EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XIV KÕIDE FÜÜSIKA-MATEMAATIKA- JA TEHNIKATEADUSTE SEERIA. 1965, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XIV СЕРИЯ ФИЗИКО-МАТЕМАТИЧЕСКИХ И ТЕХНИЧЕСКИХ НАУК. 1965, № 4

https://doi.org/10.3176/phys.math.tech.1965.4.10

V. SINIVEE, E. LIPPMAA

NÕRGA RAADIOSAGEDUSLIKU HÄIREVÄLJA EFEKTID TUUMA MAGNETILISES TOPELTRESONANTSIS. II

Suhteliselt nõrga raadiosagedusliku häirevälja H_2 mõju sageduse laotusega võetud topeltresonantsspektrites on kahesugune. Spektraaljoontel, milledel on välja H_2 poolt otseselt mõjutatava spektraaljoonega ühiseid energianivoosid, esineb nii spektraaljoonte lõhenemine [¹, ²] kui ka summaarse intensiivsuse muutumine [³, ⁴]. Teistel spektraaljoontel esineb vaid intensiivsuse muutumine [⁵]. Lähtudes tihedusmaatriksvõrrandist molekuli tuumaspinide kõdumata süsteemi juhul, tuletasime eelmises töös [⁶] valemid, mis kirjeldavad mõlemaid juhte. Käesolevas käsitleme järeldusi, mis tulenevad kasutatava alalise magnetvälja mittehomogeensusest uuritava proovi ulatuses. Võtame vaatluse alla ainult spektraaljooned, millel kiiritatava spektraaljoonega ei ole ühiseid energianivoosid.

1. Vastavalt töös [6] esitatud valemitele (53) ja (50) võrdub absorptsioonisignaal topeltresonantsspektris homogeense alalise magnetvälja olemasolul suurusele

$$V_{dd'} = (1 \mp \tau_1 s) \frac{\lambda_{dd'}}{1 + (\Delta \omega_1 T_{dd'2})^2}, \qquad (1)$$

$$\mathcal{A}_{dd'} = \langle d | \mathsf{D}_{+1} | d' \rangle \langle d' | \mathsf{M}_{-} | d \rangle q (d' - d) T_{dd'^2}, \qquad (2)$$

$$s = \frac{h^2}{1 + (\Delta \omega_2 T_{cc'2})^2 + h^2},$$
(3)

$$\tau_1 = \frac{|T_{d'd1}|}{T_{c'c1}},$$
(4)

$$h^{2} = 2 | < c | \mathsf{D}_{+2} | c' > |^{2} T_{cc'^{2}} T_{c'c1}.$$
(5)

Ülejäänud tähistused valemeis $(1) \div (5)$ on samad, mis töös [⁶]. Valemis (1) tuleb võtta märk, mis on vastupidine $T_{d'd_1}$ märgile. Eeldatakse, et häirevälja H_2 sagedus ω_2 on lähedane energianivoode vahele (c'-c) ja mõõtevälja H_1 sagedus ω_1 on lähedane energianivoode vahele (d'-d).

Tegelikus eksperimendis esinev alaline magnetväli on mittehomogeenne. Resonantssagedused $\omega_{d'd} = d' - d$ on uuritava proovi erinevates punktides mõnevõrra erinevad, jaotudes keskväärtuse $\langle \omega_{d'd} \rangle$ ümber hälvetega $\xi = \omega_{d'd} - \langle \omega_{d'd} \rangle$. Olgu resonantssageduste jaotuvus proovis antud kujufunktsiooniga $g(\xi)$. Esitame kujufunktsioonile järgnevad üldised nõuded:

kus

$$\int_{-\infty}^{\infty} g\left(\xi\right) d\xi = 1, \qquad (6)$$

 $g\left(-\xi\right) = g\left(\xi\right),\tag{7}$

$$g(\xi) \to 0$$
, kui $\xi \to \pm \infty$. (8)

Kujufunktsiooni poollaius $\frac{1}{T_2^*}$ olgu defineeritud seosega

Sugr HP Parts SI PS

$$\frac{g\left(\frac{1}{T_{2}^{*}}\right)}{g\left(0\right)} = \frac{1}{2}.$$
(9)

Tugevas alalises magnetväljas on kujufunktsioonid kõigil spektraaljoontel praktiliselt ühesugused. Joonisel 1 on toodud sageduste ω_2 ja ω_1 asend välja H_2 poolt kiiritatava joone keskmise resonantssageduse $\langle \omega_{c'c} \rangle$ ja välja H_1 poolt kiiritatava joone keskmise resonantssageduse $\langle \omega_{d'd} \rangle$ suh-

Joon. 1. Sageduste asend topeltresonantsspektri võtmisel mittehomogeenses alalises magnetväljas. Vasakpoolsel graafikul on kujufunktsiooni taustal sageduste asend välja H_2 poolt otseselt mõjutatava spektraaljoone puhul. Parempoolne graafik vastab mõõdetavale spektraaljoonele.

tes. Jooniselt nähtub, et absorptsioonisignaal topeltresonantsspektris on mittehomogeense alalise magnetvälja juhul antud valemiga

$$V_{dd'}^{*}(\Delta\omega_{1}^{*}, \ \Delta\omega_{2}^{*}) = \int_{-\infty}^{+\infty} V_{dd'}(\Delta\omega_{1}^{*}-\xi; \ \Delta\omega_{2}^{*}-\xi) g(\xi) \ d\xi.$$
(10)

2. Käsitleme spektraaljoone kuju sageduse laotusega spektris juhul, kui $\Delta \omega_2^* = 0$. Valemeist (1), (3) ja (10) saame

$$V_{dd'}^{*}(\Delta\omega_{1}^{*}, 0) = \int_{-\infty}^{+\infty} \frac{\lambda_{dd'}}{1 + (\Delta\omega_{1}^{*} - \xi)^{2} T_{dd'2}^{2}} G(\xi) d\xi, \qquad (11)$$

s
$$G(\xi) = \left\{ 1 \mp \tau_1 \frac{h^2}{1 + (\xi T_{cc'2})^2 + h^2} \right\} g(\xi).$$
 (12)

kus

Funktsioonil $G(\xi)$ on samuti omadused (7) ja (8) ning negatiivse märgiga juhul esineb $\xi=0$ ümbruses lohk. Häirevälja tugevnedes lohk süveneb ja laieneb. Nullpunkti väärtus saavutab miinimumi

$$G(0) \to (1 \mp \tau_1) g(0), \quad \text{kui} \quad h^2 \gg 1.$$
 (13)

 H_2 edaspidisel suurendamisel muutub funktsiooni $G(\xi)$ tipp lamedaks. Lohk on märgatava suurusega, kui

$$\gamma H_2 \sqrt{\frac{1}{2} \frac{T_{c'c1}}{T_{cc'2}}} < c | \mathbf{F}_+ | c' > | \approx \frac{1}{T_2^*}.$$
 (14)

Interpreteerides funktsiooni $G(\xi)$ uue kujufunktsioonina, võime lohu ilmumist oodata ka spektraaljoones, kui τ_1 on küllalt suur ja $T_{dd'2} \gg T_2^*$.

Joon. 2. Spektraaljoonte arvutatud kuju sageduse laotusega topeltresonantsspektris mittehomogeenses alalises magnetväljas. Gaussi kujufunktsioon parameetritega $\frac{T_2^*}{T_{dd'2}} = 0,1; h^2 = 10; \tau_1 = 0; 0,2; 0,5.$ Parempoolse graafiku arvutamisel on valemis (12) võetud negatiivne märk, vasakpoolse arvutamiseks positiivne märk.

Joonisel 2 on ära toodud valemite (11) ja (12) alusel arvutatud spektraaljoonte kujud positiivse ja negatiivse märgi olemasolul valemis (12). Arvutustel kasutati Gaussi normeeritud kujufunktsiooni

$$g(\xi) = T_2^* \left| \sqrt{\frac{\ln 2}{\pi}} e^{-\ln 2 (T_2^*\xi)^2} \right|,$$

$$\frac{T_2^*}{T_{dd'2}} = 0,1; \quad T_{dd'2} = T_{cc'2}; \quad h^2 = 10.$$
(15)

Mõlemal joonisel on esitatud kõverate parved, kus $\tau_1=0$; 0,2; 0,5. Ülalkirjeldatud spektraaljoone «väärlõhenemine» on kergelt eraldatav tiklingefektist: H_2 edasisel suurendamisel «väärlõhenemine» kaob.

3. Nimetame spektraaljoone intensiivsuseks suurust

parameetritega

$$I_{dd'}(\Delta \omega_2^*) = \int_{-\infty}^{+\infty} V_{dd'}^*(\Delta \omega_1^*, \ \Delta \omega_2^*) d(\Delta \omega_1^*).$$
(16)

Valemist (10) ja (16) saame ka

$$I_{dd'}(\Delta \omega_2^*) = \int_{-\infty}^{+\infty} W_{dd'}(\xi, \ \Delta \omega_2^*) g(\xi) d\xi, \qquad (17)$$

kus
$$W_{dd'}(\xi, \Delta \omega_2^*) = \int_{-\infty}^{+\infty} V_{dd'}(\Delta \omega_1; \Delta \omega_2^* - \xi) d(\Delta \omega_1).$$
 (18)

Monoresonantsi puhul on $\frac{\pi \lambda_{dd'}}{T_{dd'2}} = I^0_{dd'}$.

Häirevälja H_2 mõju iseloomustab ($\Delta \omega_2 = 0$ juhul) suhe

$$\frac{I_{dd'}(0)}{I_{dd'}^{0}} = \frac{T_{dd'2}}{\pi\lambda_{dd'}} \int_{-\infty}^{+\infty} W_{dd'}(\xi, 0) g(\xi) d\xi.$$
(20)

Juhul, kui H_1 on mono- ja topeltresonantsspektrite võtmisel sama, saame valemeist (1), (3), (18), (19) ja (20)

$$\frac{I_{dd'}(0)}{I_{dd'}^{0}} = 1 \mp \tau_1 \int_{-\infty}^{+\infty} \frac{h^2 g(\xi) d\xi}{1 + \xi^2 T_{cc'2}^2 + h^2}.$$
 (21)

Valemist (21) nähtub, et H_2 suurenedes läheneb suhe $\frac{I_{dd'}(0)}{I_{dd'}^0}$ kujufunktsioonist $g(\xi)$ sõltumatule piirilisele väärtusele

$$\frac{I_{dd'}(0)}{I_{dd'}^{0}} \longrightarrow (1 \mp \tau_1), \quad \text{kui} \quad \gamma H_2 \sqrt{\frac{1}{2} \frac{T_{c'c1}}{T_{cc'2}}} | < c | \mathsf{F}_+ | c' > | \gg \frac{1}{T_2^*}.$$
(22)

Spektraaljoone laienemisest tingituna võivad valemis (22) esitatud tingimused osutuda ebasobivaiks suuruste τ_1 määramiseks mitmejoonelises spektris. Valemis (21) esinev integraal on aga antud H_2 , ω_2 väärtustel ja kiiritatava joone valikul ühesugune kõigile mõõdetavatele spektraaljoontele. Defineerides spektraaljoone (d'-d) suhtelise Overhauseri efekti

$$i_{dd'} = \frac{I_{dd'}(0) - I_{dd'}^0}{I_{dd'}^0},$$
(23)

saame valemist (21) lihtsa seose spektraaljoonte paarile (d'-d) ja (b'-b)

$$\frac{i_{dd'}}{i_{bb'}} = \frac{T_{d'd1}}{T_{b'b1}}.$$
(24)

4. Absorptsioonisignaali piikväärtusele $V_{dd'}^*(0,0)$ saame kujufunktsioonist sõltumatu seose mõõdukatel H_2 väärtustel, kui

$$\frac{1}{T_2^*} \gg \frac{1}{T_{dd'2}},$$
 (25)

(19)

$$\gamma H_2 \sqrt{\frac{1}{2}} \frac{T_{c'c1}}{T_{cc'2}} | < c | \mathbf{F}_+ | c' > | \gg \frac{1}{T_{dd'2}}.$$
(26)

Valemeist (11) ja (12) järeldub neil tingimustel

$$\frac{V_{dd'}^{(0,0)}}{V_{dd'}^{0}(0)} = 1 \mp \tau_1.$$
(27)

Valemis (27) tähistab $V_{dd'}^0(0)$ spektraaljoone (d'-d) piikväärtust monoresonantsspektris, mis on võetud samal H_1 väärtusel kui topeltresonantsspekter. Lähendusvalemi (27) kehtivuse täpsust võimaldab kontrollida asjaolu, et seos (27) kehtib piirilise väärtusena nagu valem (22).

Autorid avaldavad tänu Maret Petersonile numbriliste arvutuste programmeerimise eest arvutusmasina Minsk-2 jaoks.

KIRJANDUST

- 1. Anderson W. A., Freeman R., J. Chem. Phys., 37, 85 (1962).
- 2. Freeman R., Anderson W. A., J. Chem. Phys., 37, 2053 (1962).
- 3. Kuhlmann K. F., Baldeschwieler J. D., J. Am. Chem. Soc., 85, 1010 (1963).
- 4. Kaiser R., J. Chem. Phys., 39, 2435 (1963).
- 5. Липпмаа Э., Пускар Ю., Алла М., Изв. АН ЭССР. Сер. физ.-мат. и техн. наук, 14, 487 (1965).
- 6. Sinivee V., Lippmaa E., ENSV TA Toimet., Füüs. mat. ja tehn. tead. seeria, 14, 258 (1965).

Eesti NSV Teaduste Akadeemia Küberneetika Instituut

Saabus toimetusse 29. VII 1965

В. СИНИВЕЕ, Э. ЛИППМАА

ЭФФЕКТЫ СЛАБОГО ВОЗМУЩАЮЩЕГО РАДИОЧАСТОТНОГО ПОЛЯ В ЯДЕРНОМ МАГНИТНОМ ДВОЙНОМ РЕЗОНАНСЕ. II

Анализируется форма спектральных линий, не имеющих общих уровней энергни с линией, подверженной прямому воздействию поля H_2 . В спектрах с частотной разверткой, взятых в неоднородном постоянном магнитном поле, возможно появление слабого расщепления спектральных линий. Это расщепление исчезает при дальнейшем увеличении H_2 . Выводятся не зависящие от неоднородности поля соотношения между релаксационными параметрами и интенсивностями спектральных линий.

V. SINIVEE, E. LIPPMAA

WEAK PERTURBING RADIO-FREQUENCY FIELD EFFECTS IN NUCLEAR MAGNETIC DOUBLE RESONANCE. II

The shape of spectral lines without a common energy level with perturbed line is discussed. A weak splitting of these lines occurs in inhomogeneous constant magnetic field in a frequency-swept spectrum. This splitting disappears with further increase of the strength of the perturbing rf field. Field inhomogeneity-independent relations between relaxation parameters and line intensities are given.

568