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V .SINIVEE E. LIPPMAA

WEAK PERTURBING RADIO-FREQUENCY FIELD EFFECTS

IN NUCLEAR MAGNETIC DOUBLE RESONANCE. I 1

In е first paper of this series {!], hereafter referred. to as I, a density matrix

equation for spectral lines in NMDR spectra of nondegenerate spin systems, interacting
with weak perturbing rf fields, has been given. An analysis of this equation for the

special case of spectral lines without a common energy level with the perturbed line

was presented in the second paper [?], referred to below as 11. In this paper an analysis
of line shapes and intensities for lines with a common energy level with the perturbed
line is given. The same notation and convention for signs and indices as in I has been

used. Since frequency-swept spectra are much simpler to interpret, only this case has

been considercd.

1. The line-shape equation for weak perturbing fields

In order to rend the “tickling” equation (I 64) more amenable for

interpretation, let us introduce new variables

. ]с___
th'

ZNa (1)

so that the equation (I 64) takes the form

HZin) = (IFUS)h (Zn) F Žf(Z ), (2)

where

fl (Z, n.)‘ №
pi+vigl’

(3)

Da - VaNG2f 2 Zv 7]) ,(
pi +93

(4)

and

pl=l-+vh%2+4 22, (5)

д1 = Z +nZ%2+4 (1 —h2)Z4 (6)

pe=l-+vih2—vZ(Z+n), (7)

go=Z-+vi(Z+nm). (8)
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The equation (2) with the new variables is suitable for the line intensity
calculations, while in order to find the line shapes a transformation to a

simpler form is indicated.

Noting that the denominator of the fraction in the right-hand side of

(3) may be presented in the form - ; .

Bi(Z) = (vigl —ipl) (vig:l + ipl), (9)

we find the roots of Bi(Z) from the equations

73 —al2+bZ—c=o, (10)

Z3 а72 -- b2 c=o (11)
where

‚ 1

a:+n—i—zq (12)

Ь 1 Й?, (13)

e=Fn4i(5 +4). (14)

It Z,, Z, and Z; are solutions of the equation (10), then the complex
tonjugate quantities Z,, Z, and Z 3 are solutions of equation (11). It may
be proved by insertion that Z;= . Using this pair of solutions, we get
irom (9)

B(Z) =vil4+2)[Z22 (a4+i)Zricd[Z22— (а)). (15)

It can be seen from (15) that the other roots of (9) are

oNp; nZl—+2+L 2'\7l
—]—-0&‚ (16)

2___
Il | lZa=T 3+i l——a
2 2w; ,

(17)
where

—И n\? vl—l_Z__J__. м, 1a_l/h —l_(2) ( 2V, )2 N
2v,

(18)

and the roots a are chosen so that Ima >O.

Inserting (12), (13) and (14) into (15) one obtains a new expression
tor BI (Z)

Bi(Z) =v¥(l+ 2%)D(Z), (19)

where-

D(Z) =Z+n34 [n2——2h2--|— fiv—t—l] Zr Z

- + [n+a 4 4] (20)
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Now, the denominator in (4) equals v2D(Z), as can be proved by the

use of (7) and (8). Consequently, we can write (2) as

-Е° (21)

where

E(Z) :[1 F (т‚ :—;) 5]22+%nlvi+ valvi+]Z +

+ [l7 ( + )S] O + м@) *S nvıa (22}

2. Calculation of the line shapes

Equation (21) can be used to calculate NMDR Ппе shapes if the

perturbing fields are weak and acting selectively upon some transitions.
A homogeneous static magnetic field is assumed thus far. In case of exact

resonance of the perturbing field n=o the equation (21) takes a simple
form :

; тау--тэ
,ANPyt (23)

where

y = 22, (24)

vm‚:l—f—-(rl—r—;) S, (25)

HE (26)

2vi+l
fll:2h2—'——2' ›

Vı
(27%

m= (12 45)" (28)

5
2h2vy,

T

142Rty
(29)

It can be seen from (23) and (24) that

К—2) =[(2) (30)
and

(31)f(Z,O) >O, if Z— 40,

To characterize the line-shapes more completely, let us find the extremums

of f (Z, 0), which can be found from the following equations:

Z=o, (32)

Y
0

ду (33)
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Inserting (23) into (33) one obtains a quadratic equation for y =22

+nl %Ё') :0›2
У (”2y2+2 Щ (34}

with the possible roots

yr=—Fk(l+vih*) +B,

yo = k(1 +vih2)—B,
(35)

(36)
where

ß = \/ k2(l + 'V]h2)2 +nlk(l —l VIHI'ZZV) —l'- no, (37)

T II)S.+_2I+‹l
1)T

I.____;s‘| I+(Т
(38}and

Let us study the case k >0 first.

For weak rf fields, so that p<k(l 4 v,h?)

line splittings do not occur. The peak height in this case is given by

(39)

| 1$(1:1+-%)8
1(0,0)= арра—› (40}

In the A=o case (regressive transition) the peak height decreases with

increasingrf field strength until the inequality (39) is reversed and line

splitting results. In the A=2 case (progressive transition) there are two

possibilities; either the peak height f(0,0) increases at first with increas-

ing rf field strength and then begins to diminish with the occurrence of
line splitting as soon as the inequality (39) no longer holds, or the peak
heighl decreases monotonously. The second case obtains if an additional

inequality holds .

2\72’['2 (Tl+%)<Vl. (41}

The maximums оЁ f(Z,O) for the case of line splittings can be found

by inserting (35) into (24) and the corresponding peak height by insert-
ing (35) into (23). With increasing rf field strength parameter 4, the

peak heights tend to an asymptotic value

117
[(+A,O) :\›,_+lТ (42)

The above formula (42) is a good approximation if

v B T,T»>> 1, (43}

YH2>>%. (44)

In these inequalities (43), (44) T, and T, denote quantities of the type
|Tapl| and Tgne. With these conditions the equation (35) leads to the simple
result '

7== - Й. - (45)
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Note that in (45) and in the left-hand side of (42) the signs corre-

spond to the halves of a symmetrically split line. The signs in the right-
hand side of (42) correspond to the A==o; 2 cases. |

. The eguation (45) corresponds to the “tickling” eguation of Freeman

and Anderson (3], but the peak heights (42) still depend upon relaxation

parameters, even in the case of saturation (43). Indeed, by inserting
(I 57) and (I 58) into (1) and (45) we obtain equation (12) of ref. [°] for

exact resonance (02— w,s =0 in the notation of [3]).

Some numerically calculated line shapes for various values of the rf
field strength parameter 4 are given in fig. 1. The relaxation parameters
have the following chosen values: v, =0,5, 19—=4, vi=wvs=l. The
monoresonance peak height equals 1,0. |

The interesting case of k<o is possible in case of a fairly strong rf
field if the following inequalities hold:

Тга > Теа if A=o, (46)

Tc'd'2 > Tc'd'l _l_ Tc'cl it A=2. (47)

. The question whether these conditions are consistent with the equations
(I 47) and real relaxation mechanisms, is outside the scope of this paper.
Here we note only the line shapes that correspond to the 2<o case. In

addition to the two maximums (35) we obtain in this case two symmetri-
cally placed minimums (36), where the function f (Z, 0) has.a negative
sign. In the A=o case these minimums occur between the maximums

(35), but in the A=2 case on the outside. The minimums are greatest at

intermediate rf field strengths. At Z=o one obtains in the A=o case a

maximum with a negative absolute value, and a positive minimum in the
A=2 case. Some line shapes for the £<o case are presented in figs 4

апа 5. -

In the important case of inhomogeneous static magnetic field the line

shape is given by eguation (I 73). Introducing dimensionless quantities

w 1 = Aot Trae, (48)

*de'27Aw,Ky = (49)

Fig 1. Calculated line shapes in case of homogeneous static magnetic field for various

values of rf field strength parameter h. t1=0,5; тэ=4; vi=vy=l. A=o case on the left
and A=2 case on the right. -
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š* = š Trd'2‚ (50)

V*
* #y d"

F(%l, X9) = >td'- , (51)

с(#)= , (52)

the equation (I 73)
takes the form

+ со

Fln xi)= [ Hmj%,2E*)O(E*)dE*. (53)

Since the shape of a spectral line depends strongly upon small deviations
irom exact resonance and the shape function, the equation (23) may not
give adequately exact results in case of real inhomogeneous static magnetic
Пе!4s. To characterize to some extent the effect of magnetic field
inhomogeneity, the more exact but complicated equation (53) has been
used for numerical line shape calculations. A normalized Gauss shape
function

Fig. 2. Calculated line shapes in case of inhomogeneous static magnetic field for various
values of rf field strength parameter . 1,=0; I,=lo;v;=v,=l. A=o case on the left and

A=2 case on the right. ;

Fig. 3. Calculated line shapes in case of inhomogeneous static magnetic field for various
values of rf field strength parameter Л. ©,=0,5; t,=lo; vi=v2=l. A=o case оп the left

and A=2 case on the right.
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G(z*) = ]/ expl—(ln2) (v*")7) (54)

with

“
T;

0 1Z =\,
T,rd'2

(55)

and —;— as half width have been used. As before, it has been chosen

2

that vy=vy=l and =,=o, but a variety of values for the parameters
T, T 2 and A have been used. .

Some representative shapes are set out in figs 2,3, 4 and 5.

It can readily be seen that very weak rf fields cause no splittings. The

height of line center F(x;,0) decreases with increasing rf field strength in

the A=o case and increases in the A=2 case. Note that for the chosen

relaxation parameters in figs 3, 4 and 5 the inequality (41) does not hold.
A sufficiently strong rf field causes a line splitting in all cases. Unlike the

case of line splitting in homogeneous magnetic field (fig. 1), a character-
istic difference between A=o and A=2 lines occurs, as described by

Fig. 4. Calculated line shapes in case of inhomogeneous static magnetic field for various
values of rf field strength parameter 4. 1,=0,5; tp=2; vv=vy=l. A=o case on the leit

and A=2 case on the right.

Fig. 5. Calculated line shapes in case of inhomogeneous static magnetic field for various
values of rf field strength parameter h. 1,=0,5; t2=l; vı=v2=l. A=o case on the‘ left

and A=2 case on the right.
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Freeman and Anderson {3]. The split lines sharpen in the A=o case and
widen in the A =2 case, апа п the A==o case a splitting occurs at lower

rf field strengths. .
Eguation (45) is approximately correct for stronger rf fields, and par-

ticulary so for A =0 lines with small 1, and large t 2 values.

3. Line intensities

The intensity of a NMDR line in inhomogeneous magnetic field is

given by '

[td'(A(U;)Z
N

[V
3

‚d‚(A(‚);,A()*)d'"2 (A(l)*)- (56)

According to equation (I 73) and by introducing a new quantity

š) l ’
(57)

we obtain

+oo

Ia (Ao*) = j Wi (Awš, E)g (E) d. (58)

Let us take Aw;, =0 in (58).

From (57) and (1) one obtains

Ха
г

Wi (0, 1) —Т ‚ [ F(xl,n)dx.
O

(59)

In case of monoresonance

NÄ ;00 0 gГа == ’га (0, п) =

™
(60)

and hence

га
ОВ

,
= | Iе(—т)б(а (61)

where

+00

Lum)=% | Fa n)dx, (62)

and equals to the left-hand side of (61) in case of a homogeneous magne-
tic field. The integral (62) consists of two terms

L() =1 FuS LR m) 72V 18(), (63)
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where

+со

L@m=% [ h(Zn)dz,
60

(64)

and

+ ©

3а () =% | [(Zmn)dZ (65}

The integral (64) exists and its value can be calculated as

+0
Ai(Z) о; \ Н р()j B42_2…; RQ,

00

(66)

where the residue R}, corresponding to the root Z, of the polynomial B, (Z}
is given by

( Ar(Zp)К
=Bz

(67}

A,(Z) is the nominator of fi (Z,l), BI'(Z) is the first derivative of the
denominator. The sum in (66) is taken over residues R{" correspondingto
roots Z, with positive imaginary parts. The roots of B,(Z) are given by
equations (16) and (17).

И Z, is a root of equation (10) then from (67) and (3) one obtains.

Rg)___%._'
I+Zž- ;

p (Ze) Hvg(Ze)
(68)

Note that in our case iž;“ corresponds to the root Z,. It can be seen from

(68) that RS’ =RY’=O. Using (16) and (17) we can calculate the values

о! ВО апа & which yield

RV 1
DE RN

2v,
(69)

The second integral (65) can be calculated by the same procedure. It

should be remembered here that since By(Z) = va(Z) the roots Z;, Z, of
this denominator are also given by (16) and (17).

RPp—=l.__lxivm
> я

1+ ivgm

o(Zp)Figy(Zy)
Thus (70):

Using the equations (4), (7), (8), (16) and (17) one obtains from (70)

2HNNRi=
2w 2а

(71}

N U
R2_'_+2vl 2a

(72)
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and from these equations
(2) 2)

Ri +R; =O. (73)

Непсе, # 7, апа Z, both have positive imaginary parts, we obtain from

(66)

LY =1 (74)

2)LY =0 (75)

In this particular case, it follows from (61), (63), (74) and (75) that

+ ©

T, (0)
7AI f E:

I[d'
—é

(76)

In the derivation of (76) frequency units and symmetry properties of the-

spectral line have been used:

Га( п) = Га (1) (77)
since

[( хи, хо) == [(хи, о). (78)

It is noteworthy that the equation (76) is identical with (II 21) for inten-
sities of spectral lines without a common energy level with the perturbed
line. Since (II 21).is valid in both cases, whether there are common

energy levels with the perturbed line or not, so are also the deductions

therefrom, especially (II 22) and (II 24), if only Z, and Z, both have

positive imaginary parts.
It can be seen from(17) and (18) that (76) is valid т the special case

vi = 1. This is rather a strict condition and probably only rarely fulfilled.
But for the equation (76) to be valid it is sufficient to have

—— a.
yı

>lm
2VI (79)

For 'reasonably' st:r‘ong rf fields yHy —> —;— , where
2

> ). (80)

the inequality

+ (3)> m ). (81)

also holds independently of the value of |n|. Taking into account the

inequalities (80) and (81) one obtains

it (2 (82)

and it can be seen that the inequality (79) holds in this case. Equation
(76) and the equations (Il 22) and (II 24) are therefore all маП4 for

reasonably strong perturbing rf fields even if there are line splittings.
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4. Discussion

A density-matrix analysis of the effects of a weak perturbing field H,
allowed a unified theoretical description of line splittings and intensity
changes to be presented.

- The rule of splittings for spectral lines with a common energy level

%] as well as the dependence of line shape (in an inhomogeneous static

magnetic field) upon the transition type (A =0; 2) are confirmed. Posi-
tions of the halves of split lines depend upon relaxation parameters and

only in the limit of stronger rf fields H, approach the value given in {3]. In

contrast to the theory presented by Freeman and Anderson, the line split-
ting begins at some rf field strength that depends upon therelaxation para-
ieters. At smaller H, values the peak height of A = 0 lines decreases, but for
A=2 lines the peak height may either increase, go through a maximum

and then diminish with splitting or simply decrease monotonously with

increasing rf field strength with splitting occurring at some appropriate
'value of H,. The first type of A=2 lines and A=o lines were investigated
in several laboratories {#s]. The exact shapes of split lines can be com-

puted numerically and depend upon the relaxation parameters and inhomo-

geneity of the static magnetic field.

The line intensity changes caused by a perturbing rf field (nuclear
Overhauser effect), can be described by a unified formula which is valid for
a stronger rf field for all lines, even in the case of line splittings. -

The Bloch equations for the nuclear Overhauser effect [°] allow the use

of line intensity measurements for relaxation coefficient determination. The
Tirst successful attempts have been made by Kuhlmann and Baldeschwieler

T7l. This method of investigating relaxation phenomena offers considerable

promise and the relationships for line intensities that are obtained in this
series of papers allow it tobe used on a fairly universal basis.

In particular, the possibility to use all lines, even the split lines, to

'measure the Overhauser effects and through them the relaxation coeffi-

cients, widens the possibilities of this sort of experiment considerably.
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V. SINIVEE E. LIPPMAA

NÕRGA RAADIOSAGEDUSLIKU HAIREVÄLJA EFEKTID

TUUMA MAGNETILISES TOPELTRESONANTSIS. III

Analüüsitakse varajasemas töös saadud valemit, mis kirjeldab ühiseid energianivoo-
sid omavaid spektraaljooni. Spektraaljoone kuju muutumise käik häirevälja suurendamisel

on erinev Freemani-Andersoni teoorias antust, söltudes relaksatsiooni parameetritest.
Valem spektraaljoone löhenemise suuruse kohta langeb ühte Freemani-Andersoni vale-

miga ainult häirevälja suuremate tugevuste puhul. Spektraaljoone intensiivsuse valem on

tugevamate häireväljade korral ühiseid energianivoosid omavatel joontel samasugune kui

teistel joontel.

В. СИНИВЕЕ Э. ЛИППМАА

ЭФФЕКТЫ СЛАБОГО ВОЗМУЩАЮЩЕГО РАДИОЧАСТОТНОГО ПОЛЯ

В ЯДЕРНОМ МАГНИТНОМ ДВОЙНОМ РЕЗОНАНСЕ. 111

В работе подвергнута анализу лолученная ранее формула, описывающая спект-

ральные линии с общими уровнями энергии. Установлено, что ход изменения формы
спектральной линии при увеличении возмущающего поля зависит от релаксационных

параметров и отличается от хода, представленного теорией Фримана-Андерсона. Вели-
чина расщепления совпадает с формулой Фримана-Андерсона только при более силь-

ных возмущающих полях. Показано, что формула для интенсивности спектральной
линии с общим уровнем энергии в более сильных возмущающих полях совпадает с

формулой, относящейся к другим уровням энергии.


