EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XIV KÕIDE FOOSIKA-MATEMAATIKA- JA TEHNIKATEADUSTE SEERIA. 1965, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XIV СЕРИЯ ФИЗИКО-МАТЕМАТИЧЕСКИХ И ТЕХНИЧЕСКИХ НАУК. 1965, № 4

https://doi.org/10.3176/phys.math.tech.1965.4.08

И. КЕЙС

О НЕКОТОРЫХ НЕОБХОДИМЫХ УСЛОВИЯХ СУЩЕСТВОВАНИЯ ОДНОЗНАЧНЫХ ИНТЕГРАЛОВ УРАВНЕНИЙ ДВИЖЕНИЯ ТЯЖЕЛОГО ГИРОСТАТА, ЗАКРЕПЛЕННОГО В ОДНОЙ ТОЧКЕ

1. Как известно [^{1,2,4}], уравнения движения тяжелого гиростата в связанной с ним системе координат *Oxyz*, начало которой совпадает с точкой закрепления гиростата *O*, а оси ориентированы по главным осям инерции гиростата для этой точки, имеют вид

$$A \frac{dp}{dt} + (C - B) qr = y_0 \gamma_3 - z_0 \gamma_2 + m_2 r - m_3 q, \qquad \frac{d\gamma_1}{dt} = r\gamma_2 - q\gamma_3$$

$$B \frac{dq}{dt} + (A - C) pr = z_0 \gamma_1 - x_0 \gamma_3 + m_3 p - m_1 r, \qquad \frac{d\gamma_2}{dt} = p\gamma_3 - r\gamma_1 \quad (1.1)$$

$$C \frac{dr}{dt} + (B - A) pq = x_0 \gamma_2 - y_0 \gamma_1 + m_1 q - m_2 p, \qquad \frac{d\gamma_3}{dt} = q\gamma_1 - p\gamma_2,$$

где m_1 , m_2 , m_3 — проекции на оси системы Oxyz момента количества относительного движения, принимаемые постоянными, а все остальные обозначения имеют обычный для динамики твердого тела смысл, при этом вес гиростата принят за единицу в соответствующей системе единиц.

Относительно уравнений (1.1) известно [1, 2], что они имеют общие интегралы в виде однозначных функций комплексного переменного t в случае $x_0 = y_0 = z_0 = 0$, когда уравнения (1.1) допускают, помимо классических интегралов Якоби и интеграла площадей и косинусов, интеграл

$$(Ap + m_1)^2 + (Bq + m_2)^2 + (Cr + m_3)^2 = L^2$$
,

а также в случае A = B, $x_0 = y_0 = 0$, $m_1 = m_2 = 0$, когда уравнения допускают интеграл Лагранжа $r = r_0$.

В работе показывается, что отыскание всех случаев, когда интегралы уравнений (1.1) однозначны, сводится к исследованию решений для указанных выше двух случаев, а также гиростата Ковалевской A = B = 2C. $y_0 = z_0 = 0, m_1 = m_2 = 0.$

Для доказательства используется метод Голубева [³].

2. Посредством подстановки

$$p = \frac{p'}{\lambda^3}, \quad q = \frac{q'}{\lambda^3}, \quad r = \frac{r'}{\lambda^3}, \quad \gamma_1 = \frac{\gamma_1'}{\lambda^6}, \quad \gamma_2 = \frac{\gamma_2'}{\lambda^6}, \quad \gamma_3 = \frac{\gamma_3'}{\lambda^6}, \quad t = \lambda^3 \tau + t_0$$

систему (1.1) преобразуем в систему

$$A\frac{dp'}{d\tau} + (C - B)q'r' = y_{0}\gamma_{3}' - z_{0}\gamma_{2}' + \lambda^{3}(m_{2}r' - m_{3}q'), \quad \frac{d\gamma_{1}'}{d\tau} = r'\gamma_{2}' - q'\gamma_{3}'$$

$$B\frac{dq'}{d\tau} + (A - C)p'r' = z_{0}\gamma_{1}' - x_{0}\gamma_{3}' + \lambda^{3}(m_{3}p' - m_{1}r'), \quad \frac{d\gamma_{2}'}{d\tau} = p'\gamma_{3}' - r'\gamma_{1}'$$

$$C\frac{dr'}{d\tau} + (B - A)p'q' = x_{0}\gamma_{2}' - y_{0}\gamma_{1}' + \lambda^{3}(m_{1}q' - m_{2}p'), \quad \frac{d\gamma_{3}'}{d\tau} = q'\gamma_{1}' - p'\gamma_{2}'$$
(2.1)

содержащую малый параметр λ³.

При $\lambda = 0$ получим систему упрощенных уравнений, которые представляют классические уравнения движения твердого тела вокруг неподвижной точки. Относительно этих уравнений известно [³], что они имеюг однозначные интегралы только в трех случаях:

$$x_0 = y_0 = z_0 = 0$$

$$A = B, \ x_0 = y_0 = 0 \tag{2.2}$$

$$A = B = 2C, \ y_0 = z_0 = 0. \tag{2.3}$$

Поэтому для доказательства сделанного в п. 1 утверждения достаточно показать, что система (2.1), переписанная для случая (2.2), имеет неоднозначные интегралы при $m_1^2 + m_2^2 \neq 0$, а для случая (2.3) — при $m_1^2 + m_2^2 \neq 0$.

Обозначим $x_0' = x_0 A^{-1}$, $z_0' = z_0 A^{-1}$, $n = A C^{-1}$, $m = 1 - n^{-1}$, $m_i' = m_i A^{-1}$ (*i* = 1, 2, 3)

и введем параметр $\beta = \lambda^{\frac{3}{2}}$ и новые переменные

$$p' = \beta p_1, q' = q_1, r' = \beta r_1, \gamma_1' = \gamma_1, \gamma_2' = \beta \gamma_2, \gamma_3' = \gamma_3$$

в уравнения (2.1), которые после замены запищутся так:

$$\frac{dp_{1}}{d\tau} = -z_{0}'\gamma_{2} + mq_{1}r_{1} - \beta m_{3}'q_{1} + \beta^{2}m_{2}'r_{1}, \quad \frac{d\gamma_{1}}{d\tau} = -q_{1}\gamma_{3} + \beta^{2}r_{1}\gamma_{2}
\frac{dq_{1}}{d\tau} = z_{0}'\gamma_{1} - \beta^{2}mp_{1}r_{1} + \beta^{3}(m_{3}'p_{1} - m_{1}'r_{1}), \quad \frac{d\gamma_{2}}{d\tau} = p_{1}\gamma_{3} - r_{1}\gamma_{1}$$

$$\frac{dr_{1}}{d\tau} = \beta nm_{1}'q_{1} - \beta^{2}nm_{2}'p_{1}, \qquad \frac{d\gamma_{3}}{d\tau} = q_{1}\gamma_{1} - \beta^{2}p_{1}\gamma_{2}.$$
(2.4)

Рассмотрим частное решение упрощенной системы (2.4) в виде

$$p_{10} = 0, \quad q_{10} = \frac{2i}{\tau}, \quad r_{10} = 0, \quad \gamma_{10} = -\frac{2i}{z_0' \tau^2}, \quad \gamma_{20} = 0, \quad \gamma_{30} = -\frac{2}{z_0' \tau^2}$$
и, разлагая интегралы уравнений (2.4) по параметру β

$$p_{1} = \beta p_{11} + \beta^{2} p_{12} + \dots, \quad q_{1} = \frac{2i}{\tau} + \beta q_{11} + \dots, \quad r_{1} = \beta r_{11} + \beta^{2} r_{12} + \dots$$
$$\gamma_{1} = -\frac{2i}{z_{0}'\tau^{2}} + \beta \gamma_{11} + \beta^{2} \gamma_{12} + \dots, \quad \gamma_{2} = \beta \gamma_{21} + \beta^{2} \gamma_{22} + \dots,$$
$$\gamma_{3} = -\frac{2}{z_{0}'\tau^{2}} + \beta \gamma_{31} + \dots,$$

получим после подстановки этих рядов в систему (2.4) уравнение для r₁₁

$$\frac{dr_{11}}{d\tau} = \frac{2nm_1'i}{\tau}.$$

Для отсутствия у r₁₁ критической логарифмической точки необходимо, чтобы

$$m'_1 = 0$$
,

а если избрать систему координат $Ox_1y_1z_1$ так, что ось Oz_1 совпадает с Oz, Ox_1 с Oy, а Oy_1 с -Ox, то, повторяя вычисления, получим также

$$m'_2 = 0.$$

Тогда первая часть утверждения доказана и остается рассмотреть случай (2.3).

Для этого заменим p', q', r', γ'_1 , γ'_2 , γ'_3 на βp_1 , βq_1 , r_1 , γ_1 , γ_2 , $\beta \gamma_3$ и, сохраняя прежние обозначения, приведем уравнения (2.1) к виду

$$\frac{dp_1}{d\tau} = \frac{1}{2} q_1 r_1 + \beta m'_2 r_1 - \beta^2 m'_3 q_1$$

$$\frac{dq_1}{d\tau} = -\frac{1}{2} p_1 r_1 - x'_0 \gamma_3 - \beta m'_1 r_1 + \beta^2 m'_3 p_1 \qquad (2.5)$$

$$\frac{d\gamma_3}{d\tau} = q_1 \gamma_1 - p_1 \gamma_2$$

$$\frac{dr_1}{d\tau} = 2x'_0\gamma_2 + 2\beta^3(m'_1q_1 - m'_2p_1), \ \frac{d\gamma_1}{d\tau} = r\gamma_2 - \beta^2 q_1\gamma_3, \ \frac{d\gamma_2}{d\tau} = -r\gamma_1 + \beta^2 p_1\gamma_3.$$

Выбирая в качестве решений для упрощенной системы этих уравнений

$$p_{10} = 0, \quad q_{10} = 0, \quad r_{10} = \frac{2i}{\tau}, \quad \gamma_{10} = -\frac{1}{x_0'\tau^2}, \quad \gamma_{20} = -\frac{i}{x_0'\tau^2}, \quad \gamma_{30} = 0,$$

имеем для p1, q1, r1, у1, у2, у3 разложения

$$p_1 = \beta p_{11} + \dots, \quad q_1 = \beta q_{11} + \dots, \quad r_1 = \frac{2i}{\tau} + \beta r_{11} + \dots$$
$$\gamma_1 = -\frac{1}{x_0' \tau^2} + \beta \gamma_{12} + \dots, \quad \gamma_2 = -\frac{i}{x_0' \tau^2} + \beta \gamma_{21} + \dots, \quad \gamma_3 = \beta \gamma_{31} + \dots$$

Если подставить их в (2.5), то для p_{11} , q_{11} , γ_{31} получим уравнения

$$\frac{dp_{11}}{d\tau} - \frac{i}{\tau} q_{11} = \frac{2m_2'i}{\tau}$$

$$\frac{dq_{11}}{d\tau} + \frac{i}{\tau} p_{11} + x'_0 \gamma_{31} = -\frac{2m_1'i}{\tau}$$

$$\frac{d\gamma_{31}}{d\tau} + \frac{1}{x_0'\tau^2} q_{11} - \frac{i}{x'_0\tau^2} p_{11} = 0,$$
(2.6)

общее решение которых дается формулами [3]

$$p_{11} = \frac{iC_1}{\tau} + C_2 + \frac{C_3}{2}\tau^2, \quad q_{11} = -\frac{C_1}{\tau} - i C_3\tau^2, \quad \gamma_{31} = -\frac{iC_2}{x_0'\tau} + \frac{3iC_3}{2x_0'\tau}\tau^2$$

а так как для определения С2 из (2.6) следует уравнение

557

$$\frac{dC_2}{d\tau} = (m'_1 + im'_2) \frac{1}{\tau},$$

то существование у *p*₁₁ критической логарифмической точки исключается только условиями

 $m_1 = m_2 = 0$

и утверждение п. 1 доказано.

ЛИТЕРАТУРА

- 1. Volterra V., Acta Mathematica, 22, 201-358 (1898-1899).
- 2. Румянцев В. В., ПММ, 25, вып. 1, 9-16 (1961).
- Голубев В. В., Лекции по интегрированию уравнений движения тяжелого твердого тела около неподвижной точки, М., 1950, стр. 67—93.
- 4. Сретенский Л. Н., Вестн. МГУ, № 3, 60-71 (1963).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 7/V 1965

I. KEIS

KINNISPUNKTIGA RASKE GÜROSTAADI LIIKUMISVÕRRANDITE ÜHESTE INTEGRAALIDE EKSISTEERIMISEKS TARVILIKEST TINGIMUSTEST

Tõestatakse, et Lagrange'i ja Kovalevskaja tingimused on tarvilikud ühe kinnispunktiga raske gürostaadi liikumisvõrrandite üheste integraalide kui kompleksse aja funktsioonide eksisteerimiseks.

I. KEIS

ON SOME NECESSARY CONDITIONS FOR THE EXISTENCE OF UNIFORM. INTEGRALS CORRESPONDING TO THE EQUATIONS OF MOTION OF A HEAVY GYROSTAT AROUND A FIXED POINT

The conditions of Lagrange and Kovalevskaya are proved to be necessary for the existence of the integrals as the uniform functions of a complex time variable when the equations of a heavy gyrostat with a single fixed point are considered.