EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XIV KÖIDE FÜÜSIKA-MATEMAATIKA- JA TEHNIKATEADUSTE SEERIA. 1965, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XIV СЕРИЯ ФИЗИКО-МАТЕМАТИЧЕСКИХ И ТЕХНИЧЕСКИХ НАУК. 1965, № 4

https://doi.org/10.3176/phys.math.tech.1965.4.16

Х. РАУДЕ, О. ЭЙЗЕН

О СОСТАВЕ НАСЫЩЕННЫХ УГЛЕВОДОРОДОВ СРЕДНИХ ФРАКЦИЙ СЛАНЦЕВОЙ СМОЛЫ

В данной работе излагаются результаты исследования насыщенных углеводородов средних фракций туннельной смолы.

Легкая, средняя и тяжелая смолы смешивались в таком отношении, в каком их получают по данным цеха туннельных печей СПК «Кивиыли». Полученная таким образом суммарная смола хроматографировалась методом промывания на силикагеле КСМ с целью выделения групп парафиновых-нафтеновых, олефиновых и ароматических углеводородов и кислородных соединений.

Результаты жидкостно-адсорбционной хроматографии суммарной смолы приведены в табл. 1.

Таблица 1

ALL AND AL								
Групповые компоненты	Содержа- ние на суммар-	Удельный вес 1 ²⁰	Показа- тель прелом-	Бромное число	Содер- жание серы,	Результаты элементарного анализа, %		
	лу, вес. %	"4	n_D^{20}	Was louis Preference	%	Н	C	
Парафины и нафтены	4,6	0,7810	1,4363	0	0			
Олефины	5,5*	0,8052	1,4520	75	0,06	13,86	85,53	
Ароматические углеводороды	41,9	0,9934	1,5601	23	0,91	9,76	86,47	
Кислородные соединения	45,3		-	68	0,40	9,12	79,68	
Потеря	2,7	le la la la	h <u>p</u> ara	1 C		(1 - m	02_00	
Bcero	100,0	-	140_0	-	C.C.	or Chen	_	
and the second		the second se						

Результаты хроматографирования суммарной смолы

* Газохроматографический анализ ароматических углеводородов показал содержание в них значительного количества олефинов [¹]. Следовательно, действительное содержание олефинов в суммарной смоле выше.

Исследование адсорбируемости углеводородов из искусственных смесей показало, что изо- и циклические олефины отделяются от ароматических углеводородов на силикагеле неполностью [²]. Концентрат парафиновых углеводородов ректифицировали в колонке эффективностью 15 теоретических тарелок на узкие фракции. Результаты приведены в табл. 2.

Таблица 2

№ фракции	Пределы кипения при нор- мальном давлении, °C	Пределы кипения при пони- женном давлении, °C	Цавление, мм pr. cr.	Вес фракции, г	Вес дистил- лята, г	Количество фракции на парафино- нафтеновый концентрат, вес. %	Показатель преломления n _D ²⁰
1-5	До 170	TORONT CORES	760		17,3	21,8	S
6	170—195	75—86	17	4,1	21,4	5,2	1,4280
7.	195—210	86—98	17	3,9	25,3	4,9	1,4300
8	210-216	98—103	17	2,8	28,1	3,5	1,4310
9	216—233	до 104	9	4,1	32,2	5,2	1,4382
10	233—243	104—113	9	3,7	35,9	4,7	1,4387
11	243 —253	113—122	9	4,1	40,0	5,2	1,4427
12	253—268	122—134 .	9	4,4	44,4	5,6	1,4460
13	268—280	134—145	9	4,2	48,6	5,3	1,4470
14	280—293	145-155	9	4,3	52,9	5,4	1,4492
15	293—305	155—165	. 9	4,2	57,1	5,3	1,4510
16	305—313	165—171	9	2,4	59,5	3,0	1,4549
Остаток	H Thorag	anna anna t		17,1	76,6	21,6	Твердый
Потеря	ana tana ana	ing	0-000	2,6		3,3	-
Bcero	habi — nige	HIS - TR	1 summer		-	100,0	

Результаты ректификации парафино-нафтеновой смеси

В настоящее время для отделения углеводородов с прямой цепью от углеводородов другой структуры применяют их селективную адсорбцию на синтетических цеолитах 5А [³⁻¹⁰]. В данной работе использовалась адсорбция на молекулярных ситах типа CaA вместе с газохроматографическим анализом для определения кипящих выше 200° С нормальных парафинов сланцевой смолы.

Гранулированные молекулярные сита типа СаА измельчали и выделяли фракцию с размером зерен 10—15 меш. Молекулярные сита активировали в вакууме при 300°. Фракции парафинов-нафтенов обрабатывали молекулярными ситами в кипящем растворе изооктана в течение четырех'часов. Весовое соотношение анализируемой смеси парафинов и активированных молекулярных сит составляло 1:20. Неадсорбированные парафины вместе с изооктаном отделяли от цеолита фильтрованием.

Молекулярные сита промывали 2—3 раза горячим изооктаном. Изопарафины и нафтены получали путем тщательного удаления изооктана в микродистилляционной установке. Содержание изооктана в остатке определяли газохроматографическим путем.

Поскольку десорбция нормальных парафинов под действием легкокипящего *н*-парафина требует довольно много времени, было решено вычислять соотношение нормальных и изо- и циклических парафинов во фракции на основе не адсорбируемой на молекулярных ситах части.

Для проверки полноты адсорбции н-парафинов на молекулярных ситах, на приборе УХ-1 были проанализированы как исходные фракции, так и остатки после обработки молекулярными ситами. Условия проведения газохроматографического анализа были следующие: длина колонки — 6 м, внутренний диаметр — 4 мм, твердый носитель — силоцель С-22, жидкая фаза — полиэтиленгликоль 4000 (20% от наполнителя), температура колонки — 180°, газ-носитель — водород.

Содержащиеся в исходных фракциях *н*-алканы идентифицировались по их относительным временам удерживания при помощи эталонных

Рис. 1. Газохроматограммы: А — исходной фракции парафинов 10; Б — фракции 10 после обработки молекулярными ситами тина СаА; В — адсорбированных на молекулярных ситах и-парафинов фракций 10 и 11, полученных последующим экстрагированием и-гексаном. Пики: 1 — и-додекан;

2 — *н*-тридекан; 3 — *н*-тетрадекан. Чувствительность прибора при регистрации пика 2 на газохроматограмме А уменьшена в 5 раз.

смесей. Обработка молекулярными ситами типа CaA вызывает на газохроматограммах исчезновение пиков, соответствующих нормальным парафинам. Для иллюстрации этого положения на рис. 1 (*A* и *Б*) представлены газохроматограммы фракции 10 до и после соприкосновения с молекулярными ситами. На рисунке 1*B* приведена газохроматограмма нормальных парафинов фракций 10 и 11, адсорбированных на молекулярных ситах и вновь полученных путем вытеснения *н*-гексаном.

Данные о содержании нормальных и изо- и циклических парафинов в исследованных фракциях по молекулярно-ситовому анализу приведены в табл. 3. Газохроматографический анализ показал, что часть *н*-гептадекана и *н*-октадекана не адсорбировалась на молекулярных ситах и, следовательно, содержание *н*-парафинов во фракциях 15 и 16 выше, чем следует из табл. 3. Там же представлены газохроматографически доказанные *н*-парафины (в случае нескольких *н*-парафинов главный компонент набран в разрядку). Температура кипения относится к главному компоненту.

Таблица З

№ фрак- ции	Содержа- ние изо- и цикличе- ских пара- финов во фракции, вес. %	Содержа- ние н-пара- финов во фракции, вес. %	Содержащиеся во фрак- ции <i>к</i> -парафины	Темпера- тура кипе- ния <i>н</i> -пара- финов, °С
7	27,2	72,8	н-Ундекан н-Додекан	195,8
8	27,4	72,6	<i>н-</i> Ундекан <i>н-</i> Додекан	216,2
9	43,8	56,2	н-Додекан н-Тридекан	INT. RAMPORT
10	42,9	57,1	<i>н-</i> Додекан <i>н-</i> Тридекан	235,5
11	55,2	44,8	<i>н</i> -Тридекан <i>н</i> -Тетрадекан	253,6
12	67,5	32,5	н-Тетрадекан н-Пентадекан	270,6
13	64,8	35,2	н-Пентадекан н-Гексадекан	
14*	t-11 TROTH	-	н-Гексадекан	287,1
15	71,8	28,2	н-Гептадекан	302,7
16	90,2	9,8	н-Гептадекан н-Октадекан	317,5
Остаток ректифи- кации	86,5	13,5	н-Нонадекан н-Эйкозан и-Хенэйкозан	

Содержание нормальных и изо- и циклических парафинов в средних фракциях смолы туннельных печей

 Данные о содержании нормальных и других парафиновых углеводородов во фракции 14 получены путем газохроматографического анализа и приведены ниже.

Из приведенных в табл. З данных видно, что доля изо- и циклических соединений в кипящей выше 200° парафиновой части постоянно возрастает по мере повышения температуры кипения фракций.

Количество индивидуальных *н*-парафинов C₁₁—C₁₆ по данным газохроматографического анализа представлено в табл. 4.

Из разветвленных структур в исследуемых фракциях возможно наличие 2-метилпарафинов. В качестве эталонов в настоящей работе применялись 2-метилоктан и 2-метилдекан. Поскольку идентификация всех 2-метилпарафинов путем сравнения их относительных времен удерживания с теми же величинами эталонных веществ была невозможна, пользовались графическим способом идентификации [^{11, 12}].

На рис. 2 сплошной линией (I) изображена зависимость между числом С-атомов в молекуле н-парафинов и логарифмом их относительного

<i>к</i> -Парафин	Содержание н-па- рафина в пересчете на 200—300° пара- фино-нафтеновую часть, %	Содержание <i>н</i> -па- рафина в ћере- счете на 200—300° смолу, %
in a separate	7.9	Gentangol and and a
н-Ундекан	1,2	0,7
н-Тридекан	11.1	1.2
н-Тетрадекан	8,3	0,9
н-Пентадекан	10,6	1,1
н-Гексадекан	7,9	0,8
Всего	55,0	5,7

времени удерживания (*н*-декан принят за 100). Точки, соответствующие 2-метилоктану и 2-метилдекану располагаются так, что при их соединении образуется линия, параллельная прямой *н*-алканов. Эту пунктирную линию (II) экстраполировали в сторону больших чисел С-атомов. Нижняя пунктирная линия (III) соответствует *н*-1-алкенам.

Рис. 2. Зависимость между числом С-атомов и логарифмом относительных времен удерживания: І *н*-алканы; ІІ — 2-метилалканы; ІІІ — *н*-1-алкены, Номерами 7—13 обозначены фракции парафинов, в которых обнаружен соответствующий 2-метилцарафин.

На основании газохроматограмм изо- и циклических парафинов, полученных после обработки исходных фракций молекулярными ситами, нашли относительные времена удерживания всех компонентов (H-декан = 100).При вычислении числа С-атомов в молекуле этих соединений исходили из н-парафинов. Поскольку 2-метилдекан выходит из колонки до н-ундекана, не-Известные ПИКИ между н-деканом и н-ундеканом считали принадлежащими соединениями с 11 С-атомами в молекуле. Анало-ГИЧНЫМ приближением пользовались и для пиков, выходящих между другими н-парафинами. При помощи пунктирной линии (II) находили пик, соответствующий каждому 2-метилпарафину в исследованной области. При-

Таблица 4

близительные количества 2-метилпарафинов вычисляли по газохроматограммам изо- и циклических парафинов. Результаты вычислений представлены в табл. 5.

Для определения соединений с шестичленными циклами пользовались методом микроаналитического дегидрирования с последующим газо-

1	a	n	111	11	101	12
1	u	υ.	/11	ιu	u	U

S.P. Sanna		Real And			Line La sur		
No		Содер 2-метилп %, в пер	жание арафина, есчете на	Содержание цикло- гексановых углево- дородов, %			
фрак- ции	Идентифицированные 2-метилпарафины	изо- и цикли- ческую часть	всю фрак- цию	в изо- и цик- лической части пара- финовых фракций	на всю фрак- цию		
7	2 - Метилундекан 2-Метилдодекан	33,1	9,0	21,5	5,8		
8	2-Метилундекан 2 - Метилдодекан	-	13,2	25,3	6,9		
9	2 - Метилдодекан 2-Метилтридекан	19,0	8,6	17,6	7,7		
10	2-Метилтридекан		8,8	28,8	12,4		
11	2 - Метилтридекан 2-Метилтетрадекан	23,2	12,9	12,0	6,6		
12	2 - Метилтетраде- кан 2-Метилпентадекан	31,9	21,5	28,9	19,5		
13	2-Метилпентадекан 2 - Метилгексаде- кан	39,8	25,8	25,3	16,4		

Содержание 2-метилпарафинов и соединений с шестичленными циклами в парафиновой части туннельной смолы

хроматографическим анализом [¹³]. Полуметровая колонка, содержащая 2 мл катализатора дегидрирования (5% Pd на силикагеле ШСК), предшествовала газохроматографической колонке. Свободный объем реактора дегидрирования наполняли измельченным стеклом. Дегидрирование проводили при температуре 340°. Условия газохроматографического анализа описаны выше.

Опыты, проведенные с чистыми веществами, показали, что в избранных условиях циклогексановые углеводороды почти полностью переходят в соответствующие ароматические соединения.

Для определения содержания в туннельной смоле нафтенов с шестичленными циклами использовали ту часть парафиновых фракций, которая осталась после обработки их молекулярными ситами. Изменение, происходившее с фракциями изо- и циклических парафинов в указанных условиях дегидрирования, фиксировалось газохроматографически как исчезновение или уменьшение некоторых пиков в парафиновой части и появление пиков ароматических углеводородов. Для иллюстрации этого на рис. 3 приведены газохроматограммы изо- и циклических парафинов фракции 10 до и после дегидрирования.

Количество соединений циклогексанового ряда в парафиновых фракциях представлено в табл. 5. Ароматические соединения, полученные путем дегидрирования, отдельно не идентифицировались. Установлено, что большинство из них представляет собой одноядерные ароматические углеводороды.

Методом жидкостно-адсорбционной хроматографии на силикагеле было установлено, что парафиновые и нафтеновые углеводороды состав-

Рис. З. Газохроматограммы изо- и циклических парафинов фракции 10 до (А) и после (Б) дегидрирования.

ляют 10,5% всей сланцевой смолы, кипящей в интервале температур от 200 до 300°. Принадлежность исследованных фракций 7-14 к тому же температурному интервалу дает возможность оценить содержание нормальных, изо- и циклических парафинов в пересчете на смолу, кипящую в пределах 200—300°. В табл. 6 приведены итоги анализа парафиновых фракций, полученные обработкой молекулярными ситами типа СаА, микроаналитической дегидрогенизацией и газохроматографическим анализом. Соединения с нормальной структурой составляют 51,2, а соединения с разветвленной и циклической структурой — 48,8%. Из последних 2-метилпарафины составляют 15,2, шестичленные нафтены — 11,2 и другие разветвленные и содержащие пятичленные циклы соединения 22,4%.

В парафиновой части, кипящей выше 300°, были идентифицированы *н*-гептадекан во фракциях 15 и 16 и *н*-октадекан во фракции 16. В остатке ректификации парафинового концентрата обнаружены н-октадекан, *н*-эйкозан и *н*-хенэйкозан.

. C	3	
	5.	
	5	
:	3	
e	-	
- 30	3	
5	ž	
F	4	

9

*

Состав парафино-нафтеновой части туннельной смолы (200-300°)

а- Содержание изо- и циклических парафинов, % к	ак- содержание нор- об. мальных парафи- лин- нов, % к дан- ной пара- фрак-финам смоле фрак-финам смоле фрак-финам или или	мо. ной пара- ны фрак- финам ле ции другие изо- и другие изо- и циклами парафины соединения с другие изо- и циклами парафины	1.3 72.8 9.0 0.9 27.2 3.4 0.4 9.0 1.1 0.1 5.8 0.7 0.07 12.4 1.6 0.17	10 796 64 07 974 25 0.3 13.2 1.2 0.1 6.9 0.6 0.06 7,3 0.7 0.07	1.4 = 56.2 = 7.3 = 0.8 = 43.8 = 5.7 = 0.6 = 8.6 = 1.1 = 0.1 = 7.7 = 1.0 = 0.10 = 27.5 = 3.6 = 0.38	12 571 67 07 42.9 5.0 0.5 8.8 1.0 0.1 12.4 1.5 0.16 21.7 2.5 0.26	13 448 58 0.6 552 7.2 0.7 12.9 1.7 0.2 6.6 0.9 0.09 55.7 4.6 0.48	15 325 45 05 675 95 1.0 21.5 3.0 0.3 19.7 2.7 0.28 26.3 3.8 0.42	1.4 35.2 4.7 0.5 64.8 8.7 0.9 25.8 3.4 0.4 16.4 2.2 0.23 22.6 3.1 0.27	$1.4 \ \ 49.5 \ \ 6,8 \ \ 0,7 \ \ 50.5 \ \ 6,8 \ \ 0,7 \ \ 20,0 \ \ 2,7 \ \ 0,3 \ \ 12,0 \ \ 1,6 \ \ 0,17 \ \ 18,5 \ \ 2,5 \ \ 0,23 \ 0,23 \ \ 0,23 \ 0,23 \ \ 0,23 \ \ 0,23 \ \ 0,23 \ \ 0,23 \ \ 0,23 \ \ 0,23 \ \ 0,23 \ \ 0,23 \ 0,23 \ \ 0,23 \ 0,23 \ 0,23 \ 0,23 \ 0,23 \ 0,23 \ 0,23 \ 0,23 \ 0,23 \ 0,23 \ 0,23 \ 0,23 \ 0,23 \ 0,23 \ 0,23 \ 0,23 \ 0,23 \$	22.4 2.30 Et 2.4 2.30 22.4 2.30
жа-	рак- соден к об- мальн коли- н ву	смо- дан- лы фрак- ции	1.3 79.8	10 79.6	1.4 56.2	1.2 57.1	13 44.8	1.5 32.5	1.4 35.2	1,4 49,5	10
Содер:	ние ф Ме ции, % Ме ццему к фрак-	ции пара- фи- нов	7 194	×0	9 130	10 117	11 130	19 14.0	13 13.4	14 13,6	

ЛИТЕРАТУРА

- 1. Эйзен О., Рауде Х., См. настоящий номер журнала, стр. 623.
- Киррет О., Эйзен О., Кудрявцева Л., Ранг С., Изв. АН ЭССР. Серфиз.-матем. и техн. наук, 13, № 4, 267—274 (1964).
- 3. Schwartz R. D., Brasseaux D. J., Anal. Chem., 29, No. 7, 1022 (1957).
- Nelson K. M., Grimes M. D., Heinrich B. J., Anal. Chem., 29, No. 7, 1026 (1957).
- 5. Whitham B. T., Nature, 182, No. 4632, 391-392 (1958).
- 6. O'Connor J. G., Norris M. S., Anal. Chem., 32, No. 6, 701-706 (1960).
- 7. Hall R. M. S., Chem. Ind. (London), No. 4, 1829 (1961).
- 8. Adlar E. R., Whitham B. T., Nature, 192, No. 4806, 966 (1961).
- 9. Bombaugh K. J., Nature, 197, No. 4872, 1102 (1963).
- Burgess C. G. V., Duffett R. H., Minkoff G. J., Taylor R. G., J. Appl., Chem., 14, No. 8, 350-360 (1964).
- 11. Lewis R. L., Chem. Ind. (London), No. 33, 1049-1050 (1959).
- 12. Ta-Chuang Lo Chang, Karr C., Anal. Chim. Acta, 26, No. 5, 410-418 (1962) -
- Клесмент И. Р., Ранг С. А., Эйзен О. Г., Нефтехимия, 3, № 6, 864—870 (1963).

Институт химии Академии наук Эстонской ССР Поступила в редакцию 1/VI 1965

H. RAUDE, O. EISEN

PÕLEVKIVIÕLI KESKMISTE FRAKTSIOONIDE KÜLLASTATUD SÜSIVESINIKE. KOOSTISEST

Tunnelahjude summaarsest õlist eraldati küllastatud süsivesinikud silikageelil kromatografeerimisega ning rektifitseeriti kitsasteks fraktsioonideks. Üle 200° C keevate küllastatud süsivesinike keemilise koostise uurimiseks kasutati selektiivset adsorptsiooni CaAtüüpi molekulaarsõeltel, gaasikromatograafilist analüüsi ning dehüdreerimist mikroreaktorimeetodil. Identifitseeriti n-parafiinid C_{11} — C_{21} ning määrati C_{11} — C_{17} parafiinide sisaldus põlevkiviõlis. Tehti kindlaks 2-metüülparafiinide ning kuueliikmelisi tsükleid sisaldavate ühendite hulk uuritud piirkonnas.

H. RAUDE, O. EISEN

ANALYSIS OF SATURATED HYDROCARBONS ISOLATED FROM SHALE OIL

The saturated hydrocarbon portion separated from summary shale oil by means of liquid-solid chromatography with silica was fractionated in a distillation apparatus. Selective sorption in CaA molecular sieves, gas-liquid chromatography and dehydrogenation in a microreactor were used to determine the chemical composition of saturated hydrocarbons boiling above 200° C. $C_{11}-C_{21}$ n-paraffins were identified, and the quantity of $C_{11}-C_{17}$ n-paraffins was determined. The amounts of 2-methylalkanes and naphthenes with sixmember rings were also estimated.