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Abstract. The simple random one-way linear model and ANOVA estimatorsof the intraclass
correlation coefficient are examined. New approximation for the sampling variance of the
intraclass correlation coefficient is derived and its minimum, corresponding to a balanced
data set, is established. The theoretical results are checked with simulation experiments. In
addition, the effect of data set imbalance and structure on the accuracy of intraclass correlation
coefficient estimators is studied by modelling.
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1. INTRODUCTION

The parameters calculated in genetical applications of mixed linear models
are usually different ratios of variance components, showing the proportions of
variability of observations caused by specified factors. In general, these ratios are
called intraclass correlation coefficients. Different linear combinations ofthese
coefficients are used in applications. For example, in genetic studies basedon
half-sib families, the intraclass correlation coefficient measures one quarter of the
additive genetic contribution, called the heritability coefficient of the observed trait.
Several heritability coefficients used in population genetics are discussedin [1,2],
for example.

In spite of a large number of applications, the estimation theory of the intraclass
correlation coefficient has many unsolved problems. Only few articles areavailable
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about the accuracy of estimates and about the effect of data structure.Moreover, all
these papers focus on balanced data designs only (see [3,4]). In the present paper
we estimate the accuracy of the estimators of the intraclass correlation coefficient
in unbalanced designs but assuming the simplest mixed linear model – the one-way
random model. We also estimate the effect of data imbalance and structure on the
accuracy of the intraclass correlation coefficient. Theoretical results are illustrated
with statistical modelling.

2. THE MODEL AND THE ESTIMATES

In the following we use the matrix notation in terms of matrix blocks accepted,
e.g., in [5,6]. For instance,A = {dAi}

t
i=1

is anr × s block-diagonal matrix with
ri×si matricesAi on the main diagonal,r = r1 + . . . + rt ands = s1 + . . . +st.

Consider the mixed linear model

yij = µ + ui + eij (1)

or, in matrix notation,
y = 1Nµ + Zu + e,

wherey is the N × 1 vector of observed values,µ is the only fixed effect in
the model (the mean),1′

N = (1 . . . 1)′N andZ = {d1ni
}a

i=1
are known design

matrices of orderN × 1 andN × a, respectively, associating fixed and random
effects withy, u′ = (u1 . . . ua)

′ is a vector of random effects,e is anN × 1
vector of random residuals. The number of levels in a random factor is traditionally
marked asa, and the number of objects per theith level in the one-way model is
denoted byni.

The expectation and the variance-covariance structure are represented as

E(y) = µ, Var(u) = σ2

uIa, Var(e) = σ2

eIN , Cov(u, e′) = 0

and
V = Var(y) = {dσ

2

uJni
+ σ2

eIni
}a

i=1, (2)

whereI andJ denote the identity matrix and square matrix of ones, respectively.
It is assumed that the effectsui andeij in the model (1) are independently and

normally distributed so that

ui ∼ N(0, σ2

u), eij ∼ N(0, σ2

e), (i = 1, 2, ..., a; j = 1, 2, ..., ni). (3)

It is well known that the sum of squares corresponding to the main effectand
expressed as

SS(u) = y′
[
{dJni

/ni }
a
i=1

− JN/N
]
y = y′Q1y, (4)
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and the sum of squares corresponding to the error term and expressed as

SS(e) = y′
[
IN − {dJni

/ni }
a
i=1

]
y = y′Q2y,

are statistically independent and thatSS(e)
/
σ2

e is Chi-squared distributed:

SS(e)
/
σ2

e ∼ χ2

N−a. (5)

If the data set is balanced, that is,ni = n for i = 1, . . . , a, then it also holds that

SS(u)
/
(nσ2

u + σ2

e) ∼ χ2

a−1.

In the case of unbalanced data the last distribution is not true. However, as noted
in [7], the formulas derived in [8] can be used to express the quadratic form (4) as a
linear combination of independent central Chi-squared variables of the form

SS(u) = y′Q1y ∼
s∑

i=1

λiχ
2

mi
, (6)

whereλ1, λ2, ..., λs are the distinct nonzero eigenvalues ofQ1V with multiplicities
m1, m2, ..., ms, respectively, andV is the variance matrix of observed values
defined by Eq. (2). As the further operations with the mixture distribution (6)
are complicated, an approximation, based on Satterthwaite’s procedure [9] and
presented in [7], is used in the form

s∑

i=1

λiχ
2

mi
≈ λχ2

m, (7)

where

λ =

∑s
i=1

miλ
2
i∑s

i=1
miλi

, m =
(
∑s

i=1
miλi)

2

∑s
i=1

miλ2
i

. (8)

The approximation is exact when the data set is balanced, that is, whenni = n for
i = 1, . . . , a [7].

The ANOVA estimators of variance componentsσ2
u andσ2

e are obtained by
equating the mean squares with their expected values and are expressed as

σ̂2

u =
1

d
[MS(u) − MS(e)]

and
σ̂2

e = MS(e),

whereMS(u) = SS(u)/(a − 1), MS(e) = SS(e)/(N − a), and

d =
1

a − 1

(
N −

1

N

a∑

i=1

n2

i

)
. (9)
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The estimatorρ̂ of the intraclass correlation coefficientρ, which measures the
magnitude of random effects, is calculated as the ratio of variances:

ρ̂ =
σ̂2

u

σ̂2
u + σ̂2

e

=
MS(u) − MS(e)

MS(u) + (d − 1)MS(e)
. (10)

3. THE ACCURACY OF THE ESTIMATED INTRACLASS
CORRELATION COEFFICIENT

There is no exact formula for the variance of the intraclass correlation
coefficient estimate even in the balanced case. Usually an approximate formula
is used:

Var(ρ̂) ≈
2[1 + (n − 1)ρ]2(1 − ρ)2

n(n − 1)(a − 1)
,

derived in [10] using a first-order Taylor-series expansion of the equality (10) withn
replacingd. In unbalanced data the approximation ofVar(ρ̂) was published in [11]
and has the following form:

Var(ρ̂) ≈
2(N − 1)(1 − ρ)2[1 + (d − 1)ρ]2

d2(N − a)(a − 1)
. (11)

Derivation of this formula is based on an approximate formula for the variance of
the ratio of two random variables:

Var(y/x)

≈ [E(y)/E(x)]2
{
Var(y)/[E(y)]2 + Var(x)/[E(x)]2 − 2Cov(y, x/[E(y)E(x)])

}
,

applied to the estimate of the intraclass correlation coefficient expressed through
sums of squares.

Next an alternative expression forVar(ρ̂) is derived based on approxima-
tions (7) and on the first-order Taylor series expansion of the varianceof the
nonlinear function of parameterw estimator of the form

Var[f(ŵ)] ≈ [∂f(w)/∂w]2Var(ŵ), (12)

where the derivative is evaluated at the mean ofŵ.

Theorem 1. In a one-way random model under the normality assumptions(3),
the variance of the intraclass correlation coefficient estimate can approximately be
expressed as

Var(ρ̂) ≈
2mλ2(N − a)2(N − a + m − 2)(1 − ρ)4

d2(a − 1)2(N − a − 2)2(N − a − 4)σ4
e

, (13)

where m, λ, and d are defined by formulas(8) and(9).
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Proof. Let ŵ = MS(u)/MS(e). Then, on the basis of (10),

ρ̂ =
ŵ − 1

ŵ + d − 1
= f(ŵ). (14)

Following (5)–(7), we get that̂w is approximately distributed as follows:

ŵ ∼
mλ

(a − 1)σ2
e

Fm,N−a,

whereFm,N−a is theF -distribution havingm andN−a degrees of freedom. Here,
depending on the context,F denote both the distribution and random variable with
theF -distribution. Because of

Var(Fm,N−a) = 2(N − a)2(N − a + m − 2)
/
[m(N − a − 2)2(N − a − 4)]

we have

Var(ŵ) ≈
(mλ)2

(a − 1)2σ4
e

2(N − a)2(N − a + m − 2)

m(N − a − 2)2(N − a − 4)
.

From (14) it follows that

∂f(ŵ)

∂ŵ
=

d

(ŵ + d − 1)2
,

or, becausêw = [1 + (d − 1)ρ̂]/(1 − ρ̂),

∂f(ŵ)

∂ŵ
=

(1 − ρ̂)2

d
,

and, based on the approximation (12),

Var(ρ̂) ≈
(1 − ρ)4

d2

(mλ)2

(a − 1)2σ4
e

2(N − a)2(N − a + m − 2)

m(N − a − 2)2(N − a − 4)

=
2mλ2(N − a)2(N − a + m − 2)(1 − ρ)4

d2(a − 1)2(N − a − 2)2(N − a − 4)σ4
e

,

which completes the proof of Theorem 1.

The real data analysis uses mainly the square root of the sampling variance
(sampling standard deviation) of a parameter estimate. The reason is that standard
deviations are easier to interpret and they are also the basis for the accuracy and
significance testing of the estimation procedures.
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4. A SIMULATION STUDY

We carried out a simulation study to investigate the accuracy of the derived
formula, applied in estimating the standard deviationσ(ρ̂) of the intraclass correla-
tion coefficient estimatêρ. The data sizeN = 360 was used as a typical number
in small practical experiments. A practical advantage of this sample size is that
it can be divided in different ways into smaller groups of equal size. Thenumber
of groups,a, used in simulations, was taken 4, 20, and 90. Random effects were
generated by normal distributions (3). Without the loss of generality, a value of
σ2

e = 1 was used throughout the simulations. In generation of random effectsui,
the intraclass correlation coefficientρ was taken equal to 0.0125, 0.0625, 0.15, and
0.8. Small values ofρ were chosen because only these have a real meaning in
most applications. One larger value (ρ = 0.8) was chosen to verify the accuracy
of the derived formula near the upper limit of intraclass correlation coefficient
values. To control the expressions ofσ(ρ̂) in the case of different data designs
D = {n1, n2, . . . , na}, the measure of design imbalance introduced in [12] in the
form

ν(D) = 1

/
a

a∑

i=1

(ni

N

)2

was used. Hence,1/a < ν(D) ≤ 1, and the measureν(D) attains its maximum
value 1 if and only if the designD is balanced. The algorithm for generating designs
with a specified degree of imbalance proposed in [7], pp. 76–80, was realized in
SAS Interactive Matrix Language [13] and used to generate data sets with three
specified degrees of imbalance:ν = 0.3, 0.6, 0.9. Due to the very intensive
computer calculations, only 1000 simulations were made with each combination
of the values of the parametersa, ρ, andν. This modelling size provided an idea
of general tendencies. The parameters compared were (a) the observed standard
deviationσ(ρ̂) of the estimated intraclass correlation coefficient; (b) the predicted
standard deviationσS (ρ̂|ρ) of the intraclass correlation coefficient estimate
calculated as the square root of the approximation (11); (c) the predictedstandard
deviationσK (ρ̂|ρ) of the intraclass correlation coefficient estimate calculated as the
square root of the approximation (13); (d) the estimated standard deviationσ̂S (ρ̂|ρ̂)
of the intraclass correlation coefficient estimate calculated as the square root of the
approximation (11) witĥρ substituted forρ; (e) the estimated standard deviation
σ̂K (ρ̂|ρ̂) of the intraclass correlation coefficient estimate calculated as the square
root of the approximation (13) witĥρ substituted forρ. The simulation results are
presented in Table 1.

The results in Table 1 show that in the case of small values ofρ, both the
approximations (11) and (13) give quite similar results that seem to be unbiased.
For large intraclass correlation coefficients the formula (10) underestimates the real
values ofρ. The estimatêσS (ρ̂|ρ̂) based on the expression (11), and the estimate
σ̂K (ρ̂|ρ̂) based on the expression (13), underestimateσ(ρ̂) when the number of
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groups is small and the intraclass correlation coefficient is large. The difference
from simulated values is smaller by using the expression (13).

Table 1. The observed, predicted, and estimated standard deviations of the intraclass
correlation coefficient estimatêρ for different ρ values, data set imbalancesν, and numbers
of groupsa. The data sizeN = 360 and residual varianceσ2

e = 1 were kept constant.

ρ | ν | a E(ρ̂) | σ(ρ̂)∗ | σS (ρ̂|ρ)†| σ̂S (ρ̂|ρ̂)‡| σK (ρ̂|ρ)†| σ̂K (ρ̂|ρ̂)‡

0.0125 0.3 4 0.0147 0.0468 0.0460 0.0459 0.0471 0.0531
20 0.0122 0.0249 0.0257 0.0261 0.0254 0.0264
90 0.0133 0.0459 0.0517 0.0459 0.0460 0.0466

0.6 4 0.0118 0.0209 0.0210 0.0201 0.0221 0.0221
20 0.0129 0.0225 0.0286 0.0240 0.0234 0.0239
90 0.0140 0.0471 0.0446 0.0444 0.0451 0.0453

0.9 4 0.0116 0.0183 0.0193 0.0183 0.0196 0.0188
20 0.0118 0.0214 0.0371 0.0232 0.0225 0.0222
90 0.0139 0.0449 0.0485 0.0529 0.0449 0.0448

0.0625 0.3 4 0.0587 0.0794 0.0806 0.0730 0.0897 0.0849
20 0.0608 0.0418 0.0381 0.0371 0.0451 0.0442
90 0.0631 0.0496 0.0636 0.0597 0.0511 0.0514

0.6 4 0.0585 0.0592 0.0580 0.0523 0.0653 0.0591
20 0.0620 0.0378 0.0616 0.0627 0.0397 0.0389
90 0.0602 0.0491 0.0579 0.0600 0.0494 0.0491

0.9 4 0.0620 0.0543 0.0563 0.0536 0.0582 0.0554
20 0.0641 0.0361 0.0780 0.0739 0.0373 0.0371
90 0.0607 0.0479 0.0906 0.0855 0.0488 0.0484

0.15 0.3 4 0.1231 0.1210 0.1312 0.1054 0.1563 0.1250
20 0.1453 0.0706 0.0628 0.0598 0.0777 0.0739
90 0.1448 0.0585 0.0740 0.0715 0.0606 0.0597

0.6 4 0.1377 0.1097 0.1126 0.0959 0.1309 0.1113
20 0.1477 0.0613 0.0777 0.0750 0.0639 0.0620
90 0.1462 0.0549 0.0825 0.0805 0.0561 0.0555

0.9 4 0.1364 0.0979 0.1114 0.0959 0.1156 0.0994
20 0.1472 0.0594 0.0882 0.0841 0.0639 0.0619
90 0.1490 0.0528 0.0816 0.0821 0.0543 0.0539

0.8 0.3 4 0.6614 0.2230 0.1407 0.1555 0.1691 0.1879
20 0.7728 0.0821 0.0765 0.1010 0.0844 0.0894
90 0.7950 0.0406 0.0598 0.0589 0.0442 0.0446

0.6 4 0.6903 0.2034 0.1395 0.1496 0.1554 0.1685
20 0.7770 0.0640 0.1722 0.1703 0.0657 0.0697
90 0.7945 0.0332 0.0572 0.0612 0.0350 0.0355

0.9 4 0.7042 0.1922 0.1433 0.1534 0.1370 0.1476
20 0.7823 0.0640 0.4972 0.5041 0.0944 0.0991
90 0.7965 0.0309 0.0294 0.0297 0.0308 0.0311

∗ Observed standard deviationsσ(ρ̂) were found from 1000 replicated samples.
† Predicted standard deviationsσS (ρ̂|ρ) andσK (ρ̂|ρ) were calculated as square roots of

formulas (11) and (13), respectively.
‡ Estimated standard deviationsσ̂S (ρ̂|ρ̂) andσ̂K (ρ̂|ρ̂) were calculated as square roots of

formulas (11) and (13), respectively, witĥρ substituted forρ.
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5. THE EFFECT OF DATA IMBALANCE

In the following it is proved thatVar(ρ̂) expressed by (13) attains its minimum
if and only if the data set is balanced.

Theorem 2.For fixed values of N, a,σ2
u, andσ2

e , Var(ρ̂) attains a minimum if and
only if the data set is balanced.

Proof. Rewrite the expression (13) in the form

Var(ρ̂) ≈

[
mλ2(N − a − 2)

d2(a − 1)2
+

(mλ)2

d2(a − 1)2

]
2(N − a)2(1 − ρ)4

(N − a − 2)2(N − a − 4)σ4
e

,

(15)
where only the first part depends on the design. From formulas (8) andgeneral
properties of eigenvalues we have

mλ =
s∑

i=1

miλi = tr(Q1V), mλ2 =
s∑

i=1

miλ
2

i = tr
[
(Q1V)2

]
. (16)

From formula (4) we have

tr(Q1V) =

(
N −

1

N

a∑

i=1

n2

i

)
σ2

u + (a − 1)σ2

e .

As we also have the expression ford of the form (9), we can write

tr(Q1V) = (a − 1)(σ2

e + dσ2

u),

from which it follows that

d =
tr(Q1V)

σ2
u(a − 1)

−
σ2

e

σ2
u

=
1

σ2
u(a − 1)

[
tr(Q1V) − (a − 1)σ2

e

]
. (17)

From the expressions (16) and (17) we have for the first addend in thesquare
brackets of (15) that

mλ2(N − a − 2)

d2(a − 1)2
=

σ4
u(N − a − 2)tr

[
(Q1V)2

]

[tr(Q1V) − (a − 1)σ2
e ]

2

= σ4

u(N − a − 2)
tr
[
(Q1V)2

]

[tr(Q1V)]2

[
1 −

(a − 1)σ2
e

tr(Q1V)

]−2

.

Here the first term does not depend on design. The second term has its minimum
value equal to the reciprocal of the rank ofQ1, which is equal toa− 1, if and only
if ni = n for all i ([14], p. 303). For the third term we have

[
1 −

(a − 1)σ2
e

tr(Q1V)

]−2

=

[
1 −

σ2
e

σ2
e + dσ2

u

]−2

=

(
1 +

σ2
e

dσ2
u

)2

,
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which has its minimum, equal to(1 + σ2
e

/
nσ2

u)2, if and only if ni = n for all i,
becaused is at its maximum, namelyd = n, if and only if ni = n for all i.

Similarly, we have for the second addend in the square brackets of (15) that

(mλ)2

d2(a − 1)2
=

σ4
u [tr(Q1V)]2

[tr(Q1V)]2

(
1 +

σ2
e

dσ2
u

)2

= σ4

u

(
1 +

σ2
e

dσ2
u

)2

.

The last expression here has its minimumσ4
u(1 + σ2

e

/
nσ2

u)2 if and only if ni = n
for all i. We therefore conclude thatVar(ρ̂) is at its minimum, which is given by
the formula

Var(ρ̂) ≈

[
σ4

u(N − a − 2)

(a − 1)

(
1 +

σ2
e

nσ2
u

)2

+ σ4

u

(
1 +

σ2
e

nσ2
u

)2
]

×
2(N − a)2(1 − ρ)4

(N − a − 2)2(N − a − 4)σ4
e

=
2(σ2

e + nσ2
u)2(1 − ρ)4(N − a)2(N − 3)

σ4
en

2(a − 1)(N − a − 2)2(N − a − 4)

=
2[1 + (n − 1)ρ]2(1 − ρ)2(N − a)2(N − 3)

n2(a − 1)(N − a − 2)2(N − a − 4)
, (18)

if and only if the data set is balanced. This completes the proof of Theorem 2.

Note that the minimum ofVar(ρ̂) expressed by (18) and corresponding to
balanced data has the same form as approximatedVar(ρ̂) derived in [15] assuming
balanced data.

To visualize the effect of data imbalance on the accuracy of the estimated
intraclass correlation coefficient, modelling experiments were used. Standard
deviations of the intraclass correlation coefficient estimate were calculated by
formula (13) in the case of different combinations of data imbalance and intraclass
correlation coefficients. Since there are different data designs corresponding to
a given imbalance, on an average five designs were generated with eachspecified
ν(D) value, and the average value ofσ(ρ̂) was used to characterize the effect of the
corresponding imbalance. Figure 1 shows the dependence of the standard deviation
of the estimated intraclass correlation coefficient onν(D) and onρ, keeping the
data sizeN = 360, number of groupsa = 20, and error varianceσ2

e = 1.
The modelling results show that even a quite notable increase in data imbalance

does practically not reduce the accuracy of the intraclass correlation coefficient
estimate. Yet, in case of very imbalanced data, the standard deviation ofρ̂ increases
quickly with imbalance. In modelling experiments with other numbers of groups
(not shown here) the influence of data imbalance on the accuracy of intraclass
correlation coefficient estimators was stronger at a small number of groups. It is
also observed that in case of very unbalanced design the accuracy ofρ̂ decreases
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Fig. 1. The pattern ofσ(ρ̂) in different data set imbalances and true intraclass correlation
coefficient values forN = 360, a = 20, σ2

e = 1. Note that they-axis is directed downward.

more drastically at small values of the intraclass correlation coefficient. Themost
imprecise estimates were obtained for average values ofρ.

6. OPTIMAL DESIGN

The number of objects per group, which minimizes the sampling variance ofσ2
u,

is derived in [16] for balanced designs, considering the group sizen as a continuous
argument and studying the derivatives of the expression ofVar(σ̂2

u). The minimum
Var(σ̂2

u), and alsoσ(σ̂2
u), is obtained by considering

n =
N(τ + 1) + 1

Nτ + 2

observations per group, whereτ = σ2
u

/
σ2

e . Modelling experiments with different
data sizes, numbers of groups, and values of the intraclass correlation coefficient
showed that the same group sizes guarantee the smallest values ofVar(ρ̂) andσ(ρ̂).

Figure 2 shows the pattern ofσ(ρ̂), calculated as the square root of the
expression (18), and optimum number of observations per group, found for a fixed
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Fig. 2. The pattern ofσ(ρ̂) and the optimal number of observations per group (vertical arrows
for integer numbers and dotted line on thexy-plane for continuous numbers) in different true
intraclass correlation coefficient values (N = 360, σ2

e = 1). Note that they-axis is directed
downward.

data sizeN = 360 in the case of different group sizes and intraclass correlation
coefficient values. Based on Fig. 2 and on the results presented in Table1, the
following conclusions were made: (1) the effect of data design is the smallest,
when the values of the intraclass correlation coefficient are close to its theoretical
limits; (2) a small number of groups, even with a large number of observations,
may cause dramatic loss of accuracy, except in the case of small values ofρ. In
case of the latter (usual in, for example, genetic studies) a very small number of
observations per group should be avoided.

ACKNOWLEDGEMENTS

This investigation was partially performed during the visit to the Linnaeus
Centre for Bioinformatics, supported by the European Commission programme
Human Research Potential & the Socio-economic Knowledge Base: Accessto
Research Infrastructures, project number HPRI-CT-2001-00153.

253



REFERENCES

1. Shen, P.-S., Cornelius, P. L. and Anderson, R. L. Planned unbalanced designs for estima-
tion of quantitative genetic parameters. I: Two-way matings. Biometrics, 1996,52,
56–70.

2. Kaart, T. Ülevaade geneetiliste parameetrite hindamisel kasutatavatest mudelitest. In
Eesti Põllumajandusülikooli Loomakasvatusinstituudi teadustöid, 71 (Lokk, E., ed.).
EPMÜ Loomakasvatusinstituut, Tartu, 2001, 52–67.

3. Visscher, P. M. On the sampling variance of intraclass correlations and genetic
correlations.Genetics, 1998,149, 1605–1614.

4. Donner, A. and Koval, J. J. A note on the accuracy of Fisher’s approximation to the large
sample variance of an intraclass correlation.Commun. Stat. Simul. Comput., 1983,12,
443–449.

5. Searle, S. R., Casella, G. and McCulloch, C. E.Variance Components. Wiley, New York,
1992.

6. McCulloch, C. E. and Searle, S. R.Generalized, Linear and Mixed Linear Models. Wiley,
New York, 2001.

7. Khuri, A. I., Mathew, T. and Sinha, B. K.Statistical Tests for Mixed Linear Models. Wiley,
New York, 1998.

8. Johnson, N. L. and Kotz, S.Continuous Univariate Distributions – 2. Wiley, New York,
1970.

9. Satterthwaite, F. E. Synthesis of variance.Psychometrika, 1941,6, 309–316.
10. Osborne, R. and Paterson, W. S. B. On the sampling variance of heritability estimates

derived from variance analysis.Proc. Roy. Soc. Edinburgh. Sec. B, 1952,64, 456–
461.

11. Swinger, L. A., Harvey, W. R., Everson, D. O. and Gregory,K. E. The variance of intraclass
correlation involving groups with one observation.Biometrics, 1964,20, 818–826.

12. Ahrens, H. and Pincus, R. On two measures of unbalancedness in a one-way model and
their relation to efficiency.Biometrical J., 1981,23, 227–237.

13. SAS Institute Inc.SAS OnlineDoc, Version 8. Cary, NC, SAS Institute Inc., 1999.
14. Graybill, F. A. Matrices with Applications in Statistics, Second Edition. Wadsworth,

Belmont, California, 1983.
15. Zerbe, G. O. and Goldgar, D. E. Comparison of intraclass correlation coefficients with the

ratio of two independent F-statistics.Commun. Stat. Theory Methods, Ser. A, 1980,9,
1641–1655.

16. Hammarsley, J. M. The unbiased estimate and standard error of the interclass variance.
Metron, 1949,15, 189–205.

Uus lähend dispersioonanalüüsiga hinnatud
intraklass-korrelatsioonikordaja varieeruvusele

Tanel Kaart

On tuletatud valem populatsioonigeneetilistes uuringutes rakendatava peamise
parameetri – intraklass-korrelatsioonikordaja – hinnangu dispersiooniarvutami-
seks juhuslike mõjudega ühefaktorilisel dispersioonanalüüsil. Tuletatud valemi
õigsust ja intraklass-korrelatsioonikordaja hinnangu täpsuse sõltuvustandmete
struktuurist on uuritud modelleerimiseksperimentide abil. Lisaks on tõestatud, et
intraklass-korrelatsioonikordaja hinnang on vähima varieeruvusega tasakaaluliste
andmete korral.
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