EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XIV KÕIDE FOOSIKA-MATEMAATIKA- JA TEHNIKATEADUSTE SEERIA. 1965, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XIV СЕРИЯ ФИЗИКО-МАТЕМАТИЧЕСКИХ И ТЕХНИЧЕСКИХ НАУК. 1965, № 4

https://doi.org/10.3176/phys.math.tech.1965.4.14

С. САЛУСТЕ, И. КЛЕСМЕНТ, О. ЭЙЗЕН

СОСТАВ ФЕНОЛОВ ТУННЕЛЬНЫХ ПЕЧЕЙ

Сообщение П

В первом сообщении был приведен состав фенолов туннельных смол, выкипающих в пределах 192—290° С [¹]. В этой части работы осталось неидентифицированным 20% фенолов и 12% ароматических структур, которые содержатся, главным образом, во фракциях 253—290°. Определение этих веществ затруднялось отсутствием эталонных веществ.

В настоящей работе для определения структуры ранее не идентифицированных индивидуальных фенолов, кроме газохроматографического анализа и дегидроксилирования, дополнительно применяли методы тонкослойной хроматографии [^{2, 3}] и спектроскопии. Газовая хроматография и дегидроксилирование фенолов было выполнено на микрореакторно-газохроматографической установке. Использовались колонки 6 м, 15% апиезона L на хромосорбе W при 200° и 6 м, 20% полигликоля 4000 на силоцеле C-22 при 180°. Катализатором служил 5% Pd на силикагеле марки ШСК. УФ спектральный анализ ароматических углеводородов был выполнен на аппарате СФ-4. Для анализа достаточно 1 мг вещества. Полученные спектры были расшифрованы на основе данных литературы [⁴].

По принятой нами схеме анализа фенолов (см. стр. 597) при хроматографировании в газовой фазе узлом, требующим доработки, является конденсация разделенных компонентов. После выхода из колонки хроматографа пары фенолов конденсируются в виде трудноулавливаемого тумана.

Во избежание потерь *U*-образные трубки-конденсаторы охлаждались жидким азотом, твердой углекислотой или просто воздухом, при этом улавливалось все же не больше 40% фенолов. Использованием различных наполнителей в трубках повышали выход конденсата почти до 100% [⁵].

Выяснилось, что для более четкого разделения высококипящих веществ необходимо повысить температуру испарителя хроматографа. Для испарения фенолов, выкипающих до 250°, достаточно иметь температуру испарителя, равную температуре кипения исследуемого вещества. При высших фракциях необходимо повысить температуру испарителя не менее, чем на 50° выше температуры кипения вещества. Влияние температуры испарителя на результаты хроматографирования ясно видно на рис. 1. В нашей предыдущей работе продукты дегидроксилирования высших фенолов были конденсированы после реактора, а конденсат был перенесен для анализа в хроматограф [¹]. При повышении температуры испарителя можно использовать прямую схему (катализат направляется из микрореактора непосредственно в хроматограф), так как в этом слу-

чае получается хроматограмма нормальной четкости даже из продуктов дегидроксилирования нафтолов.

Адсорбционный анализ в тонком слое позволяет получить данные о количестве и расположении гидроксильных групп в молекуле. При качественном и препаративном анализе в тонком слое использовали пластинки 120 × 180 мм [²] и 240 × 240 мм [⁶] с незакрепленным слоем окиси алюминия (толщина слоя соответственно — 0,5 и 2,0 мм). Растворителем служил хлороформ-бутил-

Рис. 1. Влияние температуры испарителя на четкость разделения фракции фенолов 283—288°. Условия хроматографирования фенолов: длина колонки — 6 м, диаметр — 6 мм, наполнитель колонки — апиезон L, 15% от хромосорба W, температура 200°, расход водорода ~ 65 мл/мин, давление — 1,4 атм.

597

ацетат (3:1). Пластинки проявляли парами иода и УФ лучами. Кратковременное проявление иодом не оказывает заметного влияния на материальный баланс и состав фенолов. При препаративном анализе брали навеску 500 *мг*. Проявленные полосы собирали и экстрагировали этанолом, промывая через стеклянный фильтр. Растворитель испаряли в вакууме водоструйного насоса при слабом нагревании. Экстракты (8—12 полосок) взвешивали и анализировали.

Какие же факторы влияют на адсорбцию фенолов в тонком слое?

Таблица 1

Vg	индивидуальных	фенолов	на	тонком	
-	СЛ	oe			

Название соединения	V_g°
Пирокатехин	0,05
Резорцин	0,06
2-Метилрезорцин	0,32
3-Метил-6-гидроксикумарон	0,39
4-Метилфенол	0,46
І-Нафтол	0,47
5-Инданол	0,48
2-Метилфенол	0.53
2-Этилфенол	0,71
Ацетофенон	0,91

В табл. 1 представлены относительные расстояния выхода в тонком слое различных индивидуальных фенолов. Двухосновные фенолы адсорбируются сильно и остаются за стартовой линией. Их высокая адсорбируемость обуславливается наличием двух полярных гидроксильных групп. Ортоалкилфенолы адсорбируются слабее других фенолов и продвигаются дальше на пластинке; этот факт можно объяснить ослаблением влияния полярной гидроксильной группы, так как ее экранирует близко расположенная алкильная группа. Влияние прочих структурных факторов (размер молекулы, наличие конденсированных ядер) на адсорбцию не-

значительно. Нейтральные кислородные соединения адсорбируются особенно слабо и продвигаются дальше.

Из разделенных на тонком слое фенолов, применяя для сравнения эталонные вещества, выделили четыре главные группы: І — двухосновные фенолы, II — одноосновные фенолы без ортоалкильной цепи, III ортоалкилзамещенные фенолы, IV — нейтральные кислородсодержащие соединения (см. табл. 3).

Рис. 2. Препаративные тонкослойные хроматограммы фракций фенолов и концентрации разделенных фенолов в полосах. Фракции: А — 260—265°; Б — 272—277°; В — 288—290°.

На рис. 2 и 3 приведены соответственно препаративные тонкослойные хроматограммы изученных нами некоторых фракций фенолов и газо-жидкостные хроматограммы отдельных полос-фракций этих фенолов до и после каталитического дегидроксилирования. Как видно из рисунков, хроматографические полосы узкокипящих фракций фенолов содержат лишь не-

сколько компонентов. При этом низкокипящие фракции разделяются в тонком слое на меньшее число полос (от 4 до 5), чем высококипящие (до 14), хотя на газохроматограммах фракции имеют одинаковое число компонентов (примерно 9—10). Это обуславливается присутствием во фракциях высокомолекулярной области большего числа изомеров с их различной адсорбционной способностью. Так, в высококипящей области с большой вероятностью можно ожидать наличия значительного количества хорошо разделяемых ортоалкилизомеров, также и изомеров с двумя ортоалкилгруппами или различной длиной цепи.

Интересно отметить, что порядок проявления фенолов во фракциях тонкого слоя совпадает с порядком их выхода из газохроматографа. Следовательно, можно сказать, что и на газохроматограммах узкокипящих фракций ортоизомеры остаются в конце хроматограммы. Такое явление, очевидно, может иметь место только в узкокипящих фракциях, где давление паров отдельных компонентов одинаково и разделение в газохроматографе на неполярной колонке (апиезон L) происходит от полярности.

Имеются и некоторые отклонения от этого общего правила. Как видно из рис. 3, фенолы № 3 и 17 во фракциях 260—265 и 288—290° появляются на тонком слое раньше, чем в газохроматографе. Для выяснения структурного фактора, вызывающего такое явление, требуются дополнительные исследования.

Двухосновные фенолы узкокипящих фракций при газохроматографировании в неполярной колонке выходят из-за своей большей полярности раньше, чем основные компоненты фракции. При этом, если для идентификации относительно низкокипящих одноосновных фенолов можно пользоваться данными литературы, то в случае двухосновных фенолов полученные результаты не совпадают с данными литературы [⁷].

Таблица 2

№ фрак- ции	Температура	Содержание,	Содержание двух- основных фенолов, вес. %, по данным	
	кипения, °С	вес. %	газохрома- тографии	тонкослой- ной хрома- тографии
	050 000	10.5		
14	253-260	10,5		THE REAL PLAN
15	260-265	13,1 .	0,4	0,7
16	265-272	12,5	0.6	0.8
17	272-277	13.5	0.9	0.9
18	277-283	13.6	0.9	1.5
10	283_288	226	10	1.0
20	200-200	14.9	20	2.0
20	200-290	14,2	2,5	5,0
Testead	Bcero	100.0	7.6	8,8

Общие показатели фракций *

* Выход фракций 14—20 составляет 39,4% от фенолов, выкипающих в пределах 192—290°.

Количества двухосновных фенолов, приведенные в табл. 2, рассчитаны по данным как газовой, так и препаративной тонкослойной хроматографий. Как видно, совпадение результатов этих двух методов является достаточным. В результате проведенного исследования установлено,

Таблица З

№ фенола на хрома- тограмме (см. рис. 3)	Время удер- живания относи- тельно 5-инданола	Полосы тонко- слойной хромато- графии	Содержание, вес. %	№ арома- тического скелета фенола (см. рис. 3)	№ фракции с максималь- ным содер- жанием фенола
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 a b c	$\begin{array}{c} 87\\ 92\\ 100\\ 110\\ 121\\ 130\\ 137\\ 152\\ 157\\ 167\\ 180\\ 191\\ 203\\ 209\\ 224\\ 244\\ 268\\ 307\\ 327\\ 327\\ 341\\ 380\\ 76\\ 124\\ 150\\ \end{array}$	П	$\begin{array}{c} 3,2\\ 4,7\\ 4,1\\ 1,8\\ 4,6\\ 1,6\\ 5,5\\ 6,1\\ 6,7\\ 3,5\\ 5,7\\ 4,4\\ 3,2\\ 3,2\\ 3,2\\ 8,1\\ 3,2\\ 17,4\\ 0,4\\ 0,1\\ 1,5\\ 1,5\\ 2,8\\ 0,7\\ \end{array}$	1,(3) 2,(3) 4 5 5 c, d, (6) c, d, (6) 5, (6) 7 9 8,9 11,14 9,10 9,(12) 9,(13) 11,14 15 a b d	$\begin{array}{c} 14\\ 14\\ 14\\ 14\\ 15\\ 17\\ 17\\ 17\\ 16\\ 16\\ 18\\ 16\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19$

Результаты анализа фенолов

Всего

94,4

что содержание двухосновных фенолов в исследуемых фракциях низкое и не согласуется с данными других авторов [8]. Но так как в последующих фракциях фенолов содержание двухосновных компонентов по мере роста пределов кипения возрастает, достигая 28% во фракции 288—290°, то можно предполагать, что в более высококипящих фракциях содержание последних еще выше.

Как известно, из двухосновных фенолов самые низкие температуры кипения имеют пирокатехин и его первые алкилзамещенные гомологи (пирокатехин кипит при 240°). По нашим данным, в концентрате двухосновных фенолов — в фенолах сточных вод — пирокатехин содержится в очень незначительном количестве, а в низкокипящей смоляной части фенолов двухосновные фенолы отсутствуют вообще. Установлено, что фенолы сточных вод являются производными резорцина [^{10, 11}]. Хотя данных насчет двухосновных компонентов фенолов смолы и нет, можно предполагать, что они имеют ту же структуру. Низкое содержание первых производных в смоле двухосновных фенолов, кипящих ниже 280°, объясняется их хорошей растворимостью в воде. По данным дегидроксилирования установлено, что изученные скелеты углерода исследуемых двухосновных фенолов имеют в основном структуру толуола и *м*- и *n*-ксилолов. Более точно двухосновные фенолы не идентифицировались.

При газохроматографировании узкокипящих фракций фенолов в неполярной колонке малополярные нейтральные кислородсодержащие соединения должны появиться в конце хроматограммы, а при хроматограРезультаты анализа ароматических скелетов фенолов

№ арома- тиче- ского соеди- нения	Время удержи- вания от- носи- тельно бензола (100)	№ исходного фенола	Положение (длина вол- ны, <i>Å</i>) мак- симумов	Структура углеводород- ного скелета фенола
a b c d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	151 226 303 318 426 449 495 616 665 736 906 950 1010 1110 1160 1265 1305 2510 3540	a b, $6, 7$ c, $6, 7$ l 2 l, 2 l, 2 l, 2 3 4, $5, 8$ 7, 8 9 11 10, 11, 13 14, 15, 16 13, 14 12, 17 15 16 12, 17 21	2730, 2670 2610 2730, 2660 2610 2780—2770 2740—2725 2700—2690 2650—2610	Толуол м. — п.Ксилол Пропилбензол (1.Метил-3 (4) - этилбензол (1.3,5-Триметилбензол (1.3. Метилпропилбензол (1.4. Метилпропилбензол (1.2. Диэтилбензол (1.3. Диметил-5-этилбензол (1.2. Метилпропилбензол (1.2. Метилпропилбензол (1.2. Триметилбензол (1.2. Триметилбензол (1.2. Метилпропилбензол (1.2. Метилиндан (1.2. Метилин (1.2. Метилин) (1.2. Метилин (1.2. Метилин) (1.2. Метилин)

фировании в тонком слое они должны продвигаться к концу пластинки (см. ацетофенон, табл. 1). Нормально, что из-за неточности предшествующих процессов рафинирования во фракции фенолов остается незначительное количество нейтральных кислородсодержащих соединений.

В настоящей работе почти в каждой фракции имеется небольшое количество компонентов, очень слабо адсорбирующихся на тонком слое и быстро выходящих из газохроматографа. Между этими двумя показателями как будто нет соответствия. По данным тонкослойной хроматографии это должны быть неполярные соединения, а по данным газовой хроматографии — полярные.

Как известно, в газовой хроматографии значительную роль играет давление паров отдельных компонентов. Очевидно, вышеназванные соединения являются нейтральными соединениями, образовавшимися при разложении фенолов во время дистилляции и выкипающими при более низкой температуре, чем сама фракция. Их количество весьма мало (2,6% во фракции 253—290°) и высчитывается по газохроматограмме. Оказывается, что несмотря на применение вакуума, при перегонке имеет место некоторое разложение фенолов, хотя ректификация и не очень продолжительная — 77 часов.

Таблица 4

В табл. 2 приведены общие показатели исследуемых фракций, а результаты анализа их даны в табл. 3 и 4. В таблицах и на рисунках фенолы, а также ароматические соединения, образующиеся при дегидроксилировании, пронумерованы.

В области кипения фенолов 253—290° получено 24 фенольных компонента, из них три — двухосновные фенолы (a, b, c). После дегидроксилирования их, ароматических структур получено меньше — 19, из них основными являются 15. Качественный состав ароматических структур узких фракций фенолов одинаковый, отличия отмечаются лишь в количественном содержании. При этом некоторые из структур присутствуют во всех фракциях в минимальном количестве.

Ароматические соединения до индана идентифицированы по относительным временам удерживания эталонных веществ и по данным литературы [¹²]. Ароматические углеводороды, времена удерживания которых длиннее, чем у индана, могут быть алкилпроизводными бензола (С₁₀ и более) или алкилзамещенными индана. Надо отметить, что совпадение времен удерживания исследуемого и эталонного веществ в высокомолекулярной области еще не служит доказательством наличия данного вещества. По данным спектрального анализа после дегидроксилирования, структуру индана имеют фенолы с более высокими температурами кипения, чем инданол. Сюда относятся две группы фенолов: с метиловой группой в кольце индана и с заместителями метиловой группы в ароматическом кольце. Полученные спектроскопические данные согласуются с температурами кипения производных индана и временами удерживания соответствующих ароматических углеводородов. Сравнительные данные приведены в табл. 5.

Таблица 5

the second s	1		1001
Соединение	Темпера- тура кипе- ния, °С [⁴]	Время удер- живания	№ аромати- ческого со- единения
Индан	177	616	4
1-Метилиндан 2-Метилиндан	189,5 190,3	665*	} 5
4-Метилиндан 5-Метилиндан	205,3 201,1	\$ 906—1160*	} 7-11

Показатели производных индана и полученных дегидроксилированием ароматических углеводородов

Показатели продуктов дегидроксилирования.

Существует предположение, что в сланцевых фенолах присутствуют гидроксикумароны [9, 13]. По нашим данным, первой производной гидроксикумарона нет во фракции, соответствующей его температуре кипения [1]. Однако в последующих фракциях могут присутствовать алкилгидроксикумароны, так как относительные времена удерживания некоторых пиков совпадают с временами удерживания чистых эталонов — гидроксикумаронов. В нашем распоряжении были 2-, 3-замещенные алкилгидроксикумароны. Конечно, с такой же вероятностью в исследуемых фракциях могут присутствовать и соединения, где алкилрадикал соединен с ядром бензола. Известно, что дегидроксилированием гидроксикумаронов образуются сравнительно низкомолекулярные ароматические углеводороды. Поэтому присутствие гидроксикумаронов будет доказано, если из вышеуказанных компонентов при дегидроксилировании образуются соединения, имеющие относительные времена удерживания меньше, чем у индана. Ароматические углеводороды с временами удерживания, соответствующими пропилбензолу и 1-метил-3(4)-этилбензолу, образуются дегидроксилированием только из фенолов № 6 и 7. Можно считать, что они содержат гидроксикумароны. Ввиду малого количества таких фенолов, роль гидроксикумаронов незначительна.

Нафталин наблюдается в продуктах дегидроксилирования, начиная от фракции, выкипающей в пределах 260--265°; нафтол, начиная от фракции 277-283°. Фенол № 12, имеющий относительное время удерживания $V^{\circ}_{g} = 72$ (V°_{g} 1-нафтола = 100), дает при дегидроксилировании нафталин. Последний может образоваться и от фенола типа тетралина (тетралин дегидрируется при условиях данного катализа в нафталин). Аналогично нафтолам фенолы типа тетралина могут иметь два положения гидроксильной группы (5,6,7,8-тетрагидронафтол-1 и 5,6,7,8-тетрагидронафтол-2). Свойства 1- и 2-изомеров очень близки, поэтому газохроматографически в неполярной колонке их трудно разделить. Пики 1-нафтола ($V^{\circ}_{g} = 100$) и 2-нафтола ($V^{\circ}_{g} = 105$) разделяются только при их определенном соотношении. Учитывая температуру кипения и газохроматографические времена удерживания, установлено наличие низкокипящего 1-нафтола.

Таким образом, применяя параллельно методы газохроматографии, тонкослойной хроматографии и спектроскопии, можно исследовать смеси фенолов со сложной структурой, даже в том случае, если отсутствуют эталонные вещества фенолов и необходимые для определения углеводородного скелета ароматические соединения. Методика совместного применения газовой и тонкослойной хроматографии для анализа фенолов проста и дает надежные данные о положении гидроксильной группы.

В результате анализа было найдено, что в исследуемой области (253—290°) содержатся главным образом бициклические фенолы со структурой алкил-инданов, нафталина и тетралина. Интересно отметить высокое содержание алкилинданолов — 60%, суммарное их содержание во фракции, выкипающей при 192—290°, составляет 21%. Такой результат нельзя считать неожиданностью, поскольку было установлено, что в нижекипящей фракции 244—265° содержание первых, незамещенных гомологов инданола составляет 40% [¹]. Также известно, что в продуктах сланца обычно превалируют более высокие гомологи.

С точки зрения технического применения исследованным нами фенолам нельзя придать особого значения, так как их реакционная способность мала — лишь 1,5—2 реакционноспособных точек в молекуле.

Выводы

 Исследована методика анализа высокомолекулярных фенолов, комбинируя газовую и тонкослойную хроматографии со спектральным анализом.

2. Установлено, что общий порядок удерживания узкокипящих фенольных компонентов при газовой хроматографии в неполярной колонке и в тонком слое одинаков.

3. Большинство сланцевых фенолов в области температур кипения 253—290° имеют структуру алкилинданов, в меньшем количестве присутствуют нафтолы, а также тетрагидронафтолы.

4. Содержание двухосновных фенолов во фракции, выкипающей до 290°, низкое.

ЛИТЕРАТУРА

- Салусте С., Клесмент И., Эйзен О., Изв. АН ЭССР. Сер. физ.-матем. и техн. наук, 14, № 1, 141 (1965).
- Клесмент И., Лагеда Э., Эйзен О., Изв. АН ЭССР. Сер. физ.-матем. и техн. наук, 14, № 2, 266 (1965).
- 3. Архем А. А., Кузнецова А. И., Тонкослойная хроматография, М., 1964.
- Кусаков М. М., Шиманко Н. А., Шишкина М. В., Ультрафиолетовые спектры поглощения ароматических углеводородов, М., 1963.
- Клесмент И., Лагеда Э., Изв. АН ЭССР. Сер. физ.-матем. и техн. наук, 14, № 2, 273 (1965).
- 6. Mistryukov E. A., Collect. Czech. Chem. Commun., 26, 2071 (1961).
- 7. Fitzgerald I. S., Australian J. Appl. Sci., 10, No. 2, 169 (1959).
- Раудсепп Х. Т., Сб. Горючие сланцы. Химия и технология, вып. 2, Таллин, 1956, стр. 107.
- 9. Раудсепп Х. Т., Тр. Таллинск. политехн. ин-та. Сер. А, № 63, 90 (1955).
- 10. Иванов Б. И., Шаронова Н. Ф., Тр. ВНИИПС, 2, 176 (1954).
- И ванов Б. И., Химический состав подсмольных вод термического разложения прибалтийских сланцев и методы их промышленной переработки и очистки, Автореф. канд. диссертации, Л., 1955.
- Эйзен Ю., Киррет О., Эйзен О., Изв. ЭССР. Сер. физ.-матем. и техн. наук, 13, № 1, 22 (1964).
- 13. Раудсепп Х. Т., Исследование фенолов сланцевой смолы, Диссертация, Л., 1954.

Институт химии Академии наук Эстонской ССР

Поступила в редакцию 5/VIII 1965

S. SALUSTE, I. KLESMENT, O. EISEN

TUNNELAHJU-FENOOLIDE KEEMILINE KOOSTIS. II

Uuriti tunnelahju-fenoolide fraktsiooni 253–290°C keemilist koostist, kasutades gaasikromatograafiat, õhukesekihilist kromatograafiat, katalüütilist dehüdroksüleerimist ja spektraalanalüüsi.

Gaasikromatograafiat kasutati põhiliselt preparatiivse lahutusmeetodina.

Leiti rohkesti indanooli derivaate, naftoole ja tetrahüdronaftoole.

S. SALUSTE, I. KLESMENT, O. EISEN

THE CHEMICAL COMPOSITION OF PHENOLS OF SHALE OIL. II

The chemical composition of the phenol fraction boiling between 253—290°C of shale oil was investigated. Gas-liquid chromatography, thin layer chromatography, catalytic dehydroxylation and spectrography were applied. Gas-chromatographic separation was applied as a main preparative separation

Gas-chromatographic separation was applied as a main preparative separation method.

A considerable number of derivatives of indanols as well as naphthols and tetrahydronaphthols were found.