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Abstract. A new, nonclassical convergence acceleration concept, called µ-acceleration of
convergence (where µ is a positive monotonically increasing sequence), is introduced and
compared with the classical convergence acceleration concept. Regular matrix methods are
used to accelerate the convergence of sequences. Kornfeld (J. Comput. Appl. Math., 1994,
53, 309–321) proved that if B-transform of every convergent sequence x converges not slower
than its A-transform, where A and B are regular matrix methods, then A and B are equivalent.
In this paper it is proved that Kornfeld’s assertion cannot be transferred to µ-acceleration of
convergence in a general case.
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1. INTRODUCTION AND PRELIMINARIES

Problems connected with convergence of iterative sequences (for example,
using iterative methods for solving equations and systems of equations, employing
methods involving series expansions) often arise in numerical analysis. In many
cases convergence of these sequences is slow. Therefore it is useful to apply
convergence acceleration methods, which transform a slowly converging sequence
x = (xn) into a new sequence y = (yn), converging to the same limit faster than
the initial sequence. Throughout this paper we assume that indices and summation
indices are integers, changing from 0 to ∞, if not specified otherwise. All notions
not defined in this paper can be found in [1]. In the present paper regular matrix
methods are used to accelerate the convergence of sequences.

Different methods are used to accelerate the convergence of a sequence
and to estimate and compare the speeds of convergence of sequences (see,
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for example, [2−7]). Classically the convergence acceleration and the weak
convergence acceleration of a sequence x are determined by the following
definitions (cf. [2,5]).

Definition 1.1. Let x = (xk) and y = (yk) be sequences with limits ς and ξ,
respectively. If

lim
n

|yn − ξ|
|xn − ς| = 0, (1.1)

then it is said that y converges faster than x.

Definition 1.2. Let x = (xk) and y = (yk) be sequences with limits ς and ξ,
respectively. It is said that y converges weakly faster than x if there exists a constant
K = K(x) such that

|yn − ξ| ≤ K |xn − ς| for all n. (1.2)

Definition 1.3. The sequence transformation T : x → y is said to
(a) accelerate the convergence of the sequence x if y converges faster than x,
(b) weakly accelerate the convergence of the sequence x if y converges weakly

faster than x.

A short overview of the research of convergence acceleration during the 20th
century is given in [2]. From [2] we can conclude that in recent years the most
significant results have been achieved using nonlinear methods of acceleration, but
some reliable results have also been obtained with the help of linear methods (see,
for example, [5,8−11]).

The convergence acceleration by matrix methods was studied in [5−11]. Let
A = (ank) be a matrix with real or complex entries. A sequence x = (xk) is said
to be A-summable if the sequence Ax = (Anx) is convergent, where

Anx =
∑

k

ankxk.

We denote the set of all A-summable sequences by cA. Thus, a matrix A determines
the summability method on cA, which we also denote by A. A method A is said to
be regular if for each x = (xn) ∈ c, where c is the set of convergent sequences, the
equality limn Anx = limn xn holds.

Definition 1.4 ([5], p. 310). A regular matrix method A is said to be universally
accelerating if (Anx) converges faster than x for every x ∈ c, and weakly
accelerating if (Anx) converges weakly faster than x for every x ∈ c.

Let Ap be the matrix obtained from A by crossing out the first p+1 rows of A.
Kornfeld (see [5], pp. 311–320) proved the following

Theorem 1.1. Let A and B be two regular methods. If for every x ∈ c the sequence
Bx converges weakly faster than Ax, then Ap = Bp for some p.
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In a special case, where A is the identity method, i.e. A = I = (δnk) with
δnn = 1 and δnk = 0 for n 6= k, the next result follows from Theorem 1.1.

Corollary 1.1. If a regular method B = (bnk) is weakly accelerating, then there
exists a number n0 such that bnk = δnk for all n > n0, i.e. B is equivalent to
identity method I .

If for methods A = (ank) and B = (bnk) for infinitely many n there exists
k = k(n) so that ank 6= bnk, then we say that A is essentially different from B.
From Corollary 1.1 we can conclude that any regular method, essentially different
from I , cannot be weakly accelerating. As each universally accelerating method
is weakly accelerating, any regular method, essentially different from I , cannot be
universally accelerating.

Kangro [6,7] introduced the concepts of boundedness with speed and
convergence with speed for estimating the speed of convergence of a sequence,
and the concepts of A-boundedness with speed and A-summability with speed for
accelerating the convergence of a sequence. Later these concepts were generalized
and used for the acceleration of convergence by Tammeraid [8−11].

In the present paper matrix methods are used, but instead of the classical con-
cept of convergence acceleration, a new concept of convergence acceleration is
introduced. In comparison with Kangro’s concepts of boundedness with speed and
A-boundedness with speed, some new details are added. In Section 2 the concepts
of µ-faster convergence (Definitions 2.1 and 2.1′) and weakly µ-faster convergence
(Definition 2.4) are defined and compared with usual faster convergence and
weakly faster convergence concepts, determined by Definitions 1.1 and 1.2,
respectively. It is shown that the new concepts allow a more precise comparison
of the speeds of convergence for a larger set of sequences than the classical
concepts. In Example 2.1, with the help of Aitken’s process (see [2], p. 4),
the sequence is found, which converges µ-faster (but not faster) than an initial
sequence. It is also proved that if for a sequence x = (xn) with the limit ς the
sequence of absolute differences (|xn − ς|) is monotonically decreasing, then the
µ-faster as well as weakly µ-faster convergence of a sequence y with respect to
x coincide with the usual weakly faster convergence of y with respect to x. In
Section 3 the concepts of µ-acceleration of convergence (Definition 3.1) and
weakly µ-acceleration of convergence (Definition 3.2) are defined. It is shown
that the assertions of Theorem 1.1 and Corollary 1.1 cannot be transferred to
weakly µ-acceleration of convergence in a general case. It means that there exists
a regular matrix method which is weakly µ-accelerating with respect to another
regular matrix method, and a regular matrix method, essentially different from I ,
can weakly µ-accelerate the convergence. However, it is proved that the assertion
of Corollary 1.1 holds for weak µ-acceleration of convergence in the special case
where A = I and B is a triangular matrix method, i.e., when bnk = 0 for k > n.
It is also shown that under suitable assumptions the assertion of Theorem 1.1 holds
for weak µ-acceleration of convergence in the case, where B is a triangular matrix
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method and A is a normal matrix method, i.e., when A is triangular and ann 6= 0
for all n.

2. ON µ-FASTER CONVERGENCE OF SEQUENCES

Here we introduce a new concept for comparison of speeds of convergence of
sequences.

Definition 2.1. Let x = (xn) and y = (yn) be convergent sequences with limits ς
and ξ, respectively. We say that y converges µ-faster than x if
(a) there exists µ = µ(x) = (µn), 0 < µn ↗∞, so that

ln = µn |xn − ς| 6= O(1) and Ln = µn |yn − ξ| = O(1), (2.1)

(b) there does not exist µ = µ(y) = (µn), 0 < µn ↗∞, with the properties

ln = O(1) and Ln 6= O(1). (2.2)

Remark 2.1. If ln = O(1), then x = (xn) is said to be µ-bounded by Kangro [7].

Let
ϕ = {x = (xk) |xk = const, if k > k0}

for some k0 = 0, 1, ... . It is easy to see that for all µ we have lk = o(1) for each
x ∈ ϕ.

Proposition 2.1. For every sequence x = (xn) ∈ c \ ϕ with limit ς there exists
µ = µ(x) = (µn), 0 < µn ↗∞, such that ln = O(1) and ln 6= o(1).
Proof. Every x = (xn) with limit ς can be represented in the form

x = x0 + ςe; x0 =
(
x0

n

) ∈ c0, e = (1, 1, ...), (2.3)

where c0 is the set of sequences converging to zero. Hence, for the proof it is
sufficient to show that the assertion of Proposition 2.1 holds for all x0 ∈ c0 \ ϕ.
For a given sequence x0 =

(
x0

n

) ∈ c0 \ϕ we form the subsequence
(
x0

kn

)
of

(
x0

n

)
,

satisfying the properties
∣∣x0

k0

∣∣ = max
0≤i≤∞

∣∣x0
i

∣∣ ,
∣∣∣x0

kn+1

∣∣∣ = max
i>kn

∣∣x0
i

∣∣ .

Obviously the sequence
(∣∣x0

kn

∣∣) is monotonically decreasing.
Defining now µ = µ(x) = (µi) by the relation

µi =





1˛̨
˛x0

k0

˛̨
˛

(i ≤ k0),

1˛̨
˛x0

kn+1

˛̨
˛

(kn < i ≤ kn+1),
(2.4)

we notice that ln = O(1) and ln 6= o(1) for ς = 0.
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Let us study the relationship between the concepts of the classical faster
convergence, determined by Definition 1.1, and µ-faster convergence. First we
notice that there exists no convergent sequence, converging faster or µ-faster than
any sequence of ϕ.

Proposition 2.2. If a sequence y = (yn) ∈ c converges faster than x = (xn) ∈
c \ ϕ, then y converges also µ-faster than x.

Proof. For y ∈ ϕ the assertion of Proposition 2.2 is clearly true. Thus, suppose that
y ∈ c\ϕ converges faster than x ∈ c\ϕ, i.e. relation (1.1) holds, and show that then
y converges also µ-faster than x. By Proposition 2.1 there exists µ = µ(x) = (µn),
0 < µn ↗∞, so that ln = O(1) and ln 6= o(1). Using relation (1.1), we have now

lim
n

µn |yn − ξ|
µn |xn − ς| = 0. (2.5)

Consequently, by Proposition 2.1 there exists λ = (λn), 0 < λn ↗∞, so that

λn
µn |yn − ξ|
µn |xn − ς| = O(1).

Denoting λnµn = ϑn, we get from the last relation that ϑn |yn − ξ| = O(1) with
0 < ϑn ↗ ∞. Moreover, ϑn |xn − ς| 6= O(1). Indeed, the relations ln = O(1)
and ln 6= o(1) imply that there exists a subsequence (µkn) of (µn) so that

µkn |xkn − ς| ≥ m

for some m > 0. Consequently,

ϑkn |xkn − ς| 6= O(1).

From equality (2.5) we see that there exists no µ with ln = O(1) and Ln 6= O(1).
Thus y converges µ-faster than x by Definition 2.1.

The converse assertion to Proposition 2.2, however, is not valid.

Example 2.1. Let x = (xn) ∈ c \ ϕ be given by the relations

xn =
1

(n + 1)2n
if n = 3k, (2.6)

(n + 1)32nxn = o(1) if n = 3k + 1, (2.7)

and
(n + 1)22nxn 6= O(1), 2nxn = o(1) if n = 3k + 2, (2.8)

where k = 0, 1, ..., i.e. the subsequence (x3k) of the sequence (xn) is given exactly,
but for the subsequences (x3k+1) and (x3k+2) of (xn) only the estimations (2.7)
and (2.8) are given. The sequence transformation

yn = x3n − (x3n+3 − x3n)2

x3n+6 − 2x3n+3 + x3n
(2.9)
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we may consider as Aitken’s process (see [2], p. 4) applied to the subsequence
(x3k) of x. Using (2.6), we get from (2.9) that

yn =
9

23n (1323n3 + 6993n2 + 12024n + 6736)
.

It is easy to see that now ξ = ς = 0 and y = (yn) converges not faster than
x and x converges not faster than y, but y converges µ-faster than x by
Definition 2.1. Indeed, relations (2.1) hold for µ = (µn), defined by the equalities
µn = 23n(n + 1)3, but there does not exist µ = µ(y) = (µn), 0 < µn ↗∞, with
properties (2.2).

Thus, by Proposition 2.2 and Example 2.1 we can say that the µ-faster
convergence concept, determined by Definition 2.1, allows us to compare the
speeds of convergence for a larger set of sequences than the classical faster
convergence concept determined by Definition 1.1.

Further, let us show that the new concept allows a more precise comparison of
the convergence speeds of sequences than the classical concept. For every sequence
x ∈ c \ ϕ we denote

µx = {µ = (µn) | 0 < µn ↗∞, ln = µn

∣∣∣xn − lim
n

xn

∣∣∣ = O(1), ln 6= o(1)}.

Definition 2.2. We say that a sequence µ ∈ µx is a speed of convergence of x
and a sequence µ∗ = (µ∗n) ∈ µx is the limit speed of convergence of x if for all
µ = (µn) ∈ µx the relation µn/µ∗n = O(1) holds.

From the proof of Proposition 2.1 we see that the speed µ, defined by (2.4),
is also the limit speed of x ∈ c \ ϕ, represented in form (2.3). Therefore, from
Proposition 2.1 we get

Corollary 2.1. Every sequence x ∈ c \ ϕ has the limit speed of convergence.

Remark 2.2. If for a sequence µ = (µn) ∈ µx the inequality µn/µ∗n > m holds
for some m > 0, where µ∗ is the limit speed of x, then µ is also the limit speed
of x.

Remark 2.3. If for x = (xn) ∈ c \ ϕ the relation

m < µn |xn − ς| < M

is valid for some m > 0 and M > 0, where ς is the limit of x and µ = (µn) ∈ µx,
then µ is the limit speed of x.

Remark 2.4. A sequence x ∈ ϕ has neither speed nor limit speed in the sense of
Definition 2.2.
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Proposition 2.3. For each x ∈ c \ ϕ there exists an element µ ∈ µx, which is not
the limit speed of x.
Proof. Let µ∗ = (µ∗n) ∈ µx be the limit speed of x and x be represented in form
(2.3). Then there exists a subsequence

(
µ∗kn

)
of (µ∗n) so that

µ∗kn

∣∣x0
kn

∣∣ > m

for some m > 0 and µ∗kn
/µ∗kn+1−1 → 0. We define a sequence µ = (µi) as follows:

µi =
{

µ∗i (i ≤ k0),
µ∗kn

(kn ≤ i < kn+1).

Then
µi

µ∗i
=

{
1 (i ≤ k0 and i = kn),
µ∗kn
µ∗i

(kn < i < kn+1).

Now we see that µn

∣∣x0
n

∣∣ = O(1) and µn

∣∣x0
n

∣∣ 6= o(1). Hence µ ∈ µx.
However, for i = kn+1 − 1 we get

µi

µ∗i
=

µ∗kn

µ∗kn+1−1

→ 0 for n →∞,

i.e. the sequence (µi/µ∗i ) is not lower-bounded. Therefore µ is not the limit speed
of x.

Remark 2.5. Condition (b) in Definition 2.1 is essential. Let us explain the
importance of condition (b) with the help of the following example.

Example 2.2. Let a sequence x = (xn) be defined by the equality

xn =
1

(n + 1)2n

and a sequence y = (yn) by the equalities

yn =





xn (n = 2k),
1

(n+1)2n−1 (n = 4k + 1),
1

(n+1)2n+1 (n = 4k + 3),

where k = 0, 1, ... . The limit of both sequences is 0. We define the sequences
µ = (µn) and λ = (λn) with the help of the equalities

µn = (n + 1)2n and λn =





µn (n = 2k),
(n + 1)2n−1 (n = 4k + 1),
(n + 1)2n+1 (n = 4k + 3),
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where k = 0, 1, ... . Then we see that µn |xn| = O(1) and µn |yn| 6= O(1), but at
the same time λn |yn| = O(1) and µn |yn| 6= O(1). It means that we cannot say
that x converges µ-faster than y or y converges µ-faster than x.

Definition 2.3. We say that the limit speed of convergence µ∗ = (µ∗n) of a sequence
y is higher than the limit speed of convergence λ∗ = (λ∗n) of a sequence x if the
ratio λ∗n/µ∗n is upper-bounded, but not lower-bounded.

Using the concept of the limit speed of convergence, we can reformulate
Definition 2.1.

Definition 2.1′. We say that a sequence y converges µ-faster than x if the limit
speed of convergence of y is higher than the limit speed of convergence of x or
y ∈ ϕ and x does not belong to ϕ.

Definition 2.4. We say that y converges weakly µ-faster than x if the limit speed of
convergence of x is not higher than the limit speed of convergence of y or y ∈ ϕ.

Of course, if a sequence y ∈ c \ ϕ converges µ-faster than x, then y converges
also weakly µ-faster than x.

Further, we study the relationship between weakly µ-faster convergence and
usual weakly faster convergence.

Proposition 2.4. If a sequence y converges weakly faster than x, then y converges
weakly µ-faster than x.

Proof. If y ∈ ϕ, then the assertion of Proposition 2.4 is clearly valid. We suppose
y ∈ c \ ϕ. Then by relation (2.3) it is sufficient to prove that the assertion of
Proposition 2.4 holds for all x = (xn) ∈ c0 and y = (yn) ∈ c0, for which y
converges weakly faster than x. Thus, supposing that y converges weakly faster
than x, we get by Definition 1.2 that the relation

|yn| ≤ K |xn| (2.10)

holds for all n and some number K > 0. By Corollary 2.1 the sequence x has the
limit speed λ∗ = (λ∗n). Hence, by relation (2.10) we get

λ∗n |yn| ≤ Kλ∗n |xn| = O(1),

i.e.
λ∗n |yn| = O(1).

Consequently, the limit speed of y cannot be lower than the limit speed of x. Thus
y converges weakly µ-faster than x.

However, the converse assertion to the assertion of Proposition 2.4 is not valid.
Indeed, in Example 2.1 the sequence y converges weakly µ-faster than x, but
we cannot say that y converges weakly faster than x or that x converges weakly
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faster than y. Therefore, we can assert that, using the concept of weakly µ-faster
convergence, it is possible to compare the speeds of convergence for a larger set
of sequences and make it more exactly than with the help of the concept of usual
weakly faster convergence, determined by Definition 1.2.

Let now x = (xn) ∈ c\ϕ with the limit ς be a sequence for which the sequence
of absolute differences (|xn − ς|) is monotonically decreasing. We show that in this
case the µ-faster convergence as well as the weakly µ-faster convergence coincide
with the usual weakly faster convergence.

Proposition 2.5. Let x = (xn) ∈ c \ ϕ be a sequence with the limit ς , for which
the sequence of absolute differences (|xn − ς|) is monotonically decreasing. If a
sequence y = (yn) converges µ-faster or weakly µ-faster than x, then y converges
weakly faster than x.

Proof. It is not difficult to see that the limit speed λ∗ = (λ∗n) of a sequence x can
be defined by the equality

λ∗n =
1

|xn − ς| .

Let µ∗ = (µ∗n) be the limit speed of y. Then we get

µ∗n |yn − ξ|
λ∗n |xn − ς| = µ∗n |yn − ξ| = O(1),

where ξ is the limit of y. The last relation implies inequality (1.2) for some constant
K, because in this case µ∗n/λ∗n > m for some m > 0. Thus the assertion of
Proposition 2.5 is valid.

Remark 2.6. It is easy to see that every subsequence of a convergent sequence x
converges weakly µ-faster than x. Yet, it is not true for the concept of usual weakly
faster convergence.

Example 2.3. Consider the sequence x, introduced in Example 2.1. It is incorrect
to say that the subsequence (x2n) of x converges weakly faster than x in the sense
of Definition 1.2.

3. µ-ACCELERATION OF CONVERGENCE BY REGULAR MATRIX
METHODS

We consider the convergence acceleration of sequences in the sense different
from the classical concept.

Definition 3.1. We say that a regular matrix method A µ-accelerates the
convergence of a sequence x ∈ c if the sequence Ax converges µ-faster than x.

It is clear that µ-acceleration of all convergent sequences by a regular method
A is not possible, because it is not possible to µ-accelerate the convergence of any
x ∈ ϕ.
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Definition 3.2. We say that a regular method A weakly µ-accelerates the
convergence of a sequence x ∈ c if the sequence Ax converges weakly µ-faster
than x. If the sequence Ax converges weakly µ-faster than x for all x ∈ c, then we
say that A weakly µ-accelerates the convergence.

From Proposition 2.4 we immediately get

Corollary 3.1. If a regular method A weakly accelerates the convergence, then A
also weakly µ-accelerates the convergence.

Definition 3.3. Let A and B be two regular methods with cA ⊆ cB. We say that B
is weakly µ-accelerating with respect to A if for every x ∈ cA its B-transform Bx
converges weakly µ-faster than its A-transform Ax.

According to Kornfeld [5], a regular method B is said to be weakly accelerating
with respect to another regular method A if for every x ∈ cA its B-transform
Bx converges weakly faster than its A-transform Ax. From Proposition 2.4 we
immediately get

Corollary 3.2. Let A and B be two regular methods with cA ⊆ cB . If B is weakly
accelerating with respect to A, then B is also weakly µ-accelerating with respect
to A.

We show that the converse assertions to Corollaries 3.1 and 3.2 are not valid.
For this purpose we first show that the assertions of Theorem 1.1 and Corollary
1.1 are not valid for weak µ-acceleration of convergence in a general case. Let us
present a counterexample.

Example 3.1. Let A be a regular method and a method B be defined by the relation

bnk = aρ(n),k,

where ρ = ρ(n) is an integer-valued function satisfying the condition ρ(n) ≥ n.
Then B is a regular method (see Theorem 2.3.7 of [1]) and (Bnx) is a subsequence
of the sequence (Anx) for each x ∈ cA. Therefore B is weakly µ-accelerating
with respect to A by Remark 2.6. If A = I , then B weakly µ-accelerates the
convergence.

Now it is easy to see that the converse assertions to Corollaries 3.1 and 3.2
do not hold. Indeed, let regular methods A and B be defined as in Example
3.1. Then for every x ∈ cA its B-transform Bx converges weakly µ-faster than
its A-transform Ax. However, by Theorem 1.1 B-transform Bx of x converges
weakly faster than A-transform Ax of x not for all sequences x ∈ cA. For A = I
we get that Bx converges weakly faster than x not for all sequences x ∈ cA.

Let now A be a normal regular matrix method and B a triangular regular matrix
method. We show that in this case the assertion of Theorem 1.1 holds for weak µ-
acceleration of convergence if cA ⊆ cB and B is consistent with A, i.e.

lim
n

Bnx = lim
n

Anx

for every x ∈ cA.
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Theorem 3.1. Let A be a normal regular method. Let B be a triangular regular
method with cA ⊆ cB and B be consistent with A. If B is weakly µ-accelerating
with respect to A, then Bp = Ap for some p.

Before proving Theorem 3.1 we prove this theorem in the special case where
A = I , i.e. we show that for a triangular matrix method B the assertion of Corollary
1.1 can be transferred to weak µ-acceleration.

Theorem 3.2. If a triangular regular method B = (bnk) weakly µ-accelerates
the convergence, then there exists a natural number n0 so that bnk = δnk for all
n > n0, i.e. B is equivalent to I .

Proof. First we notice that a regular method B can weakly µ-accelerate the
convergence only if the condition

n∑

k=0

bnk = 1 (3.1)

holds for all n. Indeed, otherwise B cannot weakly µ-accelerate the convergence
of all sequences of ϕ, for example, then the sequence e converges µ-faster than Be.
Thus, let B = (bnk) be a triangular regular method satisfying condition (3.1) and
weakly µ-accelerating the convergence. Suppose, on the contrary, that bnk 6= δnk

for infinitely many n and show that in this case B cannot weakly µ-accelerate the
convergence. To prove the last assertion, it is sufficient to construct such a sequence
x ∈ c0, which converges µ-faster than its B-transform y = Bx. Consider two
different cases.

I. Assume that B has such a column bnk0 (k0 is fixed and n = 0, 1, ...), where
infinitely many elements are different from zero. Let bn0k0 6= 0 for some n0 > k0,
xk = 0 for 0 ≤ k < k0 and k0 < k < n0. We choose xk0 , xn0 so that

0 < |xn0 | < |xk0 | ,

|bn0k0xk0 + bn0n0xn0,|
|xn0 |

> n0,

and
bnk0xk0 + bnn0xn0 6= 0

for all n > n0, where bnk0 6= 0 or bnn0 6= 0. We note that such numbers xk0 , xn0

exist, because the set of the existing ratios {−bnk0/bnn0 ; n = 0, 1, ...} is finite or
countable. Now we choose the minimal number n1 > n0, for which bn1k0 6= 0 or
bn1n0 6= 0. Then we can take xk = 0 for n0 < k < n1 and choose xn1 such that

0 < |xn1 | < |xn0 | ,
|bn1k0xk0 + bn1n0xn0 + bn1n1xn1 |

|xn1 |
> n1,
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and
bnk0xk0 + bnn0xn0 + bnn1xn1 6= 0

for all n > n1, where at least one of the numbers bnk0 , bnn0 , and bnn1 is not zero.
Continuing in a similar way, we will choose the sequence of natural numbers (ni)
(n0 < n1 < ... < ni < ...) and the numbers xk so that

0 < ... < |xni | <
∣∣xni−1

∣∣ < ... < |xn0 | < |xk0 | ,

xk = 0 for k 6= k0 and k 6= ni,

|bnik0xk0 + bnin0xn0 + ... + bninixni |
|xni |

> ni,

and
bnk0xk0 + bnn0xn0 + bnn1xn1 + ... + bnnixni 6= 0

for all n > ni, where at least one of the numbers bnk0 , bnn0 , bnn1 ,..., bnni is not
equal to zero.

Thus we have constructed two sequences x = (xn) and y = (yn) = (Bnx) so
that

yn = xn = 0, if n 6= k0 and n 6= ni, yk0 = bk0k0xk0

and
|yni |
|xni |

> ni. (3.2)

We notice that nonzero elements of both sequences form the monotonically
decreasing subsequences of these sequences. Therefore we can determine the limit
speeds of convergence of x and y respectively by λ∗ =

(
λ∗j

)
and µ∗ =

(
µ∗j

)
,

where

λ∗j =





1

|xn0 | (0 ≤ j ≤ n0),
1

|xni | (ni−1 < j ≤ ni)
(3.3)

and

µ∗j =





1

|yn0 | (0 ≤ j ≤ n0),
1

|yni | (ni−1 < j ≤ ni)
(3.4)

(i = 1, 2, ...). By relation (3.2) we have λ∗j/µ∗j → ∞. Consequently, x converges
µ-faster than its B-transform Bx and thus B cannot weakly µ-accelerate the
convergence.

II. Assume that B is a matrix with finite columns, i.e. every column of B has
a finite number of nonzero elements. In this case we also choose a number n0, for
which bn0k0 6= 0 for some k0 with 0 ≤ k0 < n0. Further, if possible, we continue
as in case I. However, now it can happen that, after choosing ni for some i, we have
bnk0 = bnn0 = bnn1 = ... = bnni = 0 for every n > ni. Thus, it is not possible to
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choose the next number ni+1, as we did in case I. Therefore we proceed with the
following
Step A. We choose a number n′i > ni so that

bn′iki
6= 0 for ki with ni < ki < n′i. (3.5)

Such n′i exists. Indeed, there exists a number ñ with ñ > ni so that bnk = 0 for all
n > ñ and k < ni, since B is the matrix with finite columns. As bnk 6= δnk for
infinitely many n and condition (3.1) is satisfied, we can take the minimal number
n′i > ni, for which relation (3.5) holds. Further we choose xki for ni < ki < n′i
and xn′i so that

0 <
∣∣∣xn′i

∣∣∣ < |xki | < |xni |
and ∣∣∣bn′iki

xki + bn′in
′
i
xn′i

∣∣∣
∣∣∣xn′i

∣∣∣
> n′i, i = 1, 2, ... .

If there exists n > n′i such that bnki 6= 0 or bnn′i 6= 0, we can determine xni+1

(ni+1 > n′i) as in case I. If not, we repeat Step A, choosing the next elements xki+1

and xn′i+1
with

0 <
∣∣∣xn′i+1

∣∣∣ <
∣∣xki+1

∣∣ <
∣∣∣xn′i

∣∣∣ .

So we have constructed two sequences x = (xn) and y = (yn) = (Bnx),
where

yn = xn = 0, if n 6= ki, n 6= ni (i = 0, 1, ...),

yk0 = bk0k0xk0 and yki = xki (i = 1, ...),
∣∣∣yn′i

∣∣∣ > n′i
∣∣∣xn′i

∣∣∣ , (3.6)

and relation (3.2) holds. Consequently, if we have no necessity to use Step A, we
can determine the limit speeds λ∗ =

(
λ∗j

)
and µ∗ =

(
µ∗j

)
of x and y by equalities

(3.3) and (3.4), respectively. If we use Step A, we can determine the limit speeds of
x and y also by equalities (3.3) and (3.4), replacing in them some elements λ∗j by

1/
∣∣∣xn′i

∣∣∣ and 1/ |xki | and some elements µ∗j by 1/
∣∣∣yn′i

∣∣∣ and 1/ |yki |, respectively.
Hence λ∗ki

/µ∗ki
= 1, but by relations (3.2) and (3.6) we have 1 ≤ λ∗n/µ∗n 6= O(1).

Consequently, x converges µ-faster than its B-transform y. Thus, again, we can
conclude that B cannot weakly µ-accelerate the convergence.

Consequently, our assumption that bnk 6= δnk for infinitely many n was
incorrect and therefore there exists a number n0 so that bnk = δnk for all n > n0.

Now we are able to prove Theorem 3.1.
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The proof of Theorem 3.1. As A is a normal matrix method, we get for every x ∈ cA

that
Bx = Cy; C = BA−1, y = Ax, (3.7)

where A−1 is the inverse matrix of A. On the other hand, for each y ∈ c there
exists a unique x ∈ cA so that relation (3.7) holds (see [1], p. 37). Consequently,
B = (bnk) can be weakly µ-accelerating with respect to A if and only if C = (cnk)
weakly µ-accelerates the convergence. In addition, the method C is triangular and
regular, because cA ⊆ cB and B is consistent with A (see [1], p. 76). Therefore,
by Theorem 3.2 there exists a natural number p so that cnk = δnk for n > p. This
implies bnk = ank for n > p, since B = CA, i.e., Bp = Ap.

From Theorems 3.1 and 3.2, respectively, we immediately get the following
corollaries.

Corollary 3.3. Let A be a normal regular method, and B a triangular regular
method, essentially different from A. Let cA ⊆ cB and B be consistent with A.
Then B cannot be weakly µ-accelerating with respect to A.

Corollary 3.4. Any triangular regular matrix, essentially different from I , cannot
weakly µ-accelerate the convergence.
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µ-kiiremast koonduvusest ja koonduvuse
µ-kiirendamisest regulaarsete maatriksitega

Ants Aasma

On esitatud koonduvuse µ-kiirendamise mõiste (µ on positiivne monotoonselt
kasvav jada) ja seda on võrreldud klassikalise koonduvuse kiirendamise mõistega.
Koonduvuse µ-kiirendamist on uuritud regulaarsete maatriksmeetoditega. Korn-
feld (J. Comput. Appl. Math., 1994, 53, 309–321) tõestas, et kui iga koonduva
jada B-teisendus ei koondu aeglasemalt kui selle jada A-teisendus, kus A ja B on
regulaarsed maatriksmeetodid, siis A ja B on ekvivalentsed. Artiklis on tõestatud,
et üldjuhul ei saa Kornfeldi väidet koonduvuse µ-kiirendamisele üle kanda. Siiski
on näidatud, et teatavatel eeldustel kehtib see väide ka koonduvuse µ-kiirendamise
jaoks erijuhul, kui A on normaalne ja B on kolmnurkne maatriksmeetod.
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