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Amalgamating inverse semigroups
over ample semigroups

Nasir Sohail

Institute of Mathematics and Statistics, University of Tartu, 51009 Tartu, Estonia

ABSTRACT

We consider semigroup amalgams (S; 71, T>) in which 77 and T; are inverse semigroups and S is
a non-inverse semigroup. They are known to be non-embeddable if T} and T, are both groups
(Clifford semigroups), but S is not such. We prove that (S; 71, T>) is non-embeddable if S is
a non-inverse ample semigroup. By introducing the notion of rich ampleness, we determine
some necessary and sufficient conditions for the weak embedding of (S;7},7,) in an inverse
semigroup. In particular, (S; T}, T>) is shown to be weakly embeddable in a group if 7; and 7; are
groups. A rudimentary analysis of the novel classes of rich ample semigroups is also provided.

1. Motivation

The amalgamation problem of semigroups has its origins in the early work
of J. M. Howie from the 1960s. The inspiration thereof came from group
amalgams, which were considered earlier by O. Schreier. The topic was then
extensively studied by various mathematicians during the second half of the
previous century. References to this work may be found in Howie’s celebrated
monograph [4], of which the last chapter is also dedicated to semigroup amal-
gams. The main emphasis, during all these years, had been on determining the
embeddability conditions for semigroup amalgams. Non-embeddable amal-
gams were discovered sporadically, usually as by-products. One of Howie’s pi-
oneering articles [5], however, provided an important class of non-embeddable
amalgams that may essentially be viewed as groups intersecting in semigroups.
Generalizing Howie’s result, Rahkema and Sohail [7] came up in 2014 with
two more classes of non-embeddable semigroup amalgams. The current article
furthers the same line of research of investigating the (non-embeddability of)
amalgams that may essentially be viewed as inverse semigroups intersecting in
anon-inverse semigroup. We also consider the question of weak amalgamation
for these amalgams.

The study of ample semigroups and their variants has been an active area
of research for many decades, see for instance [2] and its references. As every
ample semigroup S gives rise to an amalgam (S; 71, T»), where T} and T; are
inverse semigroups, it was natural for us to consider the amalgams (S; 71, 73)
such that 77 and 7, are inverse semigroups and S belongs to some class of
ample semigroups. In fact, we introduce in this connection the notions of rich
and ultra-rich ample semigroups; the intersection of the latter class with that
of inverse semigroups is precisely the class of all groups.

2. Introduction and preliminaries

Given a semigroup S, an element x € S is called invertible if there exists a
unique element x~! € § such that xx~'x = x and x " 'xx~! = x~!. We call §
an inverse semigroup if every x € S is invertible. Inverse monoids are defined
similarly. Let X be a non-empty set. Then the set Zx of all partial bijections
of X is an inverse semigroup under the usual composition of partial maps.
We call Ix the symmetric inverse semigroup over X. By the Wagner—Preston
representation theorem (see for instance [4], Theorem 5.1.7), any inverse
semigroup S can be embedded in the symmetric inverse semigroup Jg. If S
is a subsemigroup of an inverse semigroup 7', then the inverse subsemigroup
of T generated by S is called the inverse hull of S in T. Homomorphisms of



Amalgamating inverse semigroups over ample semigroups

inverse semigroups (monoids) are precisely the semigroup homomorphisms. We shall adopt the
convention of writing the maps to the right of their arguments throughout this article. Also, we shall
omit parentheses around the arguments if there is no risk of confusion. For further details about
inverse semigroups and other standard definitions in semigroup theory, the reader may refer to the
texts [4,6].

A semigroup S is called right ample if it can be embedded in an inverse semigroup 7 (typically,
in the symmetric inverse semigroup Zx of a non-empty set X) such that the image of § is closed
under the unary operation s — s~'s, where S is identified with its isomorphic copy in T, and
s~! € T denotes the inverse of s € S. We shall call T an inverse semigroup associated with S. Left
ample semigroups are defined analogously. We say that S is ample if it is both right and left ample.
If S is a subsemigroup of an associated inverse semigroup 7', then we shall say that S is (right, left)
ample in T. Given a semigroup S, we denote by E(S) the set of idempotents of S. A subsemigroup
S of a semigroup 7 is called full it E(T) C S. Every full subsemigroup of an inverse semigroup T
is ample in 7. The converse is not true; for example, N is ample but not full in the multiplicative
monoid Q. It is possible that S is made into a left and a right ample semigroup by different associated
inverse semigroups. In such a case, the problem of finding a single (associated) inverse semigroup
making S into a left as well as a right ample semigroup is, in general, undecidable ([3], Theorem 3.4
and Corollary 4.3). If 71 and 7; are inverse semigroups admitting a homomorphism ¢ : Ty — T3,
and S is right (respectively, left) ample in 77, then one can easily verify that S¢ is right (respectively,
left) ample in 7>. More information about ample semigroups may be found in [2] and the references
contained therein.

A semigroup amalgam is a 5-tuple A = (S; T, T2; ¢1, ¢2) comprising pair-wise disjoint semi-
groups S, T1, T, and monomorphisms:

¢i:S—T1<i<2.

We say that A is embeddable (or strongly embeddable, for emphasis) if there exists a semigroup T
admitting monomorphisms y; : T; — T, 1 < i < 2, such that

(i) ¢1¥1 = daya,

(it) Yty € T1,Vty € T, t1Y| = tryp = s € S such that £ = s¢y, tr = 5P5.

If condition (ii) is not necessarily satisfied, then A is said to be weakly embeddable. We call
(S;T1,T; ¢1, ¢2) a special amalgam if Ty and T, are isomorphic, say, via v : T — T», such that
sp1v = s¢, for all s € S. Any special amalgam is weakly embeddable, for instance in 77. It is
customary to denote a semigroup amalgam by (S; 7, T>) if no explicit mention of ¢; and ¢, is
needed. We shall also call (S;71,7>) an amalgam over S. Every ample semigroup S gives rise to
an amalgam (S;7j,7>) in which S is right (respectively, left) ample in the inverse semigroup 7;
(respectively, T;), where {i, j} = {1, 2}. We shall consider these amalgams in Theorem 3.4.

Let T7 = T, denote the free product of semigroups 77 and 75. Then, by the amalgamated co-
product of (S; Ty, T; ¢1, $2) we mean the quotient semigroup (77 = T») /Og, where O denotes the
congruence on 7} * T, generated by the relation

R = {(S¢1,S¢2) HEURS S}

We denote (T} = Ty) /6r by T} =g T5. In fact, the following diagram is a pushout in the category of
all semigroups, where the homomorphisms

7]iZTi—>Tl*ST2,1SiS2
send x € T; to the congruence class (x)g, € 11 *s 1.

Theorem 2.1 ([4], Theorem 8.2.4). A semigroup amalgam (S; T, T) is (weakly) embeddable if and
only if it is (weakly) embedded in Ty +s T, via the homomorphisms n; : T; — Ty #s T», i € {1,2},
defined above.

Proof. Follows immediately from the properties of a pushout. m|
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15 ﬁ Tixs T

Fig. 1. Amalgamated coproduct.

A semigroup S is called an amalgamation base for a class (equivalently, category) C of semi-
groups if every amalgam (S;7Ty,7,), with 71,7, € C, is embeddable in some 7T € C. Given a
semigroup 77 € C containing an isomorphic copy of a semigroup S, we say that (S;77) is an
amalgamation pair for C if for all T, € C the amalgam (S; T}, 7>) is embeddable in some T € C.
Weak amalgamation bases (pairs) are defined similarly.

Theorem 2.2 ([4], Theorems 8.6.1 and 8.6.4). Inverse semigroups are amalgamation bases for the
classes of all semigroups and inverse semigroups.

Let S be an inverse semigroup and 7" be an arbitrary semigroup. Then, by the above theorem,
(S;T) is an amalgamation pair for the class of all semigroups. If S and T are both inverse, then
(S;T) is also an amalgamation pair for the class of inverse semigroups. All of the assertions made
in this section about semigroups are also true for monoids.

3. Amalgamation over ample semigroups

It was shown by Howie [5] that a semigroup amalgam (S; 77, 7>) does not embed if 77 and 7, are both
groups but S is not such. Generalizing this result, Rahkema and Sohail [7] showed that (S; T}, T5) is
non-embeddable if 77 and 7, are both completely regular (respectively, Clifford) semigroups, but S
is not completely regular (respectively, Clifford). In this section, we shall consider the amalgams
(S;Ty,T) in which T} and T are both inverse semigroups but S is not such — the non-embeddability
of such amalgams was left as an open problem in [7]. We begin by introducing the notion of an
antiamalgamation pair.

Definition 3.1. Let C be a class of semigroups. Suppose that 7 € C contains an isomorphic copy
of a semigroup S via ¢ : S — T}. Then the pair (S;7}) will be called an antiamalgamation pair
for C if for every T, € C and every monomorphism ¢, : S — T the amalgam (S; 71, Tz; @1, ¢2) is
non-embeddable (in any semigroup).

Recall that in every inverse semigroup, the idempotents commute (see for instance [4], Theorem
5.1.1).

Theorem 3.2. Let T} be an inverse semigroup and ¢ : S — T be a monomorphism such that S¢,
is right as well as left ample in Ty. If S is non-inverse, then (S;T)) is an antiamalgamation pair for
the class of inverse semigroups.

Proof. Let S, T1 and ¢| be as described in the statement of the theorem. Let 75 be an inverse
semigroup admitting a monomorphism ¢, : S — 73. Given s € S, let us denote s¢; and s¢; by 51
and s,, respectively. Identifying S with its isomorphic copies S¢; and S¢, and using the properties
of inverses, we may calculate in T x5 T5:

-1.,.-1 _ -1 -1.,.-1 _ -1
§S| S8, =88, , 88, 8§ =S8,

)

sz_lssl_ls = sz_ls, sl_lssgls = sl_ls.
Since S¢; is right and left ample in 77, the identification of S with S¢; also gives

1

ss, sl_ls e S.

By the commutativity of idempotents in 7, we may write from (1):
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-1 _ -1 -1, _ -1
§87 =88, , S S=5, . 2)
Now, using (2), we calculate in T} *g 7T5:

silh= sy (ssTh = s7 sy ) = (s71s)sy !t = (55 hs)sy = 550 3)
Because S¢; and S¢ are non-inverse, there exists s € S such that s; V¢ T, 1<i<2 The
amalgam (S; Ty, T»), therefore, fails to embed by (3). ]

Example 3.3. Let L denote the lattice of ample submonoids of the symmetric inverse semigroup
I, over a finite chain C,, : 1 <2 < --- < n, given in [8] (Fig. 1). The chain Liny : {¢} S OI, C
RI, C 1, C I, constitutes the sublattice of L comprising the inverse submonoids of 7. This gives
a (finite) set

{(8,T):SeL~\Lny, T €Ly with S C T}

of antiamalgamation pairs for the class of inverse semigroups.

Theorem 3.4. Let a non-inverse semigroup S be made into a right (respectively, left) ample semi-
group by an associated inverse semigroup T (respectively, T, ). Then the amalgam (S; Ty, T5) is not
embeddable (in any semigroup).

Proof. Let S, T, and T; be as given in the statement of the theorem. Then, as before, the identification
of S with its isomorphic copies in 71 and T, gives (1). Since S is right ample in 77 and left ample
in 7>, we have sl‘]s, ssz‘1 € S. Subsequently, ssl‘l, ssz‘] commute in 77 and sl‘ls, sz‘ls commute
in 7. Using the argument from the proof of Theorem 3.2, we can once more deduce (2) from (1).

However, (2) gives sl‘1 =5, L implying (as in the said proof) that (S; 77, 7>) is non-embeddable. 0O

4. Weak amalgamation

Given a subsemigroup S of an inverse semigroup 7', we define its dual to be the subsemigroup
S'={s'eT:seS}.
Defining a : S — S’ by s — s~!, we have:

1

()= =y"x = (e, Vay €58,

whence S and S’ are anti-isomorphic. Clearly, if non-empty, S N S’ is an inverse subsemigroup of S
and §” with E(S) = E(S”) € SN S’. Also, if § is right (respectively, left) ample in 7', then S’ is a
left (respectively, right) ample subsemigroup of 7.

Lemma 4.1. Let Ty and T, be inverse semigroups containing isomorphic copies, say S| and S, of a
semigroup S. Then there exists a bijection  : S{ U S| — S U S/ such that for all x € S; U S| one
has:

(x Dy = (xy) ™"

Proof. Let ¢ be the isomorphism from S; to S,. Then ¢’ = al‘l o ¢ o @ is an isomorphism from S
to S;, where a; : S; — §7,i = 1,2, are the anti-isomorphisms defined by s; si‘l, s; € S;. Let
xeS N S’l. Thenx ! e S| n S’1 and, in particular, x,x"1 eS| Now, using the assumption that ¢ is
an isomorphism, we have

x¢ = (xx"'x)p = ()P (x"Hp(x)9,
NS EUS IR, | -1 (€]
(X" =("xx" )= (x")p(x)p(x ),

whenever x, x~! € §. Using, next, the uniqueness of inverses in 7>, we have (x~!)¢ = ((x)¢)~! for

all x € §; N §. We may, therefore, calculate:

x¢p=((x") g =((x"Ne) ' =x¢’, Vx € SN 8]
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This implies that ¢ and ¢’ agree on Sy N §7. Consequently, the map
Yy=¢Ugp :S1US — SHUS)
is well-defined. Using a dual argument, one may also construct
yl =g U4 S US; — SiUsy,

such that ¢ o =1 and ¥ ~! o y are both identity functions. This implies that ¢ is a bijection, as
required.
It remains to show that (x ")y = (xy) . If x (and hence x~!) belong to S; N S5, then (x ")y =
(x "¢ = (x¢) ! = (xy)~'. On the other hand, when x € S} \ $’ (and consequently xle SN S,
then
(=g = Narlopoar=(0)poar = (x¢)™" = (xy) ™",

That (x~")y = (xy)~! when x € S| \ S| follows by symmetry. o

Proposition 4.2. Let S be any semigroup and T;, 1 < i < 2, be inverse semigroups admitting
monomorphisms ¢; . S —> T;. Then the amalgam (S, T1,T»; ¢1, ¢2) is weakly embeddable in an
inverse semigroup if and only if (S;V\, V,) constitutes a special amalgam, where V; is the inverse
hull of S¢; in T;.

Proof. (= ) Let S, T1,T,, Vi, V, and ¢, ¢, be as described in the statement of the theorem. We
shall denote S¢;, 1 < i < 2, by S;. Assume that (S;7},7>) is weakly embeddable in an inverse
semigroup W via monomorphisms y; : 77 — Wand yp : 7, — W.

Observe that any element of V| may be written in the form x;x; - - - x,,, where x1,x3,...,%, €
MR, Si, and, for all 1 < i < n — 1, the elements x;, x;;; are not both in S| or S’1 \ §1. Similarly,
the elements of V, can be written as yy, - - - y,;, where y1,y2,...,¥m € S2 U S/, and, for all

1 <i <m— 1, the elements y;, y;41 do not both belong to S> or 8/ \ S>. Also, for eachi € {1,2}
and x € S;, we have:
(x Y = (xp)™!, where x7 € S/

We define 6 : Vi — V; by

(X132 X2)0 = (X122 -+ X145

Then 6 is clearly an isomorphism from V; to V,. Moreover, for every x¢; € S1, we have:

(x¢1)0 = (xp)pips" = (cprp)py’ = (xpopa) iy = (xp2)pop; ' = xpo.

Thus, (S, Vi, V») is a special amalgam.

(&) Let (S; V1, V2; ¢1, ¢2) be made into a special amalgam by the isomorphism v : V| — Vj.
Then
$rov=d¢o. )

Consider a semigroup V admitting isomorphisms y; : V. — V;, foreach 1 <i <2, withVNV; =0
and
Y1ov =y (6)

thatis (V; V, V) is a special amalgam. Then, being an inverse semigroup amalgam, (V; Ty, T2; v1, ¥2)
is embeddable in an inverse semigroup, say W, via monomorphisms, say y; : 7; — W. This implies
that

Y10 M1 = Y20 Ho. (7)
Now, using (5) and (6), we have:
groy; =¢io(voy;)=(d1ov)oy; =0y, ®)

Finally, using (7) and (8), we may calculate:

$rou=droy; oyropr=¢r0%, 0oyr0 =0 .
Hence, (S; Ty, T2) is weakly embeddable. O



Amalgamating inverse semigroups over ample semigroups

4.1. Weak amalgamation over rich ample semigroups

In this subsection, we introduce the notion of rich (right, left) ample semigroups. Given inverse
semigroups 7T} and 7>, we show that an amalgam (S; 7}, 7T») is weakly embeddable in an inverse
semigroup if S is rich ample in 77 and 7>. It follows that (S; 71, T») is weakly embeddable in a group
if 77 and T, are both groups. We begin by recalling that any inverse semigroup S comes equipped
with the natural partial order:

Vx,y €S, x <y iff x = ey, for some e € E(S).

Remark 4.3. Let U be an inverse semigroup. Then uu~! is the minimum idempotent with respect to
the natural partial order such that (uu~")u = u. To see this, let eu = u for some idempotent e € U.
Then u~'e = u~!, and we have uu~! = uu—'e. This implies that uu~! < e, and hence the assertion.

Definition 4.4. A subsemigroup S of an inverse semigroup 7 is called rich right ample in T if
Vx,ye S, x lyesus,

where §” = {z7! € T : z € S} is the dual of S. We say that S is rich left ample in T if
Vx,yeS, xy leSus’.

A subsemigroup of T is called rich ample in T if it is both rich right and rich left ample in 7. A sub-
monoid S of an inverse semigroup 7T is rich (right, left) ample in 7T if it is such as a subsemigroup.
By saying that S is a rich (left, right) ample subsemigroup of 7', we mean that S is rich (right, left)
ample in 7.

Lemma 4.5. Let S, S" and T be as defined above. Then

1. S is rich right (respectively, left) ample in T if and only if (its dual) S’ is rich left (respectively,
right) ample in T,

2. Sis (rich) ample in T if and only if S” is (rich) ample in T.
Proof. The proof is straightforward. m|

Proposition 4.6. Let S be a subsemigroup of an inverse semigroup T. Then S is rich ample in T if
and only if the inverse hull of Sin T equals S U §’.

Proof. The proof is straightforward. O

Lemma 4.7. Let S be a rich ample subsemigroup of an inverse semigroup T. Then S and S’ are the
down-closed subsemigroups of S U S’ with respect to the natural partial order.

Proof. We show that S is down-closed in S U S’. It will follow from the symmetry that S’ is also
such. Let < denote the natural partial order on the inverse semigroup S U S’. Then, clearly, it suffices
to prove that

(3" €S)(FseS)(s'<s) = s €8.

Assuming the premise of the above implication, we have s” = es for some idempotent e € E(SUS’).
Now, because e € S N §’, it follows (in particular, from e € S) that s = es € S. O

Proposition 4.8. A subsemigroup S of an inverse semigroup T is rich right ample if and only if

1. Sisright ample in T, and

2. forallx,y € S, x 'y =x"xa, wherea e SUS'".

Proof. (= ) Let S be rich right ample in 7. Then for all x € U, the element x~'x belongs to S U §’.
Because x~'x is an idempotent, we in fact have x~'x € S N S’ C S, meaning that S is right ample in
T. Next, let x, y € S, and observe that

x_ly = x_lxx_ly = x_lxa,
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where g = x ™! y € § U S’. Hence, the second condition is also satisfied.

( &= ) Let S be a subsemigroup of an inverse semigroup 7" satisfying both conditions of the
proposition. Let x,y € S. Then, by the second condition, x~!y = x"'xa, where a € S U S’. Now,
x~'x € SN S’ because, by the first condition, S is right ample. This implies that

xly=xxaesus,
whence S is rich right ample in 7. O

Proposition 4.9. A subsemigroup S of an inverse semigroup T is rich left ample if and only if

1. Sisleft ample inT, and

2. forallx,y €S, xy~' =byy™!, whereb e SUS’.

Proof. Similar to the proof of the above proposition. O

Remark 4.10. If ¢ : T} — T, is a homomorphism of inverse semigroups and S is rich right (left)
ample in 77, then it can be easily verified that such is S¢ in 7.

Theorem 4.11. Let Ty and T, be inverse semigroups admitting monomorphisms ¢ and ¢, from a
semigroup S, respectively, such that S¢1 is rich right ample in T, but S¢, is not such in T,. Then
the amalgam (S; Ty, T,) fails to embed weakly in any inverse semigroup.

Proof. Let S,T1,T», ¢1 and ¢, be as described in the statement of the theorem. Assume, on the
contrary, that (S; 7, T>) is weakly embeddable in an inverse semigroup. Let (S; Vi, V,) be the special
amalgam and 6 : Vi — V), be the isomorphism given by Proposition 4.2. Clearly, S; = S¢;
is rich right ample in V;. But then its image S16 = S¢, must be such in V, and, hence, in 73, a
contradiction. O

Remark 4.12. The dual statement obtained by replacing ‘rich right ample’ with ‘rich left ample’ in
Theorem 4.11 can be proved on similar lines.

Lemma 4.13. Let T| and T, be inverse semigroups containing isomorphic copies S\ and S, of a
semigroup S, respectively, that are rich ample in the respective oversemigroups. Then the posets
S1 US| and S> U S} are order-isomorphic.

Proof. Let the map
Yy=¢U¢p :S1US — SHUS)

be as defined in Lemma 4.1. Then it follows from Lemma 4.7 that ¢ is indeed an order-embedding. O

Theorem 4.14. Let T and T, be inverse semigroups containing isomorphic copies, say S¢| and
S, respectively, of a semigroup S. Assume also that S¢; is rich ample in T; for eachi € {1,2}. If S
is not inverse, then the amalgam (S; Ty, T2; ¢1, ¢2) is weakly (but not strongly) embeddable in an
inverse semigroup.

Proof. Let §1 = S¢1 and S, = S¢,. Then, by Proposition 4.6, the inverse hull of S; in7;, 1 <i < 2,
is S; U §7. The main objective is to prove that §; U S| and S» U S/, are isomorphic. We shall prove,
to this end, that the poset order-isomorphism ¢ : S; U S’1 — S U Sé, considered in Lemma 4.13,
is a homomorphism of semigroups.

Clearly, if x, y € S (equivalently, S7), then (xy)¥ = (x)¥ (y)y. We prove that (xz)¥ = (x)¥ (2)¥,
forall x € Sy and z € §’, and that (zx)y = (2)¥ (x)y will follow from the symmetry. If x € S; and
z €S|, thenz = y~! for some y € Sy, and we observe by Proposition 4.9 that

(x2) = (xy™ ) = (byy™ ) = (b)y (yy~ ), where be SUS’.
We first show that (yy~")y = ()¢ (y~1)y. To this end, let us first recall from Remark 4.3 that

1

yy  =min{e € E| : ey =y}, 9
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where Ey = E(S; U §7). Then we note that y maps E| bijectively to E; = E(S; U S)), and ey = y
for e € E; if and only if yi = (ey)y = (ey)(yy). Thus,
({e€Ei:ey=yhy ={ey € Ery : (e)y(y)y =y} (10)

Now, recall from Lemma 4.13 that the map ¢ : $; US| — S U § is an order-isomorphism of
posets, whence we may write from (9) and (10):

(yy~ " = (minfe € E1 : ey = yhy
=min({e € E| : ey = yH¥
=min{ey € Eyy : ()Y (y)y = yyr}
= (WY (yy)™', since Ejy = E(S2 U S5),
=(y)y(y Dy, byLemma4.l.

Coming back to proving that (xz)y¥ = (x)y¥(z)r, we consider, in view of Definition 4.4, two

cases.

U'=b € 8y (cf. a = x~!y in the proof of Proposition 4.8), then we have:

(x2)¢ = (xy "y = (byy " = (b (yy Hy
= (DY =Gy "y
= (byy 'y (y " = ey Hy
= @y = e Y = DY)y

On the other hand, if xy‘1 € S’1 \ S, then, using the rich right ampleness of S, we may write:

If xy~

xz=xy '=@ Hy T =GH % la, wherea = (x™ )71y = xy~

Note thata € S ’1 \ S1, for otherwise we get xy_l € §1, a contradiction. Now, one may calculate:

(2 = ey Dy = ()™ hy
= (") x ey = (D) Dy (a)y
= (" Oy (@ = Yy (@)
= (Yo = (YT la)y
= YOy Ty = YTy
= (Y (Y = Dy
= ()Y (2)y.
This completes the proof that ¢ : §; U S| —> §> U §) is an isomorphism of semigroups. That

(S; Ty, T,) is weakly embeddable follows from Proposition 4.2. The amalgam (S; 77, T>), however,
fails to embed strongly by Propositions 4.8, 4.9 and Theorem 3.2 (alternatively, Theorem 3.4). O

Corollary 4.15. Consider an amalgam A = (S; G, Gy; ¢1, ¢2) in which G and G, are groups
and S is not a group. If S¢; is rich ample in G; for each i € {1,2}, then A is weakly embeddable in
a group.

Proof. By the above theorem, (S; G, G2) weakly embeds in an inverse semigroup, say W. Let
Y1 :Gy — Wand ¢y : G — W be the embedding monomorphisms. Then, by the properties of
a pushout, there exists a unique homomorphism

Y :Grxs Gy — W,

such that n;¥ = y; for 1 < i < 2, where 7; are as given in Fig. 1. This implies that (S; G, G3)
weakly embeds in (G| s G2)y. The proof will be accomplished if we show that (G| *s G)y is a
group.

Let 15, and 15, be the identities of G and G», respectively. Then, because S¢; is rich ample in
G; foreachi € {1,2}, we must have 15, € S¢;. Thus, S is, in fact, a monoid. That (G x5 G2)y is
a group follows from the observation that G| *s G, being an amalgamated coproduct of groups
over a monoid, is a group. O
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Theorem 4.16. Any amalgam (S; G, G2; ¢1, ¢2) in which G| and G, are groups is weakly embed-
dable in a group.

Proof. If S is a monoid, then S¢; is rich ample in G; for each i € {1,2}, and the theorem
follows from the above corollary. If S is a semigroup, then, by a similar token, the amalgam
A = (SY,G1, G ¢1, ¢5) is weakly embeddable in a group, where S! is the monoid obtained
from S in the standard way (see for instance [4]), and for each i € {1,2}, ¢ is the obvious extension
of ¢;. Now, the weak embedding of (S; G, G2; @1, ¢2) in a group may be obtained by restricting
the embedding monomorphisms of A’ to S¢;. O

4.2. Connection with dominions

Let U be a subsemigroup of a semigroup S. Then, recall, for instance from [4], that an element
d € § is said to be dominated by U if for all homomorphisms f,g : § — T with f|y = g|y we
have (d)f = (d)g. The set DomgU of all elements of S dominated by U is a subsemigroup of S,
called the dominion of U in S.

Proposition 4.17. An ample subsemigroup S of an inverse semigroup T is rich ample in T if and
only if DomrS =S U S,

Proof. (= ) Let S be rich ample in 7. Then, by Proposition 4.6, the inverse hull of Sin 7 is SU S’.
Now, it follows from Proposition 1 of [8] that Dom7S = S U §’.

( &) Assume that Dom7S = S U §’, with S being an ample in 7. Then, by Proposition 1 of [8],
the inverse hull of S in T is S U §’. Consequently, S is rich ample in T by Proposition 4.6. O

Remark 4.18. It follows from the above proposition and zigzag theorem (see for instance [4],
Theorem 8.3.3) that S is rich ample in 7' if and only if for all # € T’; the equality t ® 1 = 1 ® ¢ in the
tensor product T ®g T implies thatr € SU §’.

5. Ultra-rich ample semigroups

In this section, we introduce a special class of rich ample semigroups, namely the ultra-rich ample
semigroups; its idea stems from our earlier considerations. The reader may refer to Section 6 for
some natural examples of rich and ultra-rich ample semigroups.

Definition 5.1. Let a subsemigroup S be rich right (respectively, left) ample in an inverse semigroup
T such that the elements a (respectively, b) given in Proposition 4.8 (respectively, Proposition 4.9)
are uniquely determined. Then we say that S is ultra-rich right (respectively, left) ample in T. We
call S ultra-rich ample in T if it is both ultra-rich right and ultra-rich left ample in 7. We also recall
from [1] that a semigroup is called unipotent if it contains precisely one idempotent.

Lemma 5.2. A subsemigroup S of an inverse semigroup T is ultra-rich right (respectively, left)
ample if and only if S’ is an ultra-rich left (respectively, right) ample subsemigroup of T.

Proof. Straightforward. O
Proposition 5.3. If'S is an ultra-rich right (left) ample subsemigroup of an inverse semigroup T,
then S and S’ are unipotent.

Proof. Let S be an ultra-rich right ample subsemigroup of an inverse semigroup 7. Let ey, e, € E(S).
Then, by the ultra-rich right ampleness of S, we have

-1 -1
e ex=ej ela
for a unique a € S U S’. Because
-1, _ -1 -1 -1, _ -1
e ex=¢e ei(e; ez), and e| ey = e ej(er),
we get from the uniqueness of a:
a=ey= el_lez.

Thus, eje, = ey, for every idempotent is the inverse of itself. Similarly, we may calculate e;e; = ey,
whence, by the commutativity of idempotents, we have e; = e,. Thus, E(S) is indeed a singleton.

Similarly, one can show that any ultra-rich left ample subsemigroup of an inverse semigroup is
unipotent. By Lemma 5.2, the theorem also holds for S’. O
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Corollary 5.4. Let S be an inverse semigroup. Then S is ultra-rich right (left) ample if and only if it
is a group.

Proof. Straightforward. m|

Proposition 5.5. Let S be a subsemigroup of an inverse semigroup T. Then S is ultra-rich ample in
T if and only if it is unipotent and rich ample in T.

Proof. (= ) A proof of the direct part follows from Proposition 5.3 and the fact that any ultra-rich
ample subsemigroup of 7T is rich ample in 7.

( &= Let S be a rich ample subsemigroup of an inverse semigroup 7 such that £ (S) = {e}. This
implies that x~!x = xx~! = e for all x € SU S’. Now, for any y € S, there exists, by Condition (2) of
Proposition 4.8, an element ¢ € S U §’, such that

x 'y =x""xa (= ea).

To prove the uniqueness of a, let
xly =x7lxe (= ec),
for some ¢ € SU S’. Then

xa=x"ly=x"xc=ec=(cc e =c.

a=(aa a=ea=x"
This proves that U is ultra-rich right ample. Similarly, one can show that U is ultra-rich left ample. O

Corollary 5.6. Let S be an ultra-rich ample subsemigroup of an inverse semigroup T. Then the
inverse hull S U S’ of S is a subgroup of T.

Proof. 1t follows from Proposition 4.6 that S U S’ is an inverse subsemigroup of 7. Because S and
S’ are ultra-rich ample, such is S U S’. The proof now follows from Corollary 5.4. m|

Corollary 5.7. Let U be an ultra-rich ample subsemigroup of an inverse semigroup Sand ¢ : S — T
be a homomorphism of (inverse) semigroups. Then U¢ is an ultra-rich ample subsemigroup of T.

Proof. Note that U¢ is rich ample by Remark 4.10. On the other hand, being the image of a group,

(UUU")¢ is asubgroup of T. So, (UUU’)¢ and, consequently, U ¢ must contain a unique idempotent.

The corollary now follows by Proposition 5.5. O

It is an easy exercise to show that every subsemigroup of a finite group G is a subgroup of
G. Also, recall from Corollary 5.6 that the inverse hull of an ultra-rich ample subsemigroup of an
inverse semigroup 7 is a subgroup of 7. Consequently, we make the following observation.

Remark 5.8. Assume that S is an ultra-rich ample subsemigroup of an inverse semigroup 7. If T
(or S) is finite, then S is a subgroup of 7.

6. Examples

Clearly, every group is an inverse as well as an ultra-rich ample semigroup, whereas every inverse
semigroup is a rich ample and hence an ample semigroup. The first six examples consider infinite
inverse semigroups (cf. Remark 5.8). Examples 7-9 concern the finite case.

1. It is straightforward to observe that the (non-inverse) multiplicative monoid N of natural
numbers is ample but not rich (right, left) ample in Q.

2. On the other hand,
Qi ={xeQ:x2>1}

is a non-inverse ultra-rich ample submonoid of Q, where > is the usual partial order.
3. The non-inverse monoid Qx> U {0} is rich ample but not ultra-rich (right, left) ample in Q.

4. The inverse monoid Q is not ultra-rich ample in itself.
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5. The subgroup Q \ {0} is an inverse as well as an ultra-rich ample submonoid of Q.

6. If S is a group, then it is straightforward to observe that every monogenic subsemigroup of
S is ultra-rich ample. Thus, the monogenic subsemigroups of the symmetric group Sy are
ultra-rich ample (in Sy and fyy).

7. Let 1,,, where n > 2, denote the symmetric inverse monoid over a finite chain C,;: 1 < --- < n
of natural numbers. Let OD T, and ODT Z denote the (non-inverse, non-commutative) ample
submonoids of 7;,, comprising, respectively, the order-decreasing and order-increasing partial
bijections that also preserve the order [8]. Let us also use the convention that the empty map
belongs to 0D N ODI,. Now, one may verify, for instance, by brute force that 0D T,
and 0D} are rich (right, left) ample in 7, for n < 3. We show that 0D7,, are not rich
(right, left) ample in Z, for all n > 4. To this end, consider the following elements of OD T 4:

u=1{(43),3.2)},
v={(4,4),3,1)}

Then
uwlv={3,4,2,)¢eUUl,

implying that OO 4 is not rich right ample in Z,. It can be shown similarly that OD1 4 is
not rich left ample in Z,,. Because OD1 ,, is contained, O DT, for all m < n, it follows that
ODI, are not rich (right, left) ample in Z,, for all n > 4. It follows from Lemma 4.5 that
ODI; are also not rich (left, right) ample in Z, for all n > 4.

8. Let I, (n > 2) denote the inverse monoid considered in the previous example. As every inverse
subsemigroup of an inverse semigroup is rich ample, the members of the chain

Linzv:{t} €O, cRI,c1/ cl,

from Example 3.3 are rich ample in Z,,. However, because O1 ,,, R ,, 1,/ and I, are not
unipotent, by Proposition 5.3, none of them is ultra-rich (right, left) ample in Z,,.

9. The symmetric group S, is ultra-rich ample in 7,,.

Based on the above examples, we get the following containment diagram for various classes of right
ample subsemigroups of an inverse semigroup, considered in earlier sections. Clearly, there exist
similar diagrams for the corresponding classes of left ample and (two-sided) ample subsemigroups
of an inverse semigroup. (The oval representing ultra-rich ample semigroups disappears in the finite
case.)

Right ample

Rich right ample

Inverse Ultra-rich

semigroups right ample
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7. Conclusion

Though we have partially answered the question posed in [7], determining completely the embedding

of (Ty, T»; S), where T and T; are inverse and S is an arbitrary semigroup, is still an open problem.

Let S be made into an (ultra-) rich right and an (ultra-) rich left ample semigroup by two different
inverse semigroups. Then we also wonder if finding a single inverse semigroup that makes it a right
as well as a left (ultra-) rich ample semigroup is decidable. As mentioned earlier, this problem is
undecidable for (right, left) ample semigroups.
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Inverssete poolrihmade amalgaamimine ule killuslike poolriihmade

Nasir Sohail

Artiklis uuritakse poolrihmade amalgaame (S; T}, T»), kus T; ja T, on inverssed poolriihmad, aga S ei ole inversne.
On teada, et sellist amalgaami ei saa suuremasse poolriihma sisestada, kui 7} ja 7> on rihmad, aga S ei ole rihm.
Artiklis toestatakse, et amalgaami (S; Ty, T>) ei saa sisestada, kui S on killuslik poolriihm, mis ei ole inversne.
Tuues sisse rikkaliku killuslikkuse maiste, leitakse tarvilikud ja piisavad tingimused selleks, et amalgaami
(S; T, T) saaks ndrgalt sisestada inverssesse poolriihma. Muu hulgas tuleb vélja, et amalgaami (S; Ty, T>) saab
norgalt sisestada rihma, kui T; ja T, on rihmad. Lisaks uuritakse rikkalikult kllluslike poolriihmade klassi uusi

alamklasse.
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