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Abstract. This paper addresses Radhakrishnan–Kundu–Lakshmanan equation that arises in the study of soliton dynamics in optical
fibers. The bifurcation analysis is carried out and the phase portraits are displayed. The complete discriminant analysis also leads
to solitons and other solutions to the model.
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1. INTRODUCTION

There are several models to address dispersive optical solitons. Some of them are Schrodinger–Hirota’s
equation, Fokas–Lenells equation, Lakshmanan–Porsezian–Daniel equation and many more. One of the
lesser visible models is the Radhakrishnan–Kundu–Lakshmanan (RKL) equation that introduces a third-
order dispersion (3OD) in addition to the pre-existing chromatic dispersion (CD). The nonlinear form of
the refractive index stems from the effect of the Kerr law of nonlinearity. A wide range of results have
been obtained with the RKL equation during the past few years since its introduction in 1999 [1–14]. The
current paper is a revisitation of the RKL equation from a different perspective. The bifurcation analysis for
this model will be addressed and the phase portrait analysis will be carried out in detail. Subsequently, the
complete discrimination analysis will yield dark and singular solitons, singular periodic solutions as well as
cnoidal waves. The surface plots of such solutions are also exhibited to gain a complete understanding of
the model.
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In the present work, we are going to consider the perturbed nonlinear RKL equation as follows [11,12]:

iut +b1uxx +b2|u|2u = i[bux +µ(|u|2u)x +d (|u|2)xu�auxxx], (1)

where u = u(x, t) is the complex-valued function that represents the wave variable. x and t denote the spatial
and temporal variables, respectively. The first term represents linear evolution, the coefficient b1 stands for
CD and b2 represents the nonlinear term that is of Kerr type. On the right side of Eq.(1), nonzero constant b
stands for the inter-modal dispersion that is considered in addition to CD. Furthermore, the coefficient µ is
the self-steepening effect. d stands for the effect of self-frequency shift. Finally, the coefficient a represents
3OD whenever group velocity dispersion (GVD) carries a low count. This work will retrieve some new dark
solitons, singular solitons, bright solitons and some other traveling wave solutions by means of dynamical
theory as well as the complete discriminant system technique.

The layout of this article is designed as follows. In Section 2, the corresponding phase diagrams and
Hamiltonian function of system (1) have been obtained. Then, multiple optical soliton solutions are deduced
by means of the dynamical theory. Some other traveling wave solutions are also recovered with the help of
symbolic computation and the complete discriminant system method in Section 3. In Section 4, numerical
simulations are given. Finally, we summarize the results of the current study in the last section.

2. PHASE PORTRAITS AND OPTICAL SOLITONS FOR THE PERTURBED RKL
EQUATION

In order to analyze the dynamical behavior and seek the optical soliton solutions for the perturbed nonlinear
RKL equation, we first assume that system (1) owns the traveling wave transformation as follows:

u(x, t) = P(x )exp[ih(x, t)], x = x� ct, h(x, t) =�lx+kt +w0, (2)

where c represents the velocity, l denotes the frequency, k stands for the wave number and w0 denotes the
phase constant.

On plugging (2) into (1) and separating the real and imaginary parts, we have

(b1 +3al )P00 � (k +bl +b1l 2 +al 3)P+(b2 �µl )P3 = 0 (3)

and
3aP00 �3(c+b +2b1l +3al 2)P� (3µ +2d )P3 = 0. (4)

For Eq. (3), note that P0 = f , then we can easily obtain a planar dynamical system
(

dP
dx = f ,
df
dx =�C1P3 +C2P,

(5)

with the Hamiltonian
H(P,f) = 1

2
f 2 +

C1

4
P4 � C2

2
P2 = h, (6)

where C1 =
b2�µl

b1+3al and C2 =
k+bl+b1l 2+al 3

b1+3al .

Next, in order to obtain the plane phase portraits of system (5), note that F(P) =�C1P3+C2P. If C1C2 > 0,
we can easily observe three zeros of F(P), which include P0 = 0, P1 =�

q
C2
C1

and P2 =
q

C2
C1

. If C1C2 < 0,
we get one zero of F(P), which is P3 = 0. Suppose that Mi(Pi,0) (i = 0,1,2) are the equilibrium points of
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system (5), then the eigenvalue of system (5) at the equilibrium point is written as λ1,2 =±
√

F ′(P). Accord-
ing to the qualitative theory of planar dynamical systems [15,16], it is easy to notice that the equilibrium
point Mi(Pi,0) is called a saddle point when F ′(Pi)> 0, the equilibrium point Mi(Pi,0) is called a degraded
saddle point when F ′(Pi) = 0, the equilibrium point Mi(Pi,0) is called a center point when F ′(Pi)< 0. De-
pending on different parameters C1 and C2, the phase portraits of system (5) are shown in Figs 1 and 2.

Case 1.1. C1 > 0, C2 > 0

In this case, we observe that system (5) owns three equilibrium points. M1(−
√

C2
C1
,0) and M2(

√
C2
C1
,0)

are center points, M0(0,0) is a saddle point (see Fig. 2).

(a) C1 < 0, C2 > 0 (b) C1 > 0, C2 < 0

Fig. 2. The bifurcation phase portraits of system (5).

(a) C1 > 0, C2 > 0 (b) C1 < 0, C2 < 0

Fig. 1. The bifurcation phase portraits of system (5).
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(i) When h 2 (� C2
2

4C1
,0), we observe that there exist two families of periodic orbits, then Eq. (6) can be

modified as follows:
f 2 =

C1

2
(�P4 +

2C2

C1
P2 +

4h
C1

) =
C1

2
(P2 � z2

1)(z
2
2 �P2), (7)

where z2
1 = C2

C1
� 1

C1

q
C2

2 +4C1h and z2
2 = C2

C1
+ 1

C1

q
C2

2 +4C1h. Next, by using (7) to integrate the first
equation of (5) along the periodic orbits, we get the two integral equations in the following forms:

Z z2

P

djq
(j2 � z2

1)(z
2
2 �j2)

=±
r

C1

2
(x �x0) (8)

and Z P

�z2

djq
(j2 � z2

1)(z
2
2 �j2)

=±
r

C1

2
(x �x0). (9)

Thus, we construct the smooth periodic solution of system (1) in the following form:

u1,1(x, t) =±z2dn

0

@z2

r
C1

2
(x� ct �x0),

q
z2

2 � z2
1

z2

1

A⇥ exp(i(�lx+kt +w0)). (10)

It is obvious to find that u1,1 stands for the Jacobian elliptic function solution. As is shown in Fig. 2, we
observe that u1,1(x, t) denotes two families of periodic orbits in the right half-plane and left half-plane.

(ii) For h = 0, we get z2
1 = 0 and z2

2 = 2C2
C1

. Therefore, the two bell-shaped solitary wave solutions of
system (1) take the form

u1,2(x, t) =±
r

2C2

C1
sech

⇣p
C2(x� ct �x0)

⌘
⇥ exp(i(�lx+kt +w0)). (11)

(iii) When h 2 (0,+ •), one has

f 2 =
C1

2
(�P4 +

2C2

C1
P2 +

4h
C1

) =
C1

2
(P2 + z2

1h)(z
2
2h �P2), (12)

where z2
1h =�C2

C1
+ 1

C1

q
C2

2 +4C1h and z2
2h =

C2
C1

+ 1
C1

q
C2

2 +4C1h.

Inserting (12) into the first equation of (5), integrating them along the periodic orbits, we have

Z P

0

djq
(j2 + z2

1h)(z
2
2h �j2)

=±
r

C1

2
(x �x0), (13)

where x0 is the integral constant. From (2) and (13), the periodic traveling wave solutions of system (1) are
as follows:

u1,3(x, t) =±z2hcn

0

@

s
C1(z2

1h + z2
2h)

2
(x� ct �x0),

z2hq
z2

1h + z2
2h

)

1

A⇥ exp(i(�lx+kt +w0)). (14)
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Case 1.2. C1 < 0, C2 < 0

Under the conditions of C1 < 0 and C2 < 0, we find that there are two heteroclinic orbits of system (5),
which connect two saddle points M1 = (�

q
C2
C1
,0) and M2 = (

q
C2
C1
,0). As is shown in Fig. 1, there is a

family of periodic orbits, which enclose the center point M0(0,0).

(i) When h 2 (0,� C2
2

4C1
), we notice that there exists a family of periodic orbits of (5) defined by the fol-

lowing algebraic equation:

f 2 =�C1

2
(P4 +

2C2

C1
P2 � 4h

C1
) =�C1

2
(z2

3h �P2)(z2
4h �P2), (15)

where z2
3h =

C2
C1

� 1
C1

q
C2

2 +4C1h and z2
4h =

C2
C1

+ 1
C1

q
C2

2 +4C1h.

Plugging (15) into the first equation of (5), then integrating them along the periodic orbits, we get
Z P

0

djq
(z2

3h �j2)(z2
4h �j2)

=±
r

�C1

2
(x �x0). (16)

According to (2) and (16), we construct the traveling wave solutions of system (1) in the following form:

u1,4(x, t) =±z3hsn

 
z4h

r
�C1

2
(x� ct �x0),

z3h

z4h

!
⇥ exp(i(�lx+kt +w0)). (17)

(ii) When h = � C2
2

4C1
, we derive that z2

3h = z2
4h = C2

C1
. As a consequence, we deduce two families of kink-

shaped solitary wave solutions of (1) in the following form:

u1,5(x, t) =±
r

C2

C1
tanh

 r
�C2

2
(x� ct �x0)

!
⇥ exp(i(�lx+kt +w0)). (18)

3. TRAVELING WAVE SOLUTIONS FOR THE RKL EQUATION VIA THE COMPLETE
DISCRIMINANT SYSTEM METHOD

It is generally known that professor Yang and his team [17] introduced an algorithm in 1996, which could
calculate the complete discrimination system of higher-order polynomials with the help of the computer
algebra. In recent years, many researchers and scholars have constructed many different types of solitary
wave solutions [18–25] through the complete discriminant system technique.

Next, we take (3) into consideration by multiplying it with P0, and integrating once, we have

(P0)2 = E4P4 +E2P2 +E0, (19)

where E4 =� b2�µl
2b1+6al , E2 =

k+bl+b1l 2+al 3

b1+3al and E0 is the integration constant.

Consider the following transformation:
8
>>>><

>>>>:

P =±
q
(4E4)�

1
3 F,

e1 = 4E2(4E4)�
2
3 ,

e0 = 4E0(4E4)�
1
3 ,

x1 = (4E4)
1
3 x .

(20)
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Then Eq. (20) can be modified as follows:

(
dF
dx1

)2 = F(F2 + e1F+ e0). (21)

Integrating (21) once, we deduce
Z dFp

F(F2 + e1F+ e0)
=±(x1 �x0), (22)

where x0 is the integration constant and denotes the value of x0 as zero. Let G(F)=F2+e1F+e0; therefore,
we derive its complete discrimination system as follows:

D = e2
1 �4e0. (23)

It follows from the root-classifications of (23) that there are four cases to be discussed.

Case 2.1. Assume that D = 0. As for F > 0, we get

±(x1 �x0) =
Z dFp

F(F+ e1
2 )

. (24)

When e1 > 0, it follows from (2), (20) and (24) that the optical soliton solutions of (1) take the form

u2,1(x, t) =±

s
k +bl +b1l 2 +al 3

µl �b2
⇥ exp(i(�lx+kt +w0))

⇥ tan

8
<

:2�
7
6

s
k +bl +b1l 2 +al 3

b1 +3al
(
2b1 +6al

µl �b2
)

1
3


(
2µl �2b2

b1 +3al
)

1
3 x �x0

�9=

; .

(25)

If e1 < 0, from (2), (20) and (24), system (1) owns the traveling wave solutions as follows:

u2,2(x, t) =±

s

�k +bl +b1l 2 +al 3

µl �b2
⇥ exp(i(�lx+kt +w0))

⇥ tanh

8
<

:2�
7
6

s

�k +bl +b1l 2 +al 3

b1 +3al
(
2b1 +6al

µl �b2
)

1
3


(
2µl �2b2

b1 +3al
)

1
3 x �x0

�9=

;

(26)

and

u2,3(x, t) =±

s

�k +bl +b1l 2 +al 3

µl �b2
⇥ exp(i(�lx+kt +w0))

⇥coth

8
<

:2�
7
6

s

�k +bl +b1l 2 +al 3

b1 +3al
(
2b1 +6al

µl �b2
)

1
3


(
2µl �2b2

b1 +3al
)

1
3 x �x0

�9=

; .

(27)

When e1 = 0, the rational function solutions of system (1) are as follows:

u2,4(x, t) =±2
2
3 (� b2 �µl

2b1 +6al
)�

1
6 ⇥ exp(i(�lx+kt +w0))⇥ [(

2µl �2b2

b1 +3al
)

1
3 x �x0]

�1. (28)
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Case 2.2. Assume that D > 0 and e0 = 0. As for F >�e1, we have

±(x1 �x0) =
Z dF

F
p

F+ e1
. (29)

If e1 > 0, it follows from (2), (20) and (29) that the optical soliton solutions of system (1) can be deduced
as follows:

u2,5(x, t) =±

s
k +bl +b1l 2 +al 3

µl �b2
⇥ exp(i(�lx+kt +w0))

⇥

8
<

:tanh2

2

42�
7
6

s
k +bl +b1l 2 +al 3

b1 +3al
(
2b1 +6al

µl �b2
)

1
3


(
2µl �2b2

b1 +3al
)

1
3 x �x0

�3

5�2

9
=

;

1
2

(30)

and

u2,6(x, t) =±

s
k +bl +b1l 2 +al 3

µl �b2
⇥ exp(i(�lx+kt +w0))

⇥

8
<

:coth2

2

42�
7
6

s
k +bl +b1l 2 +al 3

b1 +3al
(
2b1 +6al

µl �b2
)

1
3


(
2µl �2b2

b1 +3al
)

1
3 x �x0

�3

5�2

9
=

;

1
2

.

(31)

When e1 < 0, from (2), (20) and (29), the optical soliton solutions of system (1) can be constructed in the
following form:

u2,7(x, t) =±

s

�k +bl +b1l 2 +al 3

µl �b2
⇥ exp(i(�lx+kt +w0))

⇥

8
<

:tan2

2

42�
7
6

s

�k +bl +b1l 2 +al 3

b1 +3al
(
2b1 +6al

µl �b2
)

1
3


(
2µl �2b2

b1 +3al
)

1
3 x �x0

�3

5+2

9
=

;

1
2

.

(32)

Case 2.3. Assume that D > 0, e0 6= 0 and g1 < g2 < g3, and then we suppose that one of g1, g2, g3 is
zero and the rest of them are two different roots of G(F) = 0. By considering the following transformation
F = g1 +(g2 � g1)sin2 q , we obtain

±(x1 �x0) =
2p

g3 � g1

Z dqq
1� k2

1 sin2 q
, (33)

where k2
1 =

g2�g1
g3�g1

. From (2), (20) and (33), we deduce the Jacobian elliptic function solutions of (1) in the
following form:

u2,8(x, t) =±(
2µl �2b2

b1 +3al
)�

1
6 ⇥ exp(i(�lx+kt +w0))

⇥
⇢

g1 +(g2 � g1)sn2
✓p

g3 � g1

2
[(

2µl �2b2

b1 +3al
)

1
3 x �x0],k1

◆� 1
2

.

(34)
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For another transformation Φ = −γ2 sin2 θ+γ3
cos2 θ , from (2), (20) and (33), we construct the Jacobian elliptic

function solutions of system (1):

u2,9(x, t) =±(
2µλ −2b2

b1 +3αλ
)−

1
6 × exp(i(−λx+κt +ω0))

×

⎧
⎨

⎩
−γ2sn2

(√
γ3−γ1

2 [( 2µλ−2b2
b1+3αλ )

1
3 ξ −ξ0],k1

)
+ γ3

cn2
(√

γ3−γ1
2 [( 2µλ−2b2

b1+3αλ )
1
3 ξ −ξ0],k1

)

⎫
⎬

⎭

1
2

.

(35)

Case 2.4. Assume that ∆ < 0. By using the transformation Φ =
√

e0 tan2 θ
2 , we derive

±(ξ1 −ξ0) = (e0)
− 1

4

∫ dθ
1− k2

2 sin2 θ
, (36)

where k2
2 =

2
√

e0−e1
4
√

e0
. According to (2), (20) and (36), we derive the Jacobian elliptic function solutions of

system (1) as follows:

u2,10(x, t) =±(
2b1E0 +6αλE0

µλ −b2
)

1
4 × exp(i(−λx+κt +ω0))

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2

1+ cn
[(

32b1A3
0+96αλA3

0
µλ−b2

) 1
12
[( 2µλ−2b2

b1+3αλ )
1
3 ξ −ξ0],k2

] −1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

1
2

.

(37)

4. NUMERICAL SIMULATIONS

In this section, we are going to select some suitable parameters to simulate traveling wave solutions of
system (1) in a two-dimensional and three-dimensional space. As is shown in the graphs, we find that Fig. 3a
stands for the bright soliton solutions u1,2, Fig. 5a signifies the envelope of the dark soliton solutions u1,5
and Fig. 7a denotes the rational function solutions u2,4. Also, two-dimensional plots (Figs 3b, 5b, 7b) stand
for the level curve at two different times t = 1 and t = 0. Figures 4a, 6a, 8a and Figs 4b, 6b, 8b represent the
density and contour plots.

Fig. 3. The diagrams of u1,2(x, t) in Eq. (11) at C1 = 2, C2 = 3, A = 1, c = 2, ξ0 = 0.
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(a) Real 3D surface (b) Real 2D surface

Fig. 5. The diagrams of u1,5(x, t) in Eq. (18) at C1 =−2, C2 =−3, c = 2, ξ0 = 0.

(a) Density plot (b) Contour plot

Fig. 4. The diagrams of u1,2(x, t) in Eq. (11) at C1 = 2, C2 = 3, c = 2, ξ0 = 0.
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(a) Density plot (b) Contour plot

Fig. 6. The diagrams of u1,5(x, t) in Eq. (18) at C1 =−2, C2 =−3, c = 2, ξ0 = 0.

(a) Real 3D surface (b) Real 2D surface

Fig. 7. The diagrams of u2,4(x, t) in Eq. (28) at b1 = b2 = α = λ = 1, µ = 2, c = 2, ξ0 = 0.
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5. CONCLUSIONS

The current paper is a complete understanding of the RKL equation from the bifurcation point of view. The
dynamical system of the parameters gave way to the analysis and the evolution of the phase portraits. The
complete discrimination system analysis also yielded solitons, cnoidal waves and singular periodic solutions
to the model. This novel analysis for the RKL model is reported for the first time in the work. The results are
extremely promising. Later, the analysis will be further carried out with additional forms of the nonlinear
refractive index for the RKL model. Some preliminary results for such models have already been reported
in those cases. The bifurcation analysis is yet to be carried out and those results are currently awaited.
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