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Abstract. Free vibrations of delaminated beams resting on Pasternak soil are analysed. Differential 
stretching and bending–extension coupling are considered in the formulation. The influence of soil 
parameters, size and location of the delamination on the frequencies and mode shapes is 
investigated. Some numerical examples and comparisons are presented. 
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1. INTRODUCTION

Dynamic response of composite laminates has received a great deal of 
attention. Composites are very sensitive to the defects and anomalies induced 
during their fabrication and exploitation. One of the most common defects in 
composite laminates is delamination. The presence of delamination may cause 
changes in the vibration characteristics of the structure and can be the most 
damaging failure mode of composite materials. A detailed review on this topic 
was recently given by Zou et al. [1], and Luo and Hanagud [2]. Free vibrations of 
delaminated composite beams were first studied by Ramkumar et al. [3]. They 
proposed to deal with a laminated beam using four Timoshenko beams connected 
at the delamination edges. Wang et al. [4] examined free vibrations of 
delaminated beams including the effect of coupling between flexural and 
longitudinal motion. The intact and delaminated parts have been treated as 
classical beam models. In this model the delaminated layers are assumed to 
deform “freely”. Mujumdar and Suryanarayan [5] showed that this assumption is 
physically inadmissible because of possible overlapping of delaminated layers 
for off-midplane delaminations. They suggested a model where delaminated 
layers are “constrained”, having identical transverse deformations. Tracy and 
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Pardoen [6] presented a simplified analytical model to predict stiffness degrada-
tion in composite laminates without bending/extensional coupling. The con-
strained models fail to explain the delamination opening modes found in 
experiments [7]. In order to take into account constraints between upper and 
lower delamination parts, Luo and Hanagud [2] proposed the piecewise linear 
spring model to simulate the nonlinear interaction between delaminated surfaces. 
The nonlinear constraint model for describing the behaviour of delaminated parts 
was introduced by Wang and Tong [8]. Brandinelli and Massabo [9] proposed a 
linear elastic bridging-mechanism acting along the surfaces of the delamination. 
This model is based on the first-order shear deformation theory of laminated 
plates. 

In most papers the vibrations of beams have been studied in the case where 
the beam has a single delamination or multiple delaminations of the same length 
through the beam thickness. A sandwich beam with double delaminations is 
investigated in [10]. Free vibrations of beams with two enveloping delaminations 
were studied by Shu and Della [11]. Multi-delaminated composite beams sub-
jected to the axial compression load are considered in [12]. Nonlinear vibration of 
composite beams with arbitrary delamination is discussed in [13]. The layerwise 
theory of composite laminates is explored in [12,14]. 

Many practical problems related to soil–structure interactions can be modelled 
by means of a beam on elastic foundation. Various types of foundation models 
such as Winkler, Pasternak, Vlasov, etc. models have been used in the analysis of 
beams on elastic foundation [15]. In the case of the Winkler model it is assumed 
that the foundation applies only to a reaction proportional to the beam deflection. 
The medium is taken into account as a system composed of infinitely close linear 
springs. The interaction between springs is not considered in the Winkler model. 
Pasternak [16] has proposed a physically close and mathematically simple two-
parameter foundation model with shear interactions. The first foundation parameter 
is the same as in the Winkler model and the second one is the stiffness of the 
shearing layer in the Pasternak foundation model. The vibrations of solid beams 
resting on elastic foundation have been investigated in a number of papers [17–24]. 

It appears that there is no analytical model for delaminated beams resting on 
elastic foundation. In the present paper the ideas of [4,5,11,21] are extended to the case 
of delaminated beams resting on Pasternak soil. Two different models are applied. 
In the first model the coupling between longitudinal vibration and transverse 
bending is taken into account, whereas in the second model the delaminated parts 
are constrained having identical transverse displacements. The shear deformation 
and rotational inertia terms are not included in the present study. 

 
 

2. FORMULATION  OF  THE  PROBLEM 
 
Consider a beam of length 0L  resting on Pasternak soil and having an 

arbitrary delamination of length 2L  (Fig. 1). The through-width delamination is 
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assumed to be parallel to the beam axis and to be located arbitrarily in both the 
spanwise and thicknesswise directions. The delaminated section is divided into 
two sublaminates of thickness 2h  and 3,h  respectively. Thus, the beam is divided 
into four sections denoted I–IV as shown in Fig. 1. Each section is treated as a 
classical Bernoulli beam model, provided that .iL h>>  For the sake of simplicity 
only one delamination zone is considered. The beam with multiple delaminations 
can be treated analogously. 

Governing equations for the vibrations of beam sections on the two-parameter 
elastic foundation can be deduced by means of Hamilton’s principle [25]: 
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where ( )iw x  is the vertical displacement of the thi  beam section, ( )iD x  is the 
bending stiffness, ( )i xρ  is the material density, x  is the axial coordinate, and t  
is the time. The quantity iA  denotes the cross-sectional area, whereas ( )wk x  and 

( )pk x  denote the variable coefficients of the Winkler and Pasternak foundations, 
respectively. The bending stiffness for homogeneous and isotropic beams is 
given as 

 

( ) ( ) ( ).i i iD x E x I x=                                            (2) 
 

The Winkler foundation parameter, denoted by ,wk  represents the distributed 
translational resistance of the foundation, and the Pasternak parameter pk  
accounts for the rotational stiffness [22]. In the case of a plane stress problem, E  
is Young’s modulus, whereas in the case of the plane strain problem, E  would 
be replaced by an equivalent Young’s modulus 2(1 ) ,E E ν= −  where ν  is 
Poisson’s ratio. The quantity I  denotes the second moment of the cross-sectional 
area of the beam segment. In the case of composite laminates, the quantity D  
can be calculated using the classical laminate theory [26] in the following way: 
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Fig. 1. A model of a beam on elastic foundation. 
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In Eqs (3)–(5) 11D  denotes the bending stiffness, 11A  is the extensional stiffness, 
and 11B  is the coupling bending/extensional stiffness of the beam section. The 
quantity 11

ˆ kQ  is the coefficient stiffness of the thk  lamina of the beam section and 
can be calculated with the aid of lamina parameters. In Eqs (5) 11,E  22 ,E  and 

12 ,ν  21ν  stand for longitudinal and transverse Young’s moduli and Poisson’s 
ratio of a single lamina, respectively; θ  is the lamina orientation angle; kz  and 

1kz −  are the coordinates of the thk  lamina with respect to the mid-plane of the 
beam section. 

For free vibrations the solution can be sought in the form 
 

( , ) ( ) ,j t
i iw x t W x e ω=                                           (6) 

 

where ω  is the natural frequency and ( )W x  is the mode shape of the thi  beam 
section and .1−=j  Equation (1) then yields  
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The solution of (7) for the general case of ( )wk x  and ( )pk x  is not available. In 
the further study it is assumed that const,wk =  const,pk =  and const.iρ =  

It is convenient to rewrite this equation in the form 
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The solution of (8) can be expressed as 
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where the functions ( )
k

iF x  can be presented as follows: 
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It can be stated that for the most real physical parameters the mathematically 
exact statement 2

i iδ λ=  is not achieved. The quantities ,iα  ,iβ  ,iγ  ,iµ  iν  are 
defined as 
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For each beam section the governing equations are solved, whereas the unknown 
integration constants can be found with the aid of boundary and continuity 
conditions between beam sections. Since all equations contain the frequency ,ω  
a solution can be obtained. The type of the solution depends on the beam 
geometry, elastic foundation, and delamination size and position. 
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3. FREE  MODEL 
 
In the following analysis the nondimensional quantities 
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will be introduced. 
In the split region, in addition to the deflection, the governing equations for 

the longitudinal equilibrium are written as follows [4]: 
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where 2
i i ic E ρ=  and iu  denote the longitudinal displacement of the thi  beam 

section. The general solution of (16) may be written in the following form: 
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The 20 coefficients ,i

kC  ,mG  and mH  ( , 1, , 4;i k = …  2, 3)m =  are determined 
with the aid of the boundary and continuity conditions. If the beam is clamped at 

1x x=  (Fig. 1), then 1 0W =  and 1 0;W ′ =  if simply supported, then 1 0W =  and 

1 0;W ′′=  if free, then 1 0W ′′=  and 1 0.W ′′′ =  The analogous boundary conditions can 
be established at 4.x x=  The continuity conditions for deflection, slope, shear 
force, bending moment, and longitudinal displacement at 2x x=  are: 
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where e  is the distance between neutral planes of the upper and lower parts of 
the split region. The quantities 2A  and 3A  denote the cross-sectional areas of 
delaminated beam sections. Similar continuity conditions can be written at 

3.x x=  A nontrivial solution for the coefficients exists only when the 
determinant of the coefficient matrix vanishes. The frequencies and mode shapes 
can be calculated as eigenvalue and eigenvector solutions, respectively. 
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4. CONSTRAINED  MODEL 
 
In order to preclude the nonphysical vibration modes, the deflections of 

segments II and III can be forced to vibrate together 2 3( ).w w=  In this model the 
governing equations are 

 

4 2 2

4 2 2
0 ( 1 and 4).i i i

i p w i i i

w w w
D k k w A i i

x x t
ρ∂ ∂ ∂− + + = = =

∂ ∂ ∂
               (19) 

 

For the second and third parts we have 
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The generalized solution for *
iW  ( 1, 2, 4)i =  in the case of the “constrained 

model” is identical to (10)–(13). The number of unknown constants i
kC  is now 

12, which can be determined by four boundary conditions and eight continuity 
conditions (four at 2x x=  and four at 3 ).x x=  The continuity conditions at 

2x x=  for deflections, slopes, and shear forces can be written as 
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The continuity condition for bending moments can be presented as 
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where * .i i iM DW ′′= −  The axial forces 2P  and 3P  can be established from the 
compatibility between the stretching/shortening of the delaminated layers and 
axial equilibrium [5]: 
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Similarly, we can derive the continuity conditions at 3.x x=  
 
 

5. NUMERICAL  RESULTS 
 
It is convenient to define the following nondimensional quantities: 
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The following cases are considered: 
1. Homogeneous beam without delamination on elastic foundation 

A comparison with the results given in [24,25] is shown in Table 1, where the 
first three nondimensional natural frequencies ( )Ω  of a homogeneous clamped–
clamped beam are given as functions of the two soil parameters. It should be 
noted that * 2 ,p pk k π=  1 0 1 120h L =  and the frequency parameter Ω  is used 
in [24,25]. 
2. Clamped–clamped delaminated beam without foundation 

Comparisons with the results given in [4,11,14] are presented in Table 2, where 
the first three nondimensional natural frequencies ( )Ω  are given as functions of 
the delamination length. The single symmetric midplane delamination is applied 
here. Here 1 2 0k k= =  and 1 0 1 120.h L =  

Tables 1 and 2 show good agreement between the present model and the 
analytical [4,25], numerical [11,24], and FEM [14] results. 
3. Delaminated composite beam without foundation 

The third verification is performed on a T300/934 graphite/epoxy cantilever 
beam with a [0°/90°]2s stacking sequence, which was studied in [2,7,11]. The 
dimensions of the 8-ply beam are 127 × 12.7 × 1.016 mm3. The material 
properties for the lamina are: 11 134 GPa,E =  22 10.3 GPa,E =  12 5 GPa,G =  

12 0.33,ν =  and 3 31.4 10 kg/m .ρ = ×  The delaminations are either at the midspan 
or at 2 1 0.25h h =  and the lengths are 25.4, 50.8, 76.2, and 101.6 mm. The 
primary frequencies are shown in Table 3. The first row corresponds to the 
midplane delamination and the second row corresponds to the delamination at the 
position 2 1 0.25.h h =  Good agreement was obtained between the frequencies 
predicted by the present method and the experimental and analytical results by 
Shen and Grady [7] and analytical results by Shu and Della [11], and Luo and 
Hanagud [2]. The values of delamination length strongly influence the values of 
frequencies. 
 
 

Table 1. The first three natural frequencies of the beam on elastic foundation 
 

Foundation parameter 
*
wk  pk  

Present Chen et al. [24] De Rosa and 
Maurizi [25] 

    0.0 0.0 22.3733 
61.6649 

120.9032 

22.3861 
61.6743 

120.7977 

22.3729 
61.6853 

120.9120 
    0.0 1.0 25.0887 

65.2412 
125.0640 

24.9380 
65.2492 

124.7689 

24.9400 
65.2541 

124.8583 
100.0 0.0 24.6090 

62.4716 
121.3324 

24.5174 
62.4795 

123.1212 

24.5025 
62.4732 

121.0140 
100.0 1.0 27.0997 

66.0026 
125.4781 

26.8676 
66.0108 

125.1669 

26.8531 
65.9994 

125.2609 
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Table 2. The first three natural frequencies of the beam with a midplane delamination 
 

Delamination 
length L2/L0 

Present Shu and Della [11] Wang et al. [4] Lee [14] 

0.0 22.37 
61.67 

120.90 

22.37 
61.67 

120.90 

22.39 
61.67 

121.91 

22.36 
61.61 

120.68 
0.1 22.37 

60.81 
120.83 

22.37 
60.81 

120.83 

22.37 
60.76 

120.81 

22.36 
60.74 

120.62 
0.2 22.35 

56.00 
118.87 

22.36 
56.00 

118.87 

22.35 
55.97 

118.76 

22.35 
55.95 

118.69 
0.3 22.24 

49.00 
109.16 

22.24 
49.00 

109.16 

22.23 
49.00 

109.04 

22.23 
48.97 

109.03 
0.4 21.83 

43.89 
93.59 

21.83 
43.89 
93.59 

21.83 
43.87 
93.57 

21.82 
43.86 
93.51 

0.5 20.89 
41.52 
82.30 

20.89 
41.52 
82.29 

20.88 
41.45 
82.29 

20.88 
41.50 
82.23 

0.6 19.29 
41.04 
77.69 

19.30 
41.04 
77.69 

19.29 
40.93 
77.64 

19.28 
41.01 
77.64 

0.7 17.23 
40.82 
77.18 

17.23 
40.82 
77.18 

17.23 
40.72 
77.05 

17.22 
40.80 
77.12 

0.8 15.05 
39.06 
75.43 

15.05 
39.07 
75.43 

15.05 
39.01 
75.33 

15.05 
39.04 
75.39 

0.9 13.00 
35.39 
69.19 

13.00 
35.39 
69.19 

13.00 
35.38 
69.17 

12.99 
35.38 
69.16 

 
 

Table 3. Primary frequencies for a symmetric model without foundation 
 

Delamination 
length, mm 

Present, 
Hz 

Reference [11], 
Hz 

Reference [7], 
Hz 

Reference [2], 
Hz 

    0.0 82.02 
82.02 

81.88 
81.88 

82.04 
82.04 

81.86 
81.86 

  25.4 80.92 
81.86 

80.47 
81.53 

80.13 
81.46 

81.84 
82.02 

  50.8 76.03 
80.66 

75.36 
80.13 

75.29 
79.93 

76.81 
80.79 

  76.2 66.84 
77.72 

66.14 
77.03 

66.94 
76.71 

67.64 
77.82 

101.6 56.26 
73.07 

55.67 
72.28 

57.24 
71.66 

56.95 
73.15 
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4. Homogeneous delaminated clamped–clamped beam on Pasternak soil 
Table 4 tabulates the first two natural frequencies 1 2( , )Ω Ω  as functions of 

foundation coefficients and delamination length. The beam consists of one 
symmetric midplane delamination zone of variable length. The first and second 
rows correspond to the first and second natural frequencies, respectively. 

The influence of foundation parameters and delamination length on the first 
and second mode shapes is presented in Figs 2–5. In the case of symmetric 
delamination the differences between computed frequencies of the free and 
constrained models are insignificant. These differences become important in the 
case of long nonsymmetric delaminations. 

Variation of the primary and secondary frequencies due to the delamination 
thicknesswise locations is presented in Table 5. Note that the frequencies of both 
models are almost equal when the delamination is near midplane, whereas the 
frequencies calculated by applying free model are smaller when the delamination 
location shifts towards the beam surface. This fact can be explained by 
overlapping of the delaminated layers in free model [5]. 
 
 

Table 4. The first two natural frequencies for the clamped–clamped delaminated beam 
 

Delamination 
length L2/L0 

* 0,wk =  

1.0pk =  

* 100.0,wk =  

0.0pk =  

* 100.0,wk =  

1.0pk =  

0.0 25.09 
65.24 

24.61 
62.47 

27.10 
66.00 

0.1 25.70 
64.67 

25.01 
61.64 

28.01 
65.45 

0.2 26.37 
61.68 

25.45 
57.00 

29.00 
62.58 

0.3 26.83 
57.41 

25.73 
50.37 

29.75 
58.55 

0.4 26.97 
54.10 

25.68 
45.67 

30.14 
55.51 

0.5 26.63 
52.44 

25.09 
43.60 

30.02 
54.07 

0.6 25.76 
52.06 

23.88 
43.29 

29.34 
53.83 

0.7 24.42 
51.95 

22.28 
43.17 

28.21 
53.81 

0.8 22.75 
50.69 

20.65 
41.54 

26.78 
52.62 

0.9 20.89 
47.52 

19.21 
38.11 

25.23 
49.58 
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Fig. 2. The first mode shape for a beam without delamination: solid line * 100.0,wk =  pk = 1.0; 
dashed line 

*
0.w pk k= =  

 
 
 

 
 

Fig. 3. The first mode shape for a beam with delamination L2/L0 = 0.9: solid line * 100.0,wk =  
1.0;pk =  dashed line 

*
0.w pk k= =  
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Fig. 4. The second mode shape for a beam without delamination: solid line * 100.0,wk =  1.0;pk =  
dashed line 

*
0.w pk k= =  

 
 
 

 
 

Fig. 5. The second mode shape for a beam with delamination L2/L0 = 0.9: solid line * 100.0,wk =  

1.0;pk =  dashed line 
*

0.w pk k= =  

 
 
In Fig. 6 the two nondimensional frequencies are given as function of the first 

foundation parameter for 2.0.pk =  In Fig. 7 the two nondimensional frequencies 
are given as function of the second foundation parameter for * 100.0.wk =  In both 
cases the beam has the symmetric midplane delamination 2 0 0.6.L L =  
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Table 5. Nondimensional first frequencies of clamped–clamped beams with nonsymmetric 

delamination: * 4,wk =  0,pk =  L2/L0 = 0.8, L1/L0 = 0.1 
 

Ω1 Ω2 h2/h1 

Free model Constrained model Free model Constrained model 

0.50 15.14 15.10 39.10 39.08 
0.40 13.40 15.73 35.64 40.66 
0.30 10.49 17.29 28.21 44.66 
0.20   7.42 19.16 19.33 49.90 
0.15   6.03 20.07 14.73 52.74 

 

 

 
 

Fig. 6. The lowest two natural frequencies of a clamped-clamped beam versus the first foundation 
parameter; L2/L0 = 0.6, h1/L0 = 1/120. 

 

 
 

Fig. 7. The lowest two natural frequencies of a clamped–clamped beam versus the second 
foundation parameter; L2/L0 = 0.6, h1/L0 = 1/120. 
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6. CONCLUSIONS 
 
Two analytical models for vibrations of delaminated beams resting on two-

parameter elastic foundation were developed. The methods were employed for 
analysis of free vibrations of homogeneous and composite beams with general 
boundary conditions. The influence of the delamination size and location on the 
first frequencies as well as mode shapes were investigated. The first frequencies 
of the beam with elastic foundation are relatively higher than the frequencies of 
the delaminated beam without foundation. The calculated frequencies based on 
the present models agree well with the published analytical and numerical data. 
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Delaminatsiooni  mõjust  Pasternaki  alusel  asuvate  
komposiitmaterjalist  talade  võnkumisele 

 
Helle Hein 

 
On vaadeldud homogeensete ja komposiitmaterjalist kihiliste talade võnku-

mist delaminatsiooni korral. Töö eesmärgiks on välja töötada analüütiline mudel 
delaminatsiooniga talade võnkumise uurimiseks juhul, kui tala asetseb kahe-
parameetrilisel elastsel alusel. On esitatud kaks mudelit, saadud võrrandisüstee-
mid on lahendatud numbriliselt. On analüüsitud elastse aluse ja delaminatsiooni 
mõju võnkumise resonantssagedustele. 

 
 
 
 
 


