 and )2 be inverse semigroups admitting monomorphisms q1 and q2 from a
semigroup (, respectively, such that (q1 is rich right ample in )1, but (q2 is not such in )2. Then
the amalgam ((;)1,)2) fails to embed weakly in any inverse semigroup.

Proof. Let (,)1,)2, q1 and q2 be as described in the statement of the theorem. Assume, on the
contrary, that ((;)1,)2) is weakly embeddable in an inverse semigroup. Let ((;+1,+2) be the special
amalgam and \ : +1 �! +2 be the isomorphism given by Proposition 4.2. Clearly, (1 = (q1
is rich right ample in +1. But then its image (1\ = (q2 must be such in +2 and, hence, in )2, a
contradiction. É

Remark 4.12. The dual statement obtained by replacing ‘rich right ample’ with ‘rich left ample’ in
Theorem 4.11 can be proved on similar lines.

Lemma 4.13. Let )1 and )2 be inverse semigroups containing isomorphic copies (1 and (2 of a
semigroup (, respectively, that are rich ample in the respective oversemigroups. Then the posets
(1 [ (

0

1 and (2 [ (
0

2 are order-isomorphic.

Proof. Let the map
k = q [ q

0 : (1 [ (
0

1 �! (2 [ (
0

2

be as defined in Lemma 4.1. Then it follows from Lemma 4.7 thatk is indeed an order-embedding. É

Theorem 4.14. Let )1 and )2 be inverse semigroups containing isomorphic copies, say (q1 and
(q2, respectively, of a semigroup (. Assume also that (q8 is rich ample in )8 for each 8 2 {1, 2}. If (
is not inverse, then the amalgam ((;)1,)2; q1, q2) is weakly (but not strongly) embeddable in an
inverse semigroup.

Proof. Let (1 = (q1 and (2 = (q2. Then, by Proposition 4.6, the inverse hull of (8 in )8 , 1  8  2,
is (8 [ (

0

8 . The main objective is to prove that (1 [ (
0

1 and (2 [ (
0

2 are isomorphic. We shall prove,
to this end, that the poset order-isomorphism k : (1 [ (

0

1 �! (2 [ (
0

2, considered in Lemma 4.13,
is a homomorphism of semigroups.

Clearly, if G, H 2 (1 (equivalently, (01), then (GH)k = (G)k(H)k. We prove that (GI)k = (G)k(I)k,
for all G 2 (1 and I 2 (

0

1, and that (IG)k = (I)k(G)k will follow from the symmetry. If G 2 (1 and
I 2 (

0

1, then I = H
�1 for some H 2 (1, and we observe by Proposition 4.9 that

(GI)k = (GH
�1
)k = (1HH

�1
)k = (1)k(HH

�1
)k, where 1 2 ( [ (

0
.

We first show that (HH�1
)k = (H)k(H

�1
)k. To this end, let us first recall from Remark 4.3 that

HH
�1 = min {4 2 ⇢1 : 4H = H}, (9)



Amalgamating inverse semigroups over ample semigroups 57

where ⇢1 = ⇢ ((1 [ (
0

1). Then we note that k maps ⇢1 bijectively to ⇢2 = ⇢ ((2 [ (
0

2), and 4H = H

for 4 2 ⇢1 if and only if Hk = (4H)k = (4k) (Hk). Thus,

({4 2 ⇢1 : 4H = H})k = {4k 2 ⇢1k : (4)k(H)k = Hk}. (10)

Now, recall from Lemma 4.13 that the map k : (1 [ (
0

1 �! (2 [ (
0

2 is an order-isomorphism of
posets, whence we may write from (9) and (10):

(HH
�1
)k = (min{4 2 ⇢1 : 4H = H})k

= min({4 2 ⇢1 : 4H = H})k

= min {4k 2 ⇢1k : (4)k(H)k = Hk}

= (H)k(Hk)
�1, since ⇢1k = ⇢ ((2 [ (

0

2),
= (H)k(H

�1
)k, by Lemma 4.1.

Coming back to proving that (GI)k = (G)k(I)k, we consider, in view of Definition 4.4, two
cases.
If GH�1 = 1 2 (1 (cf. 0 = G

�1
H in the proof of Proposition 4.8), then we have:

(GI)k = (GH
�1
)k = (1HH

�1
)k = (1)k(HH

�1
)k

= (1)k(H)k(H
�1
)k = (1H)k(H

�1
)k

= (1HH
�1
H)k(H

�1
)k = (GH

�1
H)k(H

�1
)k

= (G)k(H
�1
HH

�1
)k = (G)k(H

�1
)k = (G)k(I)k.

On the other hand, if GH�1
2 (

0

1 r (1, then, using the rich right ampleness of (01, we may write:

GI = GH
�1 = (G

�1
)
�1
H
�1 = (G

�1
)
�1
G
�1
0, where 0 = (G

�1
)
�1
H
�1 = GH

�1
.

Note that 0 2 (
0

1 r (1, for otherwise we get GH�1
2 (1, a contradiction. Now, one may calculate:

(GI)k = (GH
�1
)k = ((G

�1
)
�1
H
�1
)k

= ((G
�1
)
�1
G
�1
0)k = ((G

�1
)
�1
G
�1
)k(0)k

= (GG
�1
)k(0)k = (G)k(G

�1
)k(0)k

= (G)k(G
�1
0)k = (G)k(G

�1
GG

�1
0)k

= (G)k(G
�1
GH

�1
)k = (G)k(G

�1
G)k(H

�1
)k

= (GG
�1
G)k(H

�1
)k = (G)k(H

�1
)k

= (G)k(I)k.

This completes the proof that k : (1 [ (
0

1 �! (2 [ (
0

2 is an isomorphism of semigroups. That
((;)1,)2) is weakly embeddable follows from Proposition 4.2. The amalgam ((;)1,)2), however,
fails to embed strongly by Propositions 4.8, 4.9 and Theorem 3.2 (alternatively, Theorem 3.4). É

Corollary 4.15. Consider an amalgam A = ((;⌧1,⌧2; q1, q2) in which ⌧1 and ⌧2 are groups
and ( is not a group. If (q8 is rich ample in ⌧8 for each 8 2 {1, 2}, then A is weakly embeddable in
a group.
Proof. By the above theorem, ((;⌧1,⌧2) weakly embeds in an inverse semigroup, say , . Let
k1 : ⌧1 �! , and k1 : ⌧1 �! , be the embedding monomorphisms. Then, by the properties of
a pushout, there exists a unique homomorphism

k : ⌧1 ⇤( ⌧2 �! , ,

such that [8k = k8 for 1  8  2, where [8 are as given in Fig. 1. This implies that ((;⌧1,⌧2)
weakly embeds in (⌧1 ⇤( ⌧2)k. The proof will be accomplished if we show that (⌧1 ⇤( ⌧2)k is a
group.

Let 1⌧1 and 1⌧2 be the identities of ⌧1 and ⌧2, respectively. Then, because (q8 is rich ample in
⌧8 for each 8 2 {1, 2}, we must have 1⌧8 2 (q8 . Thus, ( is, in fact, a monoid. That (⌧1 ⇤( ⌧2)k is
a group follows from the observation that ⌧1 ⇤( ⌧2, being an amalgamated coproduct of groups
over a monoid, is a group. É
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Theorem 4.16. Any amalgam ((;⌧1,⌧2; q1, q2) in which ⌧1 and ⌧2 are groups is weakly embed-
dable in a group.
Proof. If ( is a monoid, then (q8 is rich ample in ⌧8 for each 8 2 {1, 2}, and the theorem
follows from the above corollary. If ( is a semigroup, then, by a similar token, the amalgam
A

0 = ((
1;⌧1,⌧2; q01, q

0

2) is weakly embeddable in a group, where (
1 is the monoid obtained

from ( in the standard way (see for instance [4]), and for each 8 2 {1, 2}, q08 is the obvious extension
of q8. Now, the weak embedding of ((;⌧1,⌧2; q1, q2) in a group may be obtained by restricting
the embedding monomorphisms of A0 to (q8. É

4.2. Connection with dominions
Let * be a subsemigroup of a semigroup (. Then, recall, for instance from [4], that an element
3 2 ( is said to be dominated by * if for all homomorphisms 5 , 6 : ( �! ) with 5 |* = 6 |* we
have (3) 5 = (3)6. The set Dom(* of all elements of ( dominated by * is a subsemigroup of (,
called the dominion of * in (.
Proposition 4.17. An ample subsemigroup ( of an inverse semigroup ) is rich ample in ) if and
only if Dom)( = ( [ (

0.
Proof. ( =) ) Let ( be rich ample in ) . Then, by Proposition 4.6, the inverse hull of ( in ) is ( [ (

0.
Now, it follows from Proposition 1 of [8] that Dom)( = ( [ (

0.
( (= ) Assume that Dom)( = ( [ (

0, with ( being an ample in ) . Then, by Proposition 1 of [8],
the inverse hull of ( in ) is ( [ (

0. Consequently, ( is rich ample in ) by Proposition 4.6. É

Remark 4.18. It follows from the above proposition and zigzag theorem (see for instance [4],
Theorem 8.3.3) that ( is rich ample in ) if and only if for all C 2 ) ; the equality C ⌦ 1 = 1 ⌦ C in the
tensor product ) ⌦( ) implies that C 2 ( [ (

0.

5. Ultra-rich ample semigroups
In this section, we introduce a special class of rich ample semigroups, namely the ultra-rich ample
semigroups; its idea stems from our earlier considerations. The reader may refer to Section 6 for
some natural examples of rich and ultra-rich ample semigroups.
Definition 5.1. Let a subsemigroup ( be rich right (respectively, left) ample in an inverse semigroup
) such that the elements 0 (respectively, 1) given in Proposition 4.8 (respectively, Proposition 4.9)
are uniquely determined. Then we say that ( is ultra-rich right (respectively, left) ample in ) . We
call ( ultra-rich ample in ) if it is both ultra-rich right and ultra-rich left ample in ) . We also recall
from [1] that a semigroup is called unipotent if it contains precisely one idempotent.
Lemma 5.2. A subsemigroup ( of an inverse semigroup ) is ultra-rich right (respectively, left)
ample if and only if (0 is an ultra-rich left (respectively, right) ample subsemigroup of ) .
Proof. Straightforward. É

Proposition 5.3. If ( is an ultra-rich right (left) ample subsemigroup of an inverse semigroup ) ,
then ( and (

0 are unipotent.
Proof. Let ( be an ultra-rich right ample subsemigroup of an inverse semigroup) . Let 41, 42 2 ⇢ (().
Then, by the ultra-rich right ampleness of (, we have

4
�1
1 42 = 4

�1
1 410

for a unique 0 2 ( [ (
0. Because

4
�1
1 42 = 4

�1
1 41(4

�1
1 42), and 4

�1
1 42 = 4

�1
1 41(42),

we get from the uniqueness of 0:
0 = 42 = 4

�1
1 42.

Thus, 4142 = 42, for every idempotent is the inverse of itself. Similarly, we may calculate 4241 = 41,
whence, by the commutativity of idempotents, we have 41 = 42. Thus, ⇢ (() is indeed a singleton.

Similarly, one can show that any ultra-rich left ample subsemigroup of an inverse semigroup is
unipotent. By Lemma 5.2, the theorem also holds for (0. É
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Corollary 5.4. Let ( be an inverse semigroup. Then ( is ultra-rich right (left) ample if and only if it
is a group.

Proof. Straightforward. É

Proposition 5.5. Let ( be a subsemigroup of an inverse semigroup ) . Then ( is ultra-rich ample in
) if and only if it is unipotent and rich ample in ) .

Proof. ( =) ) A proof of the direct part follows from Proposition 5.3 and the fact that any ultra-rich
ample subsemigroup of ) is rich ample in ) .
( (= ) Let ( be a rich ample subsemigroup of an inverse semigroup ) such that ⇢ (() = {4}. This
implies that G�1

G = GG
�1 = 4 for all G 2 ( [ (

0. Now, for any H 2 (, there exists, by Condition (2) of
Proposition 4.8, an element 0 2 ( [ (

0, such that

G
�1
H = G

�1
G0 (= 40).

To prove the uniqueness of 0, let
G
�1
H = G

�1
G2 (= 42),

for some 2 2 ( [ (
0. Then

0 = (00
�1
)0 = 40 = G

�1
G0 = G

�1
H = G

�1
G2 = 42 = (22

�1
)2 = 2.

This proves that* is ultra-rich right ample. Similarly, one can show that* is ultra-rich left ample. É

Corollary 5.6. Let ( be an ultra-rich ample subsemigroup of an inverse semigroup ) . Then the
inverse hull ( [ (

0 of ( is a subgroup of ) .

Proof. It follows from Proposition 4.6 that ( [ (
0 is an inverse subsemigroup of ) . Because ( and

(
0 are ultra-rich ample, such is ( [ (

0. The proof now follows from Corollary 5.4. É

Corollary 5.7. Let* be an ultra-rich ample subsemigroup of an inverse semigroup ( and q : ( �! )

be a homomorphism of (inverse) semigroups. Then *q is an ultra-rich ample subsemigroup of ) .

Proof. Note that *q is rich ample by Remark 4.10. On the other hand, being the image of a group,
(*[*

0
)q is a subgroup of) . So, (*[*

0
)q and, consequently,*q must contain a unique idempotent.

The corollary now follows by Proposition 5.5. É

It is an easy exercise to show that every subsemigroup of a finite group ⌧ is a subgroup of
⌧. Also, recall from Corollary 5.6 that the inverse hull of an ultra-rich ample subsemigroup of an
inverse semigroup ) is a subgroup of ) . Consequently, we make the following observation.

Remark 5.8. Assume that ( is an ultra-rich ample subsemigroup of an inverse semigroup ) . If )
(or () is finite, then ( is a subgroup of ) .

6. Examples
Clearly, every group is an inverse as well as an ultra-rich ample semigroup, whereas every inverse
semigroup is a rich ample and hence an ample semigroup. The first six examples consider infinite
inverse semigroups (cf. Remark 5.8). Examples 7–9 concern the finite case.

1. It is straightforward to observe that the (non-inverse) multiplicative monoid N of natural
numbers is ample but not rich (right, left) ample in Q.

2. On the other hand,
Q�1 = {G 2 Q : G � 1}

is a non-inverse ultra-rich ample submonoid of Q, where � is the usual partial order.

3. The non-inverse monoid Q�1 [ {0} is rich ample but not ultra-rich (right, left) ample in Q.

4. The inverse monoid Q is not ultra-rich ample in itself.
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�� 5IF TVCHSPVQ Q ! {0} JT BO JOWFSTF BT XFMM BT BO VMUSB�SJDI BNQMF TVCNPOPJE PG Q�

�� *G ! JT B HSPVQ UIFO JU JT TUSBJHIUGPSXBSE UP PCTFSWF UIBU FWFSZ NPOPHFOJD TVCTFNJHSPVQ PG
! JT VMUSB�SJDI BNQMF� 5IVT UIF NPOPHFOJD TVCTFNJHSPVQT PG UIF TZNNFUSJD HSPVQ !N BSF
VMUSB�SJDI BNQMF 	JO !N BOE IN
�

�� -FU I! XIFSF " ≥ 2 EFOPUF UIF TZNNFUSJD JOWFSTF NPOPJE PWFS B ѐOJUF DIBJO #!� 1 < · · · < "
PG OBUVSBM OVNCFST� -FU ODI! BOE ODI+

! EFOPUF UIF 	OPO�JOWFSTF OPO�DPNNVUBUJWF
 BNQMF
TVCNPOPJET PG I! DPNQSJTJOH SFTQFDUJWFMZ UIF PSEFS�EFDSFBTJOH BOE PSEFS�JODSFBTJOH QBSUJBM
CJKFDUJPOT UIBU BMTP QSFTFSWF UIF PSEFS <�>� -FU VT BMTP VTF UIF DPOWFOUJPO UIBU UIF FNQUZ NBQ
CFMPOHT UP ODI+

! ∩ ODI!� /PX POF NBZ WFSJGZ GPS JOTUBODF CZ CSVUF GPSDF UIBU ODI!

BOE ODI+
! BSF SJDI 	SJHIU MFGU
 BNQMF JO I! GPS " ≤ 3� 8F TIPX UIBU ODI! BSF OPU SJDI

	SJHIU MFGU
 BNQMF JO I! GPS BMM " ≥ 4� 5P UIJT FOE DPOTJEFS UIF GPMMPXJOH FMFNFOUT PG ODI4�

$ = {(4, 3), (3, 2)}
% = {(4, 4), (3, 1)}.

5IFO
$−1% = {(3, 4), (2, 1)} ∉ & ∪&′,

JNQMZJOH UIBU ODI4 JT OPU SJDI SJHIU BNQMF JO I!� *U DBO CF TIPXO TJNJMBSMZ UIBU ODI4 JT
OPU SJDI MFGU BNQMF JO I!� #FDBVTF ODI" JT DPOUBJOFE ODI! GPS BMM ' ≤ " JU GPMMPXT UIBU
ODI! BSF OPU SJDI 	SJHIU MFGU
 BNQMF JO I! GPS BMM " ≥ 4� *U GPMMPXT GSPN -FNNB ��� UIBU
ODI+

! BSF BMTP OPU SJDI 	MFGU SJHIU
 BNQMF JO I! GPS BMM " ≥ 4�

�� -FU I! 	" ≥ 2
 EFOPUF UIF JOWFSTF NPOPJE DPOTJEFSFE JO UIF QSFWJPVT FYBNQMF� "T FWFSZ JOWFSTF
TVCTFNJHSPVQ PG BO JOWFSTF TFNJHSPVQ JT SJDI BNQMF UIF NFNCFST PG UIF DIBJO

L*/7 : {(} ⊆ OI! ( RI! ( I′
! ( I!

GSPN &YBNQMF ��� BSF SJDI BNQMF JO I!� )PXFWFS CFDBVTF OI! RI! I′
! BOE I! BSF OPU

VOJQPUFOU CZ 1SPQPTJUJPO ��� OPOF PG UIFN JT VMUSB�SJDI 	SJHIU MFGU
 BNQMF JO I!�

�� 5IF TZNNFUSJD HSPVQ !! JT VMUSB�SJDI BNQMF JO I!�

#BTFE PO UIF BCPWF FYBNQMFT XF HFU UIF GPMMPXJOH DPOUBJONFOU EJBHSBN GPS WBSJPVT DMBTTFT PG SJHIU
BNQMF TVCTFNJHSPVQT PG BO JOWFSTF TFNJHSPVQ DPOTJEFSFE JO FBSMJFS TFDUJPOT� $MFBSMZ UIFSF FYJTU
TJNJMBS EJBHSBNT GPS UIF DPSSFTQPOEJOH DMBTTFT PG MFGU BNQMF BOE 	UXP�TJEFE
 BNQMF TVCTFNJHSPVQT
PG BO JOWFSTF TFNJHSPVQ� 	5IF PWBM SFQSFTFOUJOH VMUSB�SJDI BNQMF TFNJHSPVQT EJTBQQFBST JO UIF ѐOJUF
DBTF�
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7. Conclusion
Though we have partially answered the question posed in [7], determining completely the embedding
of ()1, )2; (), where )1 and )2 are inverse and ( is an arbitrary semigroup, is still an open problem.
Let ( be made into an (ultra-) rich right and an (ultra-) rich left ample semigroup by two different
inverse semigroups. Then we also wonder if finding a single inverse semigroup that makes it a right
as well as a left (ultra-) rich ample semigroup is decidable. As mentioned earlier, this problem is
undecidable for (right, left) ample semigroups.
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Inverssete poolrühmade amalgaamimine üle külluslike poolrühmade
Nasir Sohail

Artiklis uuritakse poolrühmade amalgaame ((;)1 , )2 ), kus )1 ja )2 on inverssed poolrühmad, aga ( ei ole inversne.
On teada, et sellist amalgaami ei saa suuremasse poolrühma sisestada, kui )1 ja )2 on rühmad, aga ( ei ole rühm.
Artiklis tõestatakse, et amalgaami ((;)1 , )2 ) ei saa sisestada, kui ( on külluslik poolrühm, mis ei ole inversne.
Tuues sisse rikkaliku külluslikkuse mõiste, leitakse tarvilikud ja piisavad tingimused selleks, et amalgaami
((;)1 , )2 ) saaks nõrgalt sisestada inverssesse poolrühma. Muu hulgas tuleb välja, et amalgaami ((;)1 , )2 ) saab
nõrgalt sisestada rühma, kui )1 ja )2 on rühmad. Lisaks uuritakse rikkalikult külluslike poolrühmade klassi uusi
alamklasse.
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