ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XI СЕРИЯ ФИЗИКО-МАТЕМАТИЧЕСКИХ И ТЕХНИЧЕСКИХ НАУК, 1962, № 2

СИНТЕЗ ГЕКСАХЛОРЦИКЛОПЕНТАДИЕНА ИЗ ПЕНТЕН-ПЕНТАНОВЫХ ФРАКЦИЙ СЛАНЦЕВЫХ ГАЗБЕНЗИНОВ

Х. РАНГ

Гексахлорциклопентадиен был синтезирован впервые Штраусом, Коллеке и Хайном [¹] из циклопентадиена и гипохлорита калия. В дальнейшем было показано [2-5, 16, 20], что он может быть синтезирован из насыщенных алифатических и циклических углеводородов С₅. Они хлорируются при температуре около 100° С в среде образующихся продуктов реакции, которые представляют собой смесь полихлорпентанов, содержащую 6—7 атомов хлора в молекуле. Далее, смесь полихлорпентанов и хлор направляются в пустой или заполненный катализатором трубчатый реактор. Катализатором служит инфузорная земля или другой материал с активной поверхностью. Процесс проводится при температуре 350—550° С. Реакция проходит главным образом через следующие стадии: вначале полихлорпентаны превращаются в нонахлорпентен, затем октахлорпентадиен-1,3; далее, октахлорциклопентен, на базе которого образуется целевой продукт — гексахлорциклопентадиен [², 6, 7]. Гексахлорциклопентадиен может быть синтезирован также непосредственно из пентановой фракции с использованием при этом большого избытка хлора [³].

Промышленное использование гексахлорциклопентадиена базируется на его реакции с диенофилами по Дильсу-Альдеру. В настоящее время при помощи этой реакции из гексахлорпентадиена производятся инсектициды: хлориндан, гептахлор, альдрин, дильдрин, эндрин, изодрин, тиодан и аллодан. Кроме того, на базе гексахлоршиклопентадиена можно получить термостойкие полиэфирные [14] и эпоксидные смолы [15], фунгициды, стимуляторы роста растений и т. п.

Для синтеза гексахлорциклопентадиена использовались также пентен-пентановая фракция крекинг-бензина [6 , 16] и пиперилен [17]. В данном случае приготовление полихлорпентанов осуществлялось периодически, хлорированием при низкой температуре с последующим повышением температуры до $100-150^{\circ}$ С.

В настоящей работе были изучены возможности синтеза гексахлорциклопентадиена на базе пентен-пентановых фракций сланцевых газбензинов.

P. табл. 1 и 2 приведены составы углеводородных фракций C_5 сланцевых газбензинов и некоторых нефтяных крекинг-бензинов.

Выделение углеводородов C_5 из сланцевых газбензинов легко осуществимо. Соответствующие углеводороды, содержащиеся в сланцевых бензинах кипят в пределах температур $27.7-49.3^{\circ}$ С. При этом основная часть их выкипает при $30-37^{\circ}$ С. Ввиду того, что в сланцевых бензинах низкокипящих изогексенов содержится незначительное количество, C_5 фракция становится легко отделимой от основного компонента — гексена-1 (т. к. 63.5° С) — следующей C_6 фракции. Также легко отделяется фракция C_5 от углеводородов C_4 , потому что сланцевые бензины не содержат таких соединений как 2.2-диметилпропан и 2-метилбутен-3.

Таблица 1

Индивидуальный химический состав пентен-пентановых фракций продуктов термической переработки горючего сланца

Control of the Contro				
Углеводороды	Температура кипения, ° С	Содержание во фракции С₅ бензина туннельных печей [9], в %	Содержание во фракции С ₅ газбензина камерных печей [¹⁰], в %	Содержание во фракции С ₅ легкой смолы установки с твердым теплоносителем [¹¹], в %
Пентан 2-метилбутан	36,2 27,7	30,1 1,1	23,3	12,1
Bcero C₅H₁₂	P. M. A.	31,2	23,3	13,1
Пентен-1 Пентен-2 (транс) Пентен-2 (цис) 2-метилбутен-2 2-метилбутен-1	29,9 36,4 37,1 38,5 31,1	28,7 15,2 7,0 1,9	15,1 6,6 12,0	18,5 11,5 7,4 3,3 5,2
Bcero C ₅ H ₁₀		52,8	33,7	45,8
2-метилбутадиен-1,3 Пентадиен-1,3	34,1 42,4—42,6	2,1 3,2	9,8 19,0	1,3 22,6
Всего диенов	i de la companya de l	5,3	28,8	23,9
Циклопентан Циклопентен	49,3 44,0	2,9 7,8	2,9 11,3	3,3 13,8
Всего циклических соединений		10,7	14,2	17,1
Всего алифатических соедине- ний		89,3	85.8	82,9
Изоструктур Нормальных соединений Всего пентанов Всего пентенов	ALD STA	5,1 84,2 34,1 60,6	9,8 76,0 26,2 45.0	10,8 72,1 16,4 59,6

Характеристика исходного сырья. Исходным сырьем служил газбензин туннельных печей комбината «Кивиыли». Пробы газбензина были взяты в различное время года (в январе, марте и июне). В табл. 3 приведена характеристика данных проб.

Содержание углеводородов C_5 в указанных пробах газбензина определялось следующим образом Газбензин ректифицировался в колонке эффективностью в 60 теоретических тарелок. В полученных фракциях, выкипающих до температуры 50° С, определялись углеводороды C_5 при помощи сконструированного в Институте химии АН ЭССР газо-жидкостного хроматографа * [18]. Адсорбционная колонка заполнялась диатомитовой мелочью, пропитанной в одном случае ацетонилацетоном, в другом — дибутилфталатом.

^{*} Автор выражает благодарность Э. Арумеел за оказанную помощь.

Таблица 2 Индивидуальный химический состав пентен-пентановых фракций нефтяных крекинг-бензинов

		5		
Углеводороды	Содержание во фракции C_5 бензина термического крекинга [12], в %	Содержание во фракции С ₅ бензина каталитического крекинга [¹²], в %	фракции С, бензина термического крекин-	
2,2-диметилпропан 2-метилбутан Пентан	0,1 20,4 35,2	51,8 6,7		
Bcero C ₅ H ₁₂	55,7	58,5	52,7	
Пентен-1 Пентен-2 (транс) 2-метилбутен-3 2-метилбутен-1 2-метилбутен-2	12,6 9,5 2,4 8,2 6,8	2.1 9,2 0,6 7,6 17,3	2,2 6,9 5,6 9,1 14,2	
Bcero C₅H ₁₀	39,5	36,8	38,0	
Циклопентан Циклопентен	2,4 2,4	0,9	6,4 2,9	
Всего циклических соединений	4,8	2,7	9,3	
Всего алифатических соединений В том числе:	95,2	95,3	90,7	
а) изоструктур б) нормальных структур	37,9 57,3	77,3 18,0	43,4 47,3	
Всего пентанов	58,1 41,9	59,4 38,6	59,1 40,9	

Для синтеза гексахлорциклопентадиена использовались две фракции газбензина туннельных печей: $30-36^{\circ}$ С и $36-46^{\circ}$ С.

В табл. 4 представлен состав указанных фракций.

Кроме того, в качестве исходного сырья для синтеза использовалась фракция

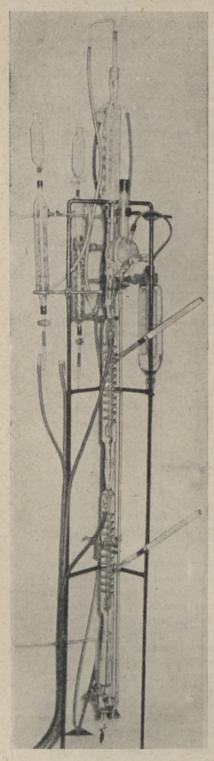
Таблица 3 Характеристика газбензина туннельных печей в зависимости от времени года

Показатели	Проба взята в январе	Проба взята в марте	Проба взята в июне	
Удельный вес d_4^{20}	0,7189	0,7246	0,7289	
Показатель преломления n_{D}^{20}	1,4095	1,4132	1,4145	
Фракционный состав:	ME MARTEN MARTE	EPHANTSHIP OF		
начало кипения, °С	24	28	28	
10% выкипает, °С	36	38	38	
50% ,, ,,	71	76	78	
80% ,, ,,	186	220	225	
90% ,, ,,	232			
Содержание углеводородов С.	92.0	19.8	184	

30—36° С, полученная путем простой перегонки газбензина. Эта фракция имела следующие показатели: $n_{\rm D}^{20}=1,3752;$ $d_4^{20}=0,6448;$ бромное число [19] — 125; содержание углеводородов $C_5=67\%$. Полученная фракция содержала циклопентадиен (определено качественно при помощи спектрометра).

Также применялась фракция 30—44° C, полученная ректификацией газбензина камерных печей в колонке эффективностью в 60 теоретических тарелок.

Для выяснения влияния сернокислотной рафинации на состав углеводородов C_5 и изменения их содержания в газбензине была проведена рафинация последнего концентрированной серной кислотой. В результате проведенного процесса рафинации содержание углеводородов C_5 в газбензине уменьшалось с 22,0 до 19,8%. Изменение состава углеводородов лучше всего характеризуется содержанием пиперилена в соответствующей фракции, кипящей в пределах температур $36-46^{\circ}$ С, определенного при помощи газо-жидкостной хроматографии. Результаты анализа представлены в табл. 4.


Таблица 4 Индивидуальный химический состав сырья для синтеза гексахлорциклопентадиена

Углеводороды	Фракция 30—36° С газбензина, рафинированного серной кислотой	Фракция 36—46° С	Фракция 36—46° С газбензина, рафи- нированного сер- ной кислотой
2-метилбутан	0,5		
Пентан	34,4	17,1	24,8
Пентен-1	29,7		
Пентен-2 (транс)	18,6	15,8	15,0
Пентен-2 (цис)	11,3	13,1	11,3
2-метилбутен-2	3,7	8,4	7,7
Пентадиен-1,3	1,4	17,0	12,0
Циклопентен Циклопентан	0,4	28,6	29,1

Из табл. 4 видно, что даже в рафинированном бензине содержится сравнительно большое количество пиперилена, которое в пересчете на суммарный бензин (фракция до 200° C) составляет 0,2%.

Получение полихлорпентанов. На основе вышеохарактеризованных пентен-пентановых фракций были получены полихлорпентаны при помощи фотохимического хлорирования, осуществленного в представленной на фиг. 1 колонке. Колонка состояла из двух секций, в каждой из которых имелась спираль для теплообмена. Приготовление полихлорпентанов из всех видов сырья проводилось периодически. Колонка заполнялась углеводородами С₅. Смесь хлорировалась при температуре ниже 15° С до полного насыщения двойных связей (бромное число равнялось нулю). В дальнейшем для иницийрования процесса хлорирования применялось ультрафиолетовое облучение. Средняя температура процесса при этом составляла около 80—100° С. Кроме того, хлорировалась периодически смесь пентенов (95,5% пентен-1, 4,5% пентен-2), полученных при дегидратации пентанола-1 на окиси алюминия при 380° С, и смесь метилбутенов, полученных при дегидратации изоамилового спирта на окиси алюминия при 420—450° С. Характеристика полученных продуктов приведена в табл. 5.

Как показал анализ и органолептическая оценка (цвет), полихлорпентаны, полученные из диенсодержащего сырья (в особенности циклопентадиена), содержат полимеры и продукты окисления. Эти нежелательные побочные продукты удалось устранить проведением непрерывного процесса хлорирования.

Фиг. 1. Хлоратор

Из всех соответствующих фракций сланцевых газбензинов (за исключением содержащих циклопентадиен) при непрерывном хлорировании в среде полихлорпентанов (полученных на базе фракции 30—36° С серной кислотой рафинированного газбензина туннельных печей) при температуре 80—100° С и ультрафиолетовом облучении удалось получить бесцветные полихлорпентаны, не содержащие полимеров и продуктов окисления.

Разработанная методика проверялась на хлорировании пиперилена. Для этого пары пиперилена ($n_{\rm D}^{20}-1,4328,\ d_4^{20}-0,6845$) непрерывно подавались сквозь пористую пластинку в колонку, заполненную 630 г полихлорпентана ($n_{\rm D}^{20}-1,5362,\ d_4^{20}-1,6500$). Одновременно туда же подавался хлор в соотношении ${\rm Cl}_2:{\rm C}_5{\rm Cl}_8=4:1$. Верхняя часть колонки облучалась ультрафиолетовыми лучами. Температура смеси поддерживалась в пределах $80-100^{\circ}{\rm C}$. В итоге было получено 958 г полихлорпентанов, свойства которых оказались весьма близкими к свойствам первоначально загруженных полихлорпентанов.

Синтез гексахлорциклопентадиена. В дальнейшем был изучен синтез гексахлорциклопентадиена на базе полученных полихлорпентанов (см. табл. 5). Процесс осуществлялся в трубчатом реакторе при двух зонах нагрева. Диаметр трубки, заполненной катализатором, составлял 20 мм, длина контактной зоны — 850 мм (620 + 230). В трубку подавались одновременно полихлорпентаны и хлор. Нагрузка катализатора в среднем составляла 0,005 г/см³ мин., избыток хлора 20% от теоретического. Сконденсированный катализат освобождался от хлора и хлористоводородного газа путем продувания воздухом и последующим промыванием водой. Высушенный катализат подвергался ректификации.

Было изучено влияние природы катализатора, температуры, качества и соотношения ингредиентов на выход гексахлорциклопентадиена.

В качестве катализатора служил силикагель марки КСМ, с размером зерен 2—3 мм.

Кроме того, применялся силикагель, пропитанный хлоридами железа, меди, никеля и кобальта, а также силикагель с с ажденными на него гидроокисями железа и кобальта, которые последующим хлорированием переводились в хлориды. Выяснилось, что эффективность пропитанного катализатора существенно не увеличивается, а активность катализаторов, обработанных методом осаждения, заметно уменьшелизатора.

Результаты опытов представлены в сводной табл. 6. Как показали данные повторной ректифи-

Таблица 5

51.4

Характеристика полихлорпентанов

	Поли	хлорпе	нтаны			
Исходная фракция С ₅	Фракция 30—36°С серной кислогой рафинированного газбензина тун-нельных печей	Фракция 36—46°C газбензина тун-	Фракция, содержа- щая циклопента- диен	Газбензин камер-	Синтезированные пентены	Синтезированные метилбутены
№ опыта	C - 32	C — 37	C - 31	C — 39	C - 42	C - 43
Удельный вес d_4^{20}	1,6500	1,6588	1,6616	1,6927	1,6844	1,6859
Показатель преломления			The state of the s			
n D 20	1,5362	1,5373	1,5402	1,5442	1,5466	1,5472
Фракционный состав		3/10/18				14.16
10% выкипает при	07	00	=0	00	100	101
3 мм рт. ст. до 20% то же	97 104	82 96	76 91	80 89	102 105	101 105
2001	104	102	102	98	107	108
40%	110	107	107	102	112	111
50% .,	110	110	115	108	114	114
60%	113	116	122	114.	116	118
70% ,,	116	120	129	118	119	122
80%	118	123	136	127	123	124
90% ,,	120			-010	126	127
Средний молекулярный	296	303		309		
Bec [20]	78	77,9	78,2	78,4		
Содержание хлора, в % Молекулярный вес, рас-	10	11,5	10,2	10,1		SEP POR
считанный по содержа-	1992	-	1247100000	A THE REAL PROPERTY.	No Service	S Conta
нию хлора	297	298		303	- 6	4 17
Цвет	бесцветный	желтый	желтый	желтый	бесцветный	бесцветный

кации, приведенные в табл. 6, головка состояла в основном из гексахлорбутадиена и некоторого количества четыреххлористого углерода, тетрахлорэтилена и гексахлорэтана. Фракция С₅Cl₈ (отделялась при помощи кристаллизации) состояла из октахлор

Таблица 6 Результаты синтеза гексахлорциклопентадиена

1 0
Выход С ₆ СІ ₆ на исходную фракцию с учетом возврата С ₅ СІ ₈
68,6 65,5 44
49,5 45,5 68,5

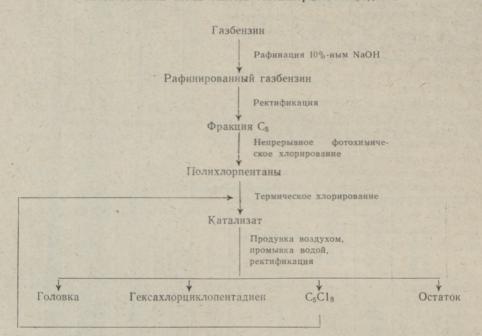
380

450

^{*} Все данные перечислены на содержание углеводородов С5 (67%) во фракции.

96 Х. Ранг

циклопентена и октахлорпентадиена. Фракция C_5Cl_8 обычно рассматривалась как потенциальный гексахлорциклопентадиен. Последний можно синтезировать путем добавления фракции C_5Cl_8 к смеси полихлорпентанов [§], или в результате проведения самостоятельного процесса [21 , 22]. С точки зрения оформления технологического процесса следует предпочесть первый вариант.


Были определены экспериментально выходы C_5Cl_6 из C_5Cl_8 . Последние учитывались при определении выходов целевого продукта.

Как видно из результатов опытов, оптимальными температурами можно считать в первой зоне температуры до 380° С и во второй зоне — 450° С. При этом не замечается образование гексахлорбензола. При несколько низших температурах суммарный выход гексахлорциклопентадиена с учетом возврата C_5Cl_8 тоже высокий, но выход целевого продукта за один проход низкий, поскольку гобразуется большое количество C_5Cl_8 .

Катализат, получаемый при оптимальном режиме процесса, имеет цвет от желтого до оранжевого. Полученные гексахлорциклопентадиеновые фракции имели следующие показатели: $d_4^{20} = 1,7110 - 1,7121$, $n_D^{20} = 1,5647 - 1,5650$, пределы кипения — $80-85^{\circ}$ С при давлении 3 мм рт. ст.

Ниже следует технологическая схема синтеза гексахлорциклопентадиена из пентен-пентановых фракций сланцевого газбензина. Отделенная из катализата головка может найти применение в качестве фумиганта почвы. Остаток имеет пестицидные свойства.

Технологическая схема синтеза гексахлорциклопентадиена

Выводы

1. Выделение фракции C_5 из сланцевых газбензинов легко осуществимо, так как основные компоненты этой фракции кипят в узких пределах температур (для газбензина туннельных печей — $30-37^{\circ}$ C, для газбензина камерных печей — $30-44^{\circ}$ C).

- 2 При непрерывном хлорировании фракции С₅ сланцевых газбензинов могут быть получены полихлорпентаны, пригодные для синтеза гексахлорциклопентадиена, и что при периодическом проведении процесса происходят значительная полимеризация и окисление продуктов реакции за счет присутствующих диеновых углеводородов.
- Удаление диеновых углеводородов сернокислотной рафинацией бензина не удается.

ЛИТЕРАТУРА

- F. Straus, L. Koʻllek, W. Heyn, Über den Ersatz positiven Wasserstoffs durch Halogen. Ber. 1930, 63 B, S. 1868—1885.
- 2. Л М. Коган, Н. М. Бурмакин, Н. В. Черняк, О химизме процессов глубокого хлорирования пентана, ЖОХ, т. XXVIII, 1958, стр. 27.
- 3. Brit. Patent 735 025 (10. VIII 1955).
- 4. E. T. McBee, C. F. Baranauskas, Production of Hexachlorocyclopentadiene. Ind. Eng. Chem. 1954, v. 46, p. 1628.
- 5. US Patent 2 473 162 (14. VI 1949).
- 6. Л. Н. Коган, Н. М. Бурмакин, Об основах технологии гексахлорциклопентадиена, ЖПХ, т. ХХХІ, 1958, стр. 1585.
- 7. Л. Н. Коган, Н. М. Бурмакин, Н. П. Игнатова, Н. В. Черняк, Получение октахлорпентадиена-1.3, ЖПХ, т. ХХХІ, 1958, стр. 507.
- 8. US Patent 2 795 622 (11. VI 1957).
- 9. О. Г. Эйзен, С. А. Ранг, Х. А. Ранг, О химическом составе легких фракций сланцевого бензина, Хим. и техн. топлив и масел, № 3, 1960, стр. 8.
- G. Klesment, E. Arumeel, Põlevkivi kamberahjude gaasbensiini mittearomaatse osa keemilisest koostisest. Изв. АН ЭССР, серия техн. и физ.-мат. наук, т. VII, № 3, 1958.
- 11. С. А. Ранг, Э. Х. Арумеел, О. Г. Эйзен, О химическом составе легких фракций сланцевой смолы установки с твердым теплоносителем, Хим. и техн. топлива и масел, № 4, 1961, стр. 40.
- 12. Химия углеводородов нефти, том II, Гостоптехиздат, Л., 1958.
- 13. А. В. Топчиев, И. А. Мусаев, Э. Х. Исхакова, А. Н. Кислинский, Г. Д. Гальперн, О химическом составе бензина термического крекинга, Хим. и техн. топлива, № 12, 1956, стр. 1.
- P. Robitschek, T. S. Bean, Flame-Resistant Polyesters from Hexachlorocyclopentadiene. Ind. Eng. Chem. 1954, No. 46, p. 1628.
- P. Robitschek, S. J. Nelson, Flame and Heat-Resistant Epoxy Resins. Ind. Eng. Chem. 1956, v. 48, p. 1951.
- 16 Л. Г. Вольфсон, С. Д. Володкович, Н. Н. Мельников, А. В. Молчанов, Ю. Н. Сапожков, Хлорсодержащие инсектициды— хлориндан и гептахлор, Сб. НИУИФ, вып. 158, Органические инсектофунгициды и гербициды, М., 1958.
- С. Д. Володкович, С. С. Кукаленко, Н. Н. Мельников, Получение гексахлорциклопентадиена из некоторых полихлоруглеводородов, Сб. НИУИФ, вып. 158, Инсектофунгициды и гербициды, М., 1958.
- 18. О. Г. Эйзен, Э. Х. Арумеел, В. Иоонсон, Применение метода газо-жидкосгной хроматографии для определения химического состава легких продуктов термического разложения горючего сланца, Изв. АН ЭССР, сер. физ.-мат. и техн. наук, т. IX, № 2, 1960, стр. 113.
- H. D. Du Bois, D. A. Skoog, Determination of Bromine Addition Numbers, Anal. Chem., 1948, v. 20, p. 624.
- 20 В. Я. Михкельсон, Криоскопический метод определения молекулярных весов с применением термометров сопротивления. Журн. анал. химии, IX, № 1, 1954.
- 21. Brit. Patent 703 202 (27. I 1954).
- 22. US Patent 2742506 (17. IV 1956).

Институт химии Академии наук Эстонской ССР 98 Х. Ранг

HEKSAKLOORTSÜKLOPENTADIEENI SÜNTEES PÕLEVKIVI GAASBENSIINIDE PENTEENI-PENTAANI FRAKTSIOONIST

H. Rang

Resümee

Heksakloortsüklopentadieen on lähtematerjaliks mitmete insektitsiidide, kuumuskindlate vaikude, fungitsiidide, taimekasvu regulaatorite jm. valmistamisel. Heksakloortsüklopentadieeni sünteesitakse tänapäeval tööstuslikult pentaanifraktsioonist, ja nimelt viimase kloreerimisel saadavatest polükloorpentaanidest. Kasutades heksakloortsüklopentadieeni sünteesimiseks penteeni-pentaani fraktsioone, saab polükloorpentaanide valmistamisel vähendada kloori kulu.

Käesolevas töös on uuritud heksakloortsüklopentadieeni sünteesimise võimalusi põlevkivi gaasbensiinide C_5 -fraktsioonist. Nagu nähtub põlevkivi gaasbensiinide individuaalsest koostisest, pole C_5 -fraktsiooni eraldamine neist keerukas.

Heksakloortsüklopentadieeni sünteesiti nii tunnelahju kui ka kamberahju gaasbensiinide rektifikatsioonil saadud C_5 -fraktsioonist. Esmalt sünteesiti neist vertikaalses kolonnis polükloorpentaanide segud. Näidati, et põlevkivi gaasbensiini C_5 -fraktsiooni kloreerimisel võib saada polükloorpentaane, mis sobivad heksakloortsüklopentadieeni sünteesimiseks. Dieene sisaldavast C_5 -fraktsioonist perioodilisel protsesil sünteesitud polükloorpentaanid sisaldavad polümerisatsiooni- ja oksüdatsiooniprodukte. Leiti, et väävelhappega rafineerides ei õnnestunud dieene C_5 -fraktsioonist eraldada.

Töötati välja üheastmeline pidev protsess suure olefiinsete ja dieensete süsivesinike sisaldusega C₅-iraktsiooni polükloreerimiseks. Polükloorpentaanide saagis oli suur ja nad ei sisaldanud polümerisatsiooni- ega oksüdatsiooniprodukte.

Edasi uuriti katalüsaatori, polükloorpentaanide kvaliteedi ja temperatuuri mõju heksakloortsüklopentadieeni saagisele ja selgitati välja heksakloortsüklopentadieeni sünteesimise optimaalsed tingimused põlevkivi gaasbensiini C_5 -fraktsioonist.

Eesti NSV Teaduste Akadeemia Keemia Instituut Saabus toimetusse 20. VI 1961

PREPARATION OF HEXACHLOROCYCLOPENTADIENE FROM PENTENE-PENTANE FRACTION OF SHALE OIL

H. Rang

Summary

Hexachlorocyclopentadiene is a raw material for many insecticides, head-resistent resins, fungicides, plant growth stimulators, etc.

This paper is a report of an investigation into possibilities of preparing hexachlorocyclopentadiene from C_5 fractions of shale oil. The main compounds of these fractions are normal pentenes, pentane, cyclopentene and piperylene. It is not difficult to isolate the C_5 fraction from shale oil by rectification. At first polychloropentanes were prepared from the C_5 fraction of shale oil. If polychloropentanes are prepared periodically, they contain polymers and oxydation products, which are formed from dienes. It is not expedient to remove the dienes of the C_5 fraction by purifying shale-oil gasoline with sulphuric acid. In this paper it is shown that in an one-stage continuous process it is possible to prepare, from the C_5 fraction of shale oil, pure polychloropentanes, which are colourless liquids. It is possible to chlorinate the piperylene, too, without any oxydation or polymerization in a continuous one-stage process.

For preparing hexachlorocyclopentadiene, the polychloropentanes were subjected to thermal chlorination. The mixture of chlorine and polychloropentanes was passed through a tube reactor which was filled with silica-gel.

The C_5 fractions of shale oil gave hexachlorocyclopentadiene as a product, in yields as high as 65–70%.

Academy of Sciences of the Estonian S.S.R., Institute of Chemistry Received June 20th, 1961