E. JOHANNES, A. MILLER

GRUPPENWEISE ANREICHERUNG EINIGER MIKROELEMENTE MIT EINEM KADMIUMSULFID-KADMIUMKARBAMAT-KOLLEKTOR FÜR EINE CHEMISCH-SPEKTROGRAPHISCHE ANALYSE DES BRENNSCHIEFERS (KUKERSITS)

Es wurde eine Methode zur gruppenweisen Anreicherung von As, Sb, Pb, Sn, Ga, Ni, Co, Mo, Cu, Ag, Zn mit einem Kadmiumsulfid-Kadmiumkarbamat-Kollektor und zur spektrographischen Bestimmung der genannten Elemente im Konzentrat ausgearbeitet. Durch die Einführung des in einem Stäbchen aus Filterpapier enthaltenen Konzentrats in einen horizontalen Wechselstromlichtbogen wurde eine Reproduzierbarkeit der Spektralanalyse $\pm 8 - 12\%$ ohne Verwendung eines Bezugselements erzielt.

LÜHIUURIMUSI КРАТКИЕ СООБЩЕНИЯ

М. ЛЕВИН

ЗАМЕЧАНИЕ ОБ ОДНОЙ ИНТЕРПОЛЯЦИОННОЙ ФОРМУЛЕ

Пусть $P_n(x)$ — интерполяционный многочлен степени *n*, построенный для функции f(x) по узлам $x_0, x_1, \ldots, x_n \in [0, 1], \omega(x) = (x - x_0) (x - x_1) \ldots (x - x_n).$

Будем пользоваться обозначениями

$$(f,g)_{q} = \int_{0}^{1} q(x)f(x)g(x)dx,$$
$$\|f\|^{2}L^{2}(q) = (f,f)_{q}.$$

Вместо интерполяционной формулы

$$f(x) = P_n(x) + r_n(f)$$

построим формулу

9*

 $f(x) = P_n(x) + \lambda \omega(x) + R_n(f),$

в которой λ выберем так, чтобы среднеквадратическая ошибка по весу $q(x) \ge 0$ этой формулы

$$||R_n(f)||_{L^2(q)} = (f - P_n - \lambda \omega, f - P_n - \lambda \omega)_q^{1/2}$$

была наименьшей. Легко увидеть, что

$$\lambda = \frac{(f - P_n, \omega)_q}{\|\omega\|^2_{L^2(q)}}$$

(1)

и поэтому искомая формула примет вид

$$f(x) = P_n(x) + \frac{(f - P_n, \omega)_q}{\|\omega\|_{L^2(q)}^2} \omega(x) + R_n(f).$$
(2)

Можно показать, что формула (2) обладает следующим свойством: $R_n(f) = 0$ не только в точках x_0, x_1, \ldots, x_n , но и еще в одной точке $x_{n+1} \in [0, 1]$. Таким образом, мы фактически решили задачу: среди интерполяционных многочленов степени n + 1, совпадающих с f(x) в точках x_0, x_1, \ldots, x_n и еще какой-нибудь точке отрезка [0, 1], выбрать тот, который дает наименьшую среднеквадратичную ошибку $\|r_{n+1}(f)\|_{L^2(q)}$

Нетрудно получить следующее выражение для ошибки формулы (2):

$$R_n(f) = \frac{1}{(n+1)!} \int_0^1 f^{(n+2)}(t) R_n[(x-t)^{n+1}E(x-t)] dt, \qquad (3)$$

где

$$E(x) = \begin{cases} 1, & x > 0 \\ 0, & x \leq 0. \end{cases}$$

Формулу (2) проиллюстрируем примером. Примем $f(x) = x^4$, n = 2, узлы x_0 , x_1 , x_2 — нули многочлена Лежандра, приведенного к отрезку [0, 1], q(x) = 1. Во втором столбце нижеприведенной таблицы даны ошибки приближения по формуле (1), в третьем — ошибки равномерного наилучшего приближения многочленом третьей степени, в четвертом — ошибки при вычислении по формуле (2):

x	$ r_2(f) $	ошибка наилучшего приближения	$ R_2(f) $
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8	$\begin{array}{c} 0,075\\ 0,006\\ 0,027\\ 0,05\\ 0,02\\ 0\\ 0\\ 0,03\\ 0,04\\ 0,$	$\begin{array}{c} 0,008\\ 0,006\\ 0,0008\\ 0,0004\\ 0,006\\ 0,008\\ 0,004\\ 0,004\\ 0,004\\ 0,0004\\ 0,006\\$	0,025 0,001 0,0009 0,004 0,001 0 0,001 0,001 0,004 0,005
0,9 1,0	0,01 0,025	0,006	0,002 0,025

Институт кибернетики Академии наук Эстонской ССР

Р Поступила в редакцию 22/VII 1964