
1. INTRODUCTION 
 
In recent years, the issue of improving road safety has 
become increasingly relevant. According to the WHO 
Global Status Report on Road Safety 2018, the number of 
annual road traffic deaths has reached 1.35 million. Road 
infrastructure greatly influences the causes of fatal and 
severe injuries in traffic collisions [1]. The recent devel 
opments in the automotive industry aim to propose solu 
tions for this problem. Current cars are outfitted with ad 
vanced driver assistance systems (ADAS) to safeguard 
drivers better and reduce accidents [2]. The poor perform 
ance of autonomous vehicles and driver assistance sys 
tems in inclement weather, such as snow, rain, hail, and 
fog, is now one of the most critical problems in devel 
oping these technologies [3]. For that reason, monitoring 
the road surface condition is crucial for traffic safety [4]. 

ADAS systems can be significantly improved by real
time road friction estimates (RFE) [5]. The performance 

of these systems strongly depends on the characteristics 
of the sensors used in the detection system. Cameras, 
LiDARS, and radars are the primary sensors used in 
autonomous driving to gather environmental data. Modern 
ADAS systems implement simultaneous localization and 
mapping (SLAM) technology and use different types of 
sensors, such as RGBD cameras, LiDARS, and sonars. 
RGB cameras are the most popular due to their low price 
and the ability to provide comprehensive data [6]. The 
wide spread use of RGB cameras in visual SLAM was 
driven by advancements in central processing unit (CPU) 
and graphics processing unit (GPU) technology. In [5], 
the frontview RGB camera sensor images are used for 
road surface condition (RSC) classification. Wet/water, 
slush, snow, and ice RSC classifications are determined 
to have discrete regions of interest through texturebased 
features from the drivable surface, sky, and surrounds. In 
other papers, the RGB image was converted into a spatial 
fre quency spectrum, and the frequency distribution cor 
respond ing to different road surface types was sub 
sequently analysed [5,7]. 
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The hyperspectral camera is one of the most promising 
and rapidly evolving types of sensors. Compared to RGB 
cameras, hyperspectral cameras capture more information 
than the visible light range in the electromagnetic spectrum. 
Those cameras can capture visible light, near infrared 
(NIR), shortwave infrared (SWIR), and mediumwave 
infrared (MWIR), making cameras less sensitive to 
changing environmental conditions. The 3D hyperspectral 
image (HSI), also referred to as a hyper cube, contains 
hundreds of contiguous spectral bands. The reflectance 
character istics at different wave length bands produce a 
unique spectral signature. Based on this sig nature, image 
pixels of similar materials can be identified [8]. Further 
postprocessing of the hypercube enables the prediction 
of the objects’ materials. Informa tion about materials may 
be essential for making decisions in the context of auton 
omous driving. In HSI classification tasks, two main 
challenges exist: the large spatial varia bility of spectral 
signatures and the limited available train ing samples 
versus the high dimensionality of hyper spectral data. The 
first challenge is often caused by many factors, such as 
changes in illumination and environ mental, atmospheric, 
and temporal conditions. The second challenge results in 
illposed problems for some methods and reduces the 
generalization ability of classifiers [9].  

Despite the challenges mentioned above, the topic of 
applying HSI for vehicles is drawing attention. For example, 
in [10], the authors presented a manually annotated dataset 
containing the HSI of a structured urban terrain. Another 
HSI dataset presented in  [11] includes road images ac 
quired in urban and rural scenes. Authors in [8] focused 
on im ple menting an HSI for pictures captured in un 
structured offroad terrain with grass, trees, and water 
puddles. The goal of the proposed HSIbased method for 
pixelwise image annotation was to reduce the workload 
of human anno tation.  

The goal of this research was to develop a framework 
that allowed for the quick testing of different deep learn 
ing (DL) models on HSIs. The next step was to segment 
an input image into the correct classes as a result of the 
inference of the proposed models. This paper’s main focus 
was on water and snow detection, as this information can 
potentially provide the ADAS systems with the next layer 
of information. 
 
 
2. MATERIALS  AND  METHODS  
 
2.1. Data  collection  
 
The images used in the datasets were captured using the 
Specium IQ mobile hyperspectral camera. The camera 
captures the HSIs in the 400–1000 nm range with a 
resolution of 512 × 512 pixels using the pushbroom 

image acquisition method with a line scan imaging 
sensor. Specium IQ uses a CMOS sensor that provides 
information regarding the 204 spectral bands. Specium IQ 
lens has a focal length of 21 mm, a field of view (FOV) 
31 × 31 degrees, and a minimum object distance for the 
lens of 150 mm [12]. 

The HSI dataset was collected in the surrounding 
metropolitan area of Tallinn University of Technology in 
Estonia. The images with snow were taken in February, 
while the rest were taken in September. Data was pri 
marily collected when it was cloudy outside and out of 
direct sunshine. The dataset contains 35 water and 26 snow 
HSIs with no defined ground truth. The HSIs come in a 
.hdr and .dat format, which both need to be imported to 
obtain the information from the files. 
 
2.2. Data  exploration 
 
The studied dataset includes RGB images in different 
resolutions (1280 × 960 px and 512 × 512 px), as well as 
a raw HSI datafile in .dat (512 × 512 px). An HSI taken 
with the Specim IQ mobile hyperspectral camera contains 
204 bands. Therefore, 204 images were taken at different 
wave lengths. In comparison, the RGB representation of 
an image only contains three colour channels. Thus, using 
hyperspectral data enables access to more data about a 
particular scene. The spectrum for different semantic 
classes is presented in Appendix B. In particular, the spec 
trum for asphalt (Appendix B1), concrete (Appendix B2), 
and water (Appendix B3) is shown in the corresponding 
graphs. It is noteworthy to observe the variance of the 
spectrum within the same semantic class. In Fig. 1, the 
average spectrum for each semantic class is presented. 
One should observe the similarity between classes like 
asphalt and water to understand the challenge of dis 
tinguishing be tween these two classes. 
 
2.3. Data  processing  and  band  reduction 
 
The structure of the adopted framework, DeepHyperX 
[13], only allows to analyse one image at a time, perform 
ing pixelwise classification using a default patch of 
surrounding pixels to assist in classification. Usually, HSI 
datasets, such as Pavia University [14] or Indian Pines 
[15], only consist of one image. However, in the current 
re search, multiple images were made (35 images con 
taining water and 26 snow). Therefore, all HSI arrays were 
con catenated into one big ‘image’ to make the DeepHyperX 
framework applicable to this problem. This method works 
correctly as every pixel is classified by itself regardless of 
the surrounding image.  

The output shape of the concatenated matrix is 512 × 
17920 × 204, containing more than 1.8 billion 32bit float 
values inside a NumPy array that requires approximately 
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12 GB of memory. To conform with the DeepHyperX 
formatting, the training data (i.e. hyperspectral data) should 
be in a .mat format, and the groundtruth labels should be 
in a .tiff format. A .mat file can store a limited number 
of values, which is more than three times less capacity 
than is required for the water dataset. Due to the high 
number of bands contained in an HSI, the data files are 
often computationally unworkable. Thus, a dimen sionality 
reduction technique is needed to deal with these large 
data files due to computational restrictions. According to 
the work presented in [16], feature extrac tion (transform 
ing/combining different bands) is preferred over feature 
selection (elimination of image bands). This work also 
states that principal component analysis (PCA), non
negative matrix factorization (NMF), and locally linear 
embedding (LLE) are the optimal techniques to increase 
the overall accuracy of the model – 30 out of 200 com 
ponents are sufficient for PCA/NMF, and 90 bands for 
LLE. The disadvantage of PCA is that more than 99% of 
the variability is explained in the first three com ponents, 
which means the other 27 components used ex plain less 
than 1% of the variability. 

In the current research work, PCA was to reduce 
dimen sionality from 204 to 30 bands. Working with all 
the bands is computationally very challenging since the 
data exceeds 12 GB, being beyond the limits of most com 
mercial RAMs. After performing PCA, the data is sig 
nificantly (more than six times) smaller and com puta 
tionally more effi cient. 
 
2.4. Data  labelling 
 
Data labelling is the process of identifying raw data and 
adding one or more meaningful and informative labels 
to provide context so that the machine learning model 

can learn from it. The labelling was performed using the 
Label box training data platform [17]. This platform was 
selected due to its builtin collaboration and management 
features, powerful toolkit for object annotation, and user
friendly interface. 

The dataset was composed of scenes captured in the 
urban environment, including roads and parking lots in 
different conditions. For labelling, there were 14 classes 
defined, each defining a specific type of object present in 
a particular scene rep resented with the corresponding 
colour (see Table 1). For labelling time reduction, the 
following simplifications were made: 
● asphalt road in all conditions was labelled as ‘Asphalt’; 
● urban environment objects such as sculptures, street 

lights, containers, road signs, bicycles, parking spots, 
etc., were labelled as ‘Object’; 

● all the buildings were labelled as ‘Concrete’ despite 
the presence of other materials in their structure; 

● all the combinations of ice, mud, and snow in the same 
area were considered as ‘Ice’; 

● trees and bushes were labelled as ‘Trees’. 
The most accurate labelling was done for the areas of 

the images where there was water, ice, or snow present 
because the quality of labelling of those classes is crucial 
for achieving reliable results. It should be mentioned that 
classes such as ‘Trees’ or ‘Sky’ were given less attention 
than the ones mentioned above as the re search was mainly 
focused on the road surface.  
 
2.4.1. Water dataset labelling 
 
The main feature of this dataset is the variety of puddles 
combined with asphalt roads in different conditions. This 
allows the investigation of the hyperspectral signatures of 
different wet asphalt surfaces. According to the char 
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Fig. 1. The average spectrum of different classes. 
 



acteristics of the road and its condition, the asphalt class 
can typically be expressed as a combination of subclasses: 
old asphalt, new asphalt, road seams filled with tar, asphalt 
covered with paint, and potholes repaired with stone 
crumbs. All areas with a significant presence of water on 
the road surface were considered as water. The example 
of labelling the scene, including the road covered with 
water, is shown in Fig. 2. 

2.4.2. Snow dataset labelling 
 
In the snow dataset, there were multiple areas of the road 
in which the snow was combined with asphalt, water, ice, 
and mud. Thus, it was essential to make the annotations 
as precise as possible. In the scenes presented in the data 
set, the white areas of the images mainly corresponded to 
snow, and all other areas were considered as ice (including 
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No. Class Red Green Blue HEX code Colour sample 
1. Undefined     0    0     0   #000000  
2. Grass     0 102     0   #006600  
3. Concrete 170 170 170   #aaaaaa  
4. Asphalt   64   64   64   #404040  
5. Trees     0 255     0   #00ff00  
6. Rocks 110   22 138   #6e168a  
7. Water   68 187 170   #44bbaa  
8. Sky      0     0 255   #0000ff  
9. Gravel 187 134   51   #bb8833  
10. Object 192     6   64   #c00640  
11. Dirt 230 230   30   #e6e61e  
12. Mud  99   66   34   #634222  
13. Snow 240 240 240   #f0f0f0  
14. Ice 120 170 230   #78aae6  

Table 1. Labelling classes, label colours, and HEX code values

 
 

Fig. 2. Example of performed water labelling: (a) source image and (b) labelled image. 

(a) (b)



the combination of ice, snow, and mud). Fig. 3 illustrates 
an example of labelling the scene that includes snow. 
 
2.5. Model  validation 
 
Due to the high number of bands in a hyperspectral image, 
the data files are often computationally unworkable. Thus, 
a dimensionality reduction technique is needed to deal 
with these large data files due to computational restrictions. 

Despite the classbalancing modification in the loss 
function, the segmentation tasks are usually an unbalanced 
problem. As the number of pixels per a semantic class is 
significantly different, the accuracy could be biased 
toward estimating the model’s goodness. Thus, the F1
score is preferred to validate the model’s goodness, which 
is a balanced combination of precision and recall. The 
class imbalance for the water dataset is well represented 
by the examples shown in Fig. 4. As shown in the results, 
a model without class balancing leads to a higher overall 
accuracy (72.7%) than the model with class balancing 
(46.7%). However, this information could be misleading 
regarding the goodness of the model; in particular, the F1
score of water for the first model (without class balancing) 
is 19%, whereas the F1score of the classbalanced model 
is 37%. Similar phenomena are observed for the minority 
semantic classes. 
 
 

3. RESULTS 
 
All hyperspectral images and groundtruth labels were 
concatenated into a single image, resulting in a 512 × 
(amount of images) × 30 shape for the training data and 
a 512 × (number of images) shape for the groundtruth 
labels. The results are obtained through pixelwise 
classification using a default patch size of 5 × 5 
surrounding pixels to assist in classification. The 30 
channels result from performing PCA on the 204 
hyperspectral bands. Using the DeepHyperX toolbox, 
earlier mentioned models were trained in parallel to 
observe the model response. Due to hardware constraints, 
not all available images were used in the training and 
validation process. The input images were split into 85% 
for training data and 15% for validation data. The 
specifications of the hardware used for the processing are 
described in Appendix A.  

The validation data are pixels from the training image 
which have been left out and are unknown to the model 
during training. Class balancing was performed on the 
dataset due to the issues mentioned in Section 2. Not 
performing class balancing leads to overfitting, showing 
an acceptable overall accuracy but a very poor F1score 
for the critical classes (see Table 2). 
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Fig. 3. Example of performed snow labelling: (a) source image and (b) labelled image. 

(a) (b)



3.1. Water 
 
The models were run for ten epochs each for visualization, 
and the intermediate results were compared. Using 30 
hyperspectral images and their corresponding ground 
truth, the 3D convolutional neural network (CNN) model 
developed by Hamida et al. [18] yields the most accurate 
results within the scope of the performed experiments 
with an overall validation accuracy of 46.7% and an F1
score for the water of 37.3% (see Table 3). The loss and 
validation accuracy plots of the water dataset are shown 
in Fig. 5a,b, respectively. 

The corresponding confusion matrix in Fig. 6 shows 
the (expected) confusion between asphalt and water. 
Based on the results displayed in the confusion matrix, it 
is possible to conclude that the asphalt class is most often 

incorrectly recognized. The class of asphalt is most fre 
quently confused with water, which is very reasonable. 
HSI is a surface inspection method, so wet or water
covered surfaces can be recognized as water. Since some 
of the images in the dataset were taken immediately after 
the rain, in some cases the water does not cover the sur 
face in a continuous layer, as is the case with large puddles, 
but fills in small depressions, forming micropuddles. In 
addition to water, classes of grass, concrete, and trees are 
erroneously found on the asphalt surface. These assump 
tions can be considered partially true since the labelling 
was done in a very general way. 

Observing the predictions versus the ground truth in 
Fig. 7, the approximate area where water is present is 
semiaccurately predicted. In general, it can be said that 
the approximate location of certain classes can be de 
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(a) (b)

No. Class F1 

1. Grass 0.092 
2. Concrete 0.673 
3. Asphalt 0.838 
4. Trees 0.652 
5. Water 0.198 
6. Sky 0.534 
7. Object 0.234 
8. Mud 0.410 

No. Class F1 

1. Grass 0.103 
2. Concrete 0.494 
3. Asphalt 0.547 
4. Trees 0.516 
5. Water 0.373 
6. Sky 0.440 
7. Object 0.313 
8. Mud 0.252 

Table 2. F1scores of water dataset without data balancing, 
accuracy 72.7% 

Table 3. F1scores of water dataset with balancing, accuracy 
46.7% 

 
 

Fig. 4. Imbalance in data points per class: example with a little water within the scene (a), example with no water within the scene (b). 



termined; however, it is not possible to talk about rec 
ognizing the shapes of objects. In addition, one can see sig   
nificant errors in the prediction regarding the example of 
the ‘Sky’ class, which can also be found on the road. It is 
important to note that this result was achieved at 10 epochs. 
Increasing the number of epochs leads to a better result; 
an example with 50 epochs is presented in the next sec 
tion. However, for reallife applications, knowing the 
approximate area is more critical than pixelaccurate pre 
dictions of water. 
 
3.2. Snow 
 
Compared to the HSIs including water, in the case of 
snow, the models were run for 50 epochs each, and the 
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Fig. 5. (a) Water dataset training process loss graph, (b) water 
dataset validation process accuracy graph. 

(a)

                 (b)

 
 

Fig. 6. Confusion matrix of the water dataset.

(a1)

(b1)

 
 

Fig. 7. 3D CNN model developed by Hamida et al. [18] applied 
for 10 epochs, representing ground truth (a1–a5) versus pre 
diction (b1–b5) for five sample water HSIs. (Continued on the 
next page) 
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Fig. 7. Continued on the next page

(b2)

(a3) (b3)

(a4) (b4)



intermediate results were compared to each other. Using 
ten hyperspectral images and their corresponding ground 
truth, the 3D CNN model developed by Hamida et al. [18] 
yields the most accurate results within the scope of the 
performed experiments with an overall validation accu 
racy of 65.9% and an F1score for snow of 48.5% (see 
Table 4). Another useful outcome is the F1score for the 
ice with a value of 84.8%. Extraction of this information 
may also be useful from the perspective of the ADAS 
systems and driving safety. 

The loss and validation accuracy plots of the snow 
dataset are shown in Fig. 8a,b, respectively. The cor 
respond ing confusion matrix in Fig. 9 shows the (ex 
pected) con fusion between mud and snow, and the model 
prediction versus the ground truth is observed in Fig. 10. 
The con fusion matrix shows that the snow class often gets 
con fused with the mud class. The possible reason for that 
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Fig. 7. Continued

 
No. Class F1 

1.  Grass 0.082 
2.  Concrete 0.833 
3.  Asphalt 0.848 
4.  Trees 0.672 
5.  Water 0.516 
6.  Sky 0.538 
7.  Object 0.735 
8.  Mud 0.092 
9.  Snow 0.485 

8.  Ice 0.848 

 
 

Table 4. F1scores of the snow dataset, accuracy 65.9% 

Fig. 8. (a) Snow dataset training process loss graph, (b) snow 
dataset validation process accuracy graph. 

(a)

                 (b)

Ac
cu

ra
cy

 (%
)

Lo
ss

 



may be the fact that during the labelling process, all types 
of snow were defined in a general group including pure 
loose snow, snow mixed with mud, sand, etc. For that 
reason, the dirty snow could be recognized as snow. In the 
future, this aspect can be further developed by introducing 
subclasses for the main snow class. 

It is important to note that the original images also 
included a large area where the ice class was represented. 
Snow drifts covered with a solid crust of ice were also 
noted as ice. Due to the differentiation of these classes 
during the labelling process, surfaces covered with ice 

were very well predicted. For example, in Fig. 10b1, it 
can be seen that the model was able to successfully dis 
tinguish between water, asphalt, and ice in the same zone. 
The output images of the model run for 50 epochs can 
already provide more precise information regarding both 
the shapes of the objects and their location. 
 
 
4. DISCUSSION 
 
The hardware limitations are a clear bottleneck in HSI 
classification problems. The size of each HSI is around 
200 MB. The stateoftheart frameworks, such as 
DeepHyperX, allow for training with only one image. 
Therefore, there was a need to concatenate the images 
to have a more extensive training sample, which is 
computationally very challenging on most highend 
consumer hardware. It is noteworthy that the training 
process requires specific advanced hardware. In the cur 
rent study, highperformance hardware through remote 
machines was used. The training duration of the models 
on highend GPUs took more than 24 hours. However, 
better results could be obtained using areawise clas 
sification instead of pixelwise classification. Using only 
one pixel in the classification process is prone to error due 
to distortions in capturing the scene through a hyper 
spectral camera. Using patches for classification instead 
of only one pixel is beneficial in this application, given 
that water usually exists in a collection of multiple pixels 
(pools of water) rather than as a single observed pixel at 
a time. Although Hamida et al. [18] in the DeepHyperX 
toolbox use a default patch size of 5 and do not observe 
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Fig. 9. Confusion matrix of the snow dataset. 

(a1) (b1)

 
Fig. 10. 3D CNN model developed by Hamida et al. [18] applied for 50 epochs, representing ground truth (a1–a5) versus prediction 
(b1–b5) for five sample snow HSIs. (Continued on the next page) 
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Fig. 10. Continued on the next page

(b2)
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only one pixel at a time, the patch size was not explored 
in further detail. Future research should investigate the 
optimal patch size for this classification problem. 

Furthermore, there is a lack of online documentation 
regarding HSI classification/segmentation compared to 
other topics of DL. The absence of proven models demon O
strates that techniques such as transfer learning or fineO
tuning cannot be easily applied. These techniques are 
beneficial in problems like the one this work faces, where 
the training sample is not big enough to train a deep neural 
network from scratch and have good results. Further re O
search should consider the application of transfer learning 
for this problem. 

Also, to achieve better results in future tests, more 
detailed image labelling should be considered. This can 
include creating additional classes to extend the existing 
ones; for example, the snow class can be split into several 
types of snow. In this way, it will be possible to obtain 
more detailed information regarding the materials of the 
captured objects. In addition to this, it is worth considering 
pixelOwise labelling as a tool to increase accuracy. To 
improve recognition accuracy, it may be necessary to 
expand the dataset with more diverse images. 

Finally, further improvements should be considered 
regarding the loading of data instead of concatenating all 
images. Concatenating images while using pixel patches 
for classification leads to a lot of noise at the boundary/ 
cross of every image with the next image. It could in O
fluence the effectiveness of the classification model. 
 
 
5. CONCLUSIONS 
 
The DeepHyperX toolbox was used for the rapid proto O
typing of DL hyperspectral classification models. To comply 
with the pixelOwise classification demands of the toolbox, 

every HSI and the corresponding ground truth should be 
concatenated into a single image each. Therefore, 30 images 
of the water dataset were concatenated, resulting in a single 
image with a shape of 512 × 15360 × 204. Similarly, ten 
images of the snow dataset were concatenated, resulting 
in a single image with a shape of 512 × 5120 × 204. The 
corresponding groundOtruth segmented images underwent 
the same concatenation process for the water and snow 
datasets.  

Both datasets were separately reduced in dimension 
by performing PCA, resulting in 30 channels instead of 
204. The 3D CNN by Hamida et al. [18] is the best model 
provided by the DeepHyperX toolbox, resulting in an 
accuracy of 46.7% and an F1Oscore of 37.3% for the water 
dataset run with ten epochs, and an accuracy of 65.9% 
and an F1Oscore of 48.5% for the snow dataset run with 
50 epochs.  

Due to the imbalanced class distribution of the images, 
class balancing was performed to avoid overfitting. Model 
predictions show that the model confuses asphalt and 
water. However, comparing the predictions to the base 
truth, the approximate areas where water was present were 
semiOaccurately predicted. For realOlife applications, know O
ing the approximate area is more critical than pixelOaccu O
rate predictions of water. As a result, it can be concluded 
that water, snow, and ice on the road can be detected using 
HSI classification. 
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Fig. 10. Continued
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B1. Spectrum analysis of asphalt class. 

 
 

B2. Spectrum analysis of concrete class. 
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Teeolude  hindamine  sügavõppe  abil  hüperspektraalsete  piltidega:   
vee  ja  lume  tuvastamine 

 
Daniil Valme, Javier Galindos ja Dhanushka Chamara Liyanage 

 
Teeolude jälgimine on sõidukite tajusüsteemide üks olulisemaid ülesandeid. Vee, lume, jää või teekatet katva muu aine 
olemasolu mõjutab sõiduki veeretakistust ja juhitavust, mis on otseselt seotud liikluses osalejate ohutusega. Andureid, 
nagu RGB,kaamerad, infrapunaandurid ja millimeeterlaine radarid, kasutatakse teekatete jälgimiseks ja kontrollimiseks. 
Uurimuse eesmärk on pakkuda tööriista sisendpildi segmenteerimiseks õigetesse klassidesse. Tööriista DeepHyperX 
kasutati sügavõppe klassifitseerimismudelite kiireks prototüüpimiseks hüperspektraalsete piltide jaoks. Esitletakse aren,
datud algoritmi tõhusust mitmesugustes juhtumianalüüsides ja leiab kinnitust, et väike iteratsioonide arv on piisav vee, 
lume ja jää tuvastamiseks teekatte pinnal. 
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