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V.SINIVEE, E. LIPPMAA

WEAK PERTURBING RADIO-FREQUENCY FIELD EFFECTS
IN NUCLEAR MAGNETIC DOUBLE RESONANCE. I1I

In the first paper of this series [!], hereafter referred to as I, a density matrix
equation for spectral lines in NMDR spectra of nondegenerate spin systems, interacting
with weak perturbing rj fields, has been given. An analysis of this equation for the
special case of spectral lines without a common energy level with the perturbed line
was presented in the second paper [2], referred to below as II. In this paper an analysis
of line shapes and intensities for lines with a common energy level with the perturbed
line is given. The same notation and convention for signs and indices as in I has been
used. Since frequency-swept spectra are much simpler to interpret, only this case has
been considered.

1. The line-shape equation for weak perturbing fields

In order to rend the “tickling” equation (I 64) more amenable for
interpretation, let us introduce new variables

Via

Z=w%7FN; N= % f:_km" (1)
so that the equation (I 64) takes the form
s} =S
f(Z’ﬂ)=(1+T13)f1(ZvT])+T—zfz(z‘ﬂ)’ (2)
where
Z, :pl(l"l_zz)7 13
fl( 1]) pf—{—v%q% { )
+w
Z, :Pz_ 21](]2, 4
f2( m) p§+q§ ( )
and
pr=1-+vh2+ 22 (5)
g1=224+n22+ (1 —h?)Z £, (6)
pe=1-+vih®—viZ(Z+n), (7)

ge=Z+vi(Z+n). 3, 9VAH ¢ (8)
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The equation (2) ‘with the new variables is suitable for the line intensity
calculations, while in order to find the line shapes a transformation to a
simpler form is indicated.

Noting that the denominator of the fraction in the right-hand side of
{3) may be presented in the form

By(Z) = (vig1 — ip1) (viq1 -+ ip1), 9)

we find the roots of B;(Z) from the equations

BB Zqp bl o0, (10)
23— Qb —6=0, (11)
where
a:¢n+ivll, (12)
b= = % (13)
c::q+i(%+h2). (14)

If Z,, Z, and Z3 are solutions of the equation (10), then the complex

conjugate quantities Z,, Z, and Zs are solutions of equation (11). It may
be proved by insertion that Z; = —i. Using this pair of solutions, we get
irom (9)

Bi(Z) =vI(1 +22)[22— (@) Z+ichZ2— (@—i)Z—ic.  (15)

1t can be seen from (15) that the other roots of (9) are

L .vi+ 1
Zl—-—+-g~+Lv12v1 ~a, (16)
e Do O
Zz:+~121~,~1v—‘2—i—l——a, (17)
swhere
1—1‘2 V—IZ_L_-V—I
(1:1//12—1—1 (5) —( ‘2\)1 ) Sean 12\’1 (18)

and the roots a are chosen so that Ima > 0.

Inserting (12), (13) and (14) into (15) one obtains a new expression
for BI(Z)

B\(Z) =vi(1+2%)D(2), (19)
where

D(Z) :Z4i2n23+[n2—2h2+ Vf“; 1] 22+ (1 —h)Z+
v

1

+ (e + 1) (20)

5 ENSV TA Toimetised F-1 66.
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Now, the denominator in (4) equals v2D(Z), as can be proved by the
use of (7) and (8). Consequently, we can write (2) as

g E(Z)
f(Z’n)_?M’ (21)
where
E(z):[l:u( ;‘—) ] 2+‘%H[V1+V2(VI+I)]Z+
+[ ( lz) S] (1-+vih2) F % NIy (22)

2. Calculation of the line shapes

Equation (21) can be used to calculate NMDR line shapes if the
perturbing fields are weak and acting selectively upon some transitions.
A homogeneous static magnetic field is assumed thus far. In case of exact
resonance of the perturbing field n =0 the equation (21) takes a simple
form

Z,0 :M : 23),
il Vi (P —my+ns) o)
where
y=2, (24)
m=17F (rl _-%) ki (25)
[ 1 3
L (1—f~v1h2)[l—k(11—%-;;)§i], (26)
241
oY il .ol 27)
Vi
2
ne=(h+) . (28)
272 v,T
S = 132kt (29)

It can be seen from (23) and (24) that
[(—2)=1(2) (30)

and
J(Z,0) =0, Z—>4-. (31y

To characterize the line-shapes more completely, let us find the extremums,
of f (Z, 0), which can be found from the following equations:

Z=0, (32)

of _ .
& =0 (33)
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Inserting (23) into (33) one obtains a quadratic equation for y =22

y2+2%y—(n2—|—n1:—f) =) (34}
with the possible roots
h =—k(14+vih?) + B, (35)
Yo =— k(1 +vih?) — B, (36)
where
B=V k(1 -+ vih®)2 4 mk(l + vih%) + ny, (37}
17 (nto)s
and = 51 (38}
JL ST (TL—T—Q)S

Let us study the case 2> 0 first.
For weak rf fields, so that <k (14 vh?) (39)

line splittings do not occur. The peak height in this case is given by

li(tl -I—rt%)S

(08) — =y e

(40)
In the A =0 case (regressive transition) the peak height decreases with
increasing rf field strength until the inequality (39) is reversed and line
splitting results. In the A =2 case (progressive transition) there are two
possibilities; either the peak height f(0,0) increases at first with increas-
ing rf field strength and then begins to diminish with the occurrence of
line splitting as soon as the inequality (39) no longer holds, or the peak
height decreases monotonously. The second case obtains if an additional
inequality holds

2vome (114 ) < v (41)

The maximums of f(Z,0) for the case of line splittings can be found
by inserting (35) into (24) and the corresponding peak height by insert-
ing (35) into (23). With increasing rf field strength parameter #, the
peak heights tend to an asymptotic value

_ 1¥x :
Vel (42)
The above formula (42) is a good approximation if
VH; T\ T2 > 1, (43)
i
V=>4 (44)

In these inequalities (43), (44) T, and T, denote quantities of the type
|Tap1| and Tgpo. With these conditions the equation (35) leads to the simple

result
Z==Fh. (45)

5*
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Note that in (45) and in the left-hand side of (42) the signs corre-
spond to the halves of a symmetrically split line. The signs in the right-
hand side of (42) correspond to the A=0; 2 cases.

The equation (45) corresponds to the “tickling” equation of Freeman
and Anderson [3], but the peak heights (42) still depend upon relaxation
parameters, even in the case of saturation (43). Indeed, by inserting
(I 57) and (I 58) into (1) and (45) we obtain equation (12) of ref. []] for
exact resonance (ws — w,s =0 in the notation of [?]).

0.8

- ,J L

1.9 Yh7:0.0ﬂ
06 H=0.4
"\ 4o
0: h7=b,5
037\
H=25
J K=5,0
0.4
-6 -4 -2 0 2 4S) =6 8

Fig 1. Calculated line shapes in case of homogeneous static magnetic field for various
values of rf field strength parameter 4. 1,=0,5; T9=4; v =vy=1. A=0 case on the left
and A=2 case on the right.

Some numerically calculated line shapes for various values of the rf
field strength parameter s are given in fig. 1. The relaxation parameters
have the following - chosen values: 7;=0,5, 12=4, vi=—ve—=—1. The
monoresonance peak height equals 1,0. :

The interesting case of £ < 0 is possible in case of a fairly strong rf
field if the following inequalities hold:

Teas>Teoan if A=0, (46)
Tc'd'2 > Tc'd'l + Tc'cl if Ae=x2: (47)

The question whether these conditions are consistent with the equations
(I 47) and real relaxation mechanisms, is outside the scope of this paper.
Here we note only the line shapes that correspond to the 2 <0 case. In
addition to the two maximums (35) we obtain in this case two symmetri-
cally placed minimums (36), where the function f (Z, 0) has a negative
sign. In the A=0 case these minimums occur between the maximums
(35), but in the A=2 case on the outside. The minimums are greatest at
intermediate rf field strengths. At Z=0 one obtains in the A=0 case a
maximum with a negative absolute value, and a positive minimum in the
A =2 case. Some line shapes for the £ <0 case are presented in figs 4
and 5. ;

In the important case of inhomogeneous static magnetic field the line
shape is given by equation (I 73). Introducing dimensionless quantities

Hr= A(o; Tra0 (48)
ny = Aoy Traa, (49)
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E* =ETro, (50)
* * V*d'
Eiis o) :7”1;' (51)
e RS 59
G =% (52)
the equation (I 73)
takes the form
flny— B, wp==EHJG(EM)dsh (53)
Flx0) Flxiokou
\ h=0
h=6
o4\ ~h=10
0,0
0,06 h =30
10,04
002
-60  -40 -20 0 20 -60 a0~ w0 % w x* 60

40 Z,* 60

Fig. 2. Calculated line shapes in case of inhomogeneous static magnetic field for various
values of rf field strength parameter 4. 7,=0; T,=10;v;=v,=1. A=0 case on the left and
A=2 case on the right.

Flxko)

Flx¥o)

-60

-40 -20 0 20 40 x* 60 -60

-40 =20 0 20 40 X,* 6a

Fig. 3. Calculated line shapes in case of inhomogeneous static magnetic field for various
values of rf field strength parameter i 1,=0,5; ©,=10; vi=vo=1. A=0 case on the left
and A=2 case on the right.

Since the shape of a spectral line depends strongly upon small deviations
from exact resonance and the shape function, the equation (23) may not
give adequately exact results in case of real inhomogeneous static magnetic

fields.

To characterize to some extent the effect of magnetic field

inhomogeneity, the more exact but complicated equation (53) has been

used for numerical line shape calculations. A normalized

function

Gauss shape
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6(5) =v/"2 expl—(1n2) (v*£)7) (54)

with
o »
T g =01 (55)

and Tl as half width have been used. As before, it has been chosen
2

that vi=vo=1 and x,=0, but a variety of values for the parameters
71, T2 and & have been used.

Some representative shapes are set out in figs 2, 3, 4 and 5.

Flx0)
Fx¥o) |, :

60 -0 20 UJ 20 W0 x* 60 60 40 20 0 e 40 y* 60
Fig. 4. Calculated line shapes in case of inhomogeneous static magnetic field for various

values of rf field strength parameter &. 1;=05; 19=2; vi=vy=1. A=0 case on the leit
and A=2 case on the right.

Flx}o)

Fig. 5. Calculated line shapes in case of inhomogeneous static magnetic field for various
values of rf field strength parameter A. 1,=0,5; T.=1; vi=v,=1. A=0 case on the left
and A=2 case on the right.

It can readily be seen that very weak rf fields cause no splittings. The
height of line center F(x,,0) decreases with increasing rf field strength in
the A=0 case and increases in the A =2 case. Note that for the chosen
relaxation parameters in figs 3, 4 and 5 the inequality (41) does not hold.
A sufficiently strong rf field causes a line splitting in all cases. Unlike the
case of line splitting in homogeneous magnetic field (fig. 1), a character-
istic difference between A=0 and A =2 lines occurs, as described by
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Freeman and Anderson [3]. The split lines sharpen in the A=0 case and
widen in the A =2 case, and in the A=0 case a splitting occurs at lower
rf field strengths.

Equation (45) is approximately correct for stronger rf fields, and par-
ticulary so for A =0 lines with small t; and large T, values.

3. Line intensities

The intensity of a NMDR line in inhomogeneous magnetic field is
ziven by
Co) 5
Iy (Awy) = Vip (Aoj, Aog)d(Awy). (56)

8'*—'34—

According to equation (I 73) and by introducing a new quantity
-+ oo

Wi (Acy. B) = j Vie (Ao] — &, Ao —E)d(Aw)), (57)
we obtain
+
L (A}) = j Wi (Ao}, §)&(5)dE. (58)

Let us take Aw, =0 in (58).

From (57) and (1) one obtains

+®
Aoy
Wi O m) =7% [ (e —m)dber o i)
L
In case of monoresonance
0 ) Ay
Itdl_. Wtd’ (O,n) _V]_Td2 (60)
rl
and hence ‘
+ o0 :
1,,(0)
== | Lie (—m) Gm)en, (61)
td' _°~°
where
+ o
Lo =2 [ F0a n)ax, (62)
fel i

and equals to the left-hand side of (61) in case of a homogeneous magne-
tic field. The integral (62) consists of two terms

L () =0 FuSmILE M) F S L2 (), (63)

Ty
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where
+oo
L3P m) = [ f1(Z,m)dz, (64)
and
—j— (o)
L@ (=2 | L(Zn)dz (65)

— ©

The integral (64) exists and its value can be calculated as

+
A1(2) a5
[ oy il=2e zz i (66)

— o

where the residue RY’, corresponding to the root Z, of the polynomial B, (Z)
is given by
Ai(Zy)

(1)
== ] 67
Ri Bi1(Zg) ( )
A,(Z) is the nominator of [;(Z,n), Bf(Z) is the first derivative of the
denominator. The sum in (66) is taken over residues R{" corresponding to
roots Z, with positive imaginary parts. The roots of B;(Z) are given by

equations (16) and (17).

If Z, is a root of equation (10) then from (67) and (3) one obtains

1210
PO ity 68
T2 i (Z) + g1 (ZR) )

Note that in our case RY’ corresponds to the root Z,. It can be seen from
(68) that R(”—R“) 0. Using (16) and (17) we can calculate the values
of RY"” and RY”, which yield
R+ R U Ly (69)
1
The second integral (65) can be calculated by the same procedure. It

should be remembered here that since By(Z) :va(Z) the roots Z,, Z, of
this denominator are also given by (16) and (17).

1 1+ v
Thus Rm: 2 gttt o 70)
LT 2 i@ s

Using the equations (4), (7), (8), (16) and (17) one obtains from (70)

2ar i *vm—i :
Rl__T,vl' 2. » (71)
Risapt B (72)
SRR 2 B ik i



Weak perturbing radio-frequency field effects 73

and from these equations ?
RY 4+ RY =o. (73)

Hence, if Z; and Z, both have positive imaginary parts, we obtain from:
(66)

LY =1 (74)
L@ =o0. (75)

In this particular case, it follows from (61), (63), (74) and (75) that

Ly (0 Pidss
2215y | S@e@d® (76)

In the derivation of (76) frequency units and symmetry properties of the
spectral line have been used:

Lig(—m) = Lia(n) (77)

since B
F(— %1, —%2) = (%1, %2). (78)
. It is noteworthy that the equation (76) is identical with (II 21) for inten-
sities of spectral lines without a common energy level with the perturbed
line. Since (II 21).is valid in both cases, whether there are common
energy levels with the perturbed line or not, so are also the deductions
therefrom, especially (II 22) and (II 24), if only Z; and Z, both have
positive imaginary parts.

It can be seen from (17) and (18) that (76) is valid in the special casc
vy = 1. This is rather a strict condition and probably only rarely fulfilled.
But for the equation (76) to be valid it is sufficient to have

it d +1 Bl ke (79)
For reasonably strong rf fields yHy, > TL , where
2

)l (80)

2v,

the inequality

o+ (3

vy —1

12VI ’, (81)
also holds independently of the value of |y|. Taking into account the
inequalities (80) and (81) one obtains

“l“”l

22V
‘//12

and it can be seen that the inequality (79) holds in this case. Equation
(76) and the equations (II 22) and (II 24) are therefore all valid for
reasonably strong perturbing rf fields even if there are line splittings.

Ima =~

(82)
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4. Discussion

A density-matrix analysis of the effects of a weak perturbing field H,
-allowed a unified theoretical description of line splittings and intensity
changes to be presented.

The rule of splittings for spectral lines with a common energy level
3] as well as the dependence of line shape (in an inhomogeneous static
magnetic field) upon the transition type (A =0; 2) are confirmed. Posi-
tions of the halves of split lines depend upon relaxation parameters and
only in the limit of stronger rf fields H, approach the value given in {?]. In
contrast to the theory presented by Freeman and Anderson, the line split-
ting begins at some rf field strength that depends upon the relaxation para-
meters. At smaller H, values the peak height of A = 0 lines decreases, but for
A =2 lines the peak height may either increase, go through a maximum
and then diminish with splitting or simply decrease monotonously with
increasing rf field strength with splitting occurring at some appropriate
value of H,. The first type of A =2 lines and A=0 lines were investigated
in several laboratories [*°]. The exact shapes of split lines can be com-
puted numerically and depend upon the relaxation parameters and inhomo-
geneity of the static magnetic field.

The line intensity changes caused by a perturbing rf field (nuclear
Overhauser effect),can be described by a unified formula which is valid for
a stronger rf field for all lines, even in the case of line splittings.

The Bloch equations for the nuclear Overhauser effect [?] allow the use
of line intensity measurements for relaxation coefficient determination. The
first successful attempts have been made by Kuhlmann and Baldeschwieler
17]. This method of investigating relaxation phenomena offers considerable
promise and the relationships for line intensities that are obtained in this
series of papers allow it to be used on a fairly universal basis.

In particular, the possibility to use all lines, even the split lines, to
measure the Overhauser effects and through them the relaxation coeffi-
cients, widens the possibilities of this sort of experiment considerably.
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NORGA RAADIOSAGEDUSLIKU HAIREVALJA EFEKTID
TUUMA MAGNETILISES TOPELTRESONANTSIS. III

Analiiiisitakse varajasemas t66s saadud valemit, mis kirjeldab iihiseid energianivoo-
sid omavaid spektraaljooni. Spektraaljoone kuju muutumise kdik hdirevilja suurendamisel
on erinev Freemani-Andersoni teoorias antust, soltudes relaksatsiooni parameetritest.
Valem spektraaljoone l5henemise suuruse kohta langeb iihte Freemani-Andersoni vale-
miga ainult hiirevilja suuremate tugevuste puhul. Spektraaljoone intensiivsuse valem on
tugevamate hiireviljade korral iihiseid energianivoosid omavatel joontel samasugune kui
teistel joontel.

B. CHHHBEE, 3. JIHIIIIMAA

3®PEKTHI CJABOI0 BO3MYLWIAIOMEI0O PAJUOYACTOTHOIO MNMOJA
B SJEPHOM MATHUTHOM JABOWMHOM PE3OHAHCE. IlI

B paGore moaBepruyra aHajau3y noJydeHHasi paHee (opmyJsa, OMHChIBAMOILASA CIEKI-
paJibHble JHHEH ¢ OOUIMMH ypPOBHSIMH SHEPTHH. YCTaHOBJIEHO, UTO XOJ H3MeHeHHs (opMbl
CHEeKTPaJbHOH JIHHHH TPH YBEJIHYEHHH BO3MYIAIOMIETO MOJS 3aBHCHT OT peJaKCalHOHHBIX
napaMeTpoB H OTJHYAeTCs OT XOJa, NMpeicTaBjeHHOro Teopueit ®pumana-Annepcona. Benu-
9MHAa pacllenyieHus coBnajgaer ¢ Gopmynaoit Ppumana-AHaepcoHa TOAbKO MpH 6Gosiee CHIb-
HbIX BO3MYIlaloUHX mnoJsiX. ITokaszaHo, 4To ¢Qopmyaa AJS HHTEHCHBHOCTH CIEKTPaJbHOIl
JIHHHH ¢ OOIIMM YpDOBHeM 3HEeprHH B (oJiee CHJIBHBIX BO3MYIIAIOUUX NOJfAX COBMagaer ¢
GopmyaoH, oTHOCSLEHCH K IPYTHM YDPOBHSIM 3HEPTHH.



