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Abstract. The simple random one-way linear model and ANOVA estimatdithe intraclass
correlation coefficient are examined. New approximationtfe sampling variance of the
intraclass correlation coefficient is derived and its mimm corresponding to a balanced
data set, is established. The theoretical results are edewkth simulation experiments. In
addition, the effect of data set imbalance and structurdemctcuracy of intraclass correlation
coefficient estimators is studied by modelling.
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1. INTRODUCTION

The parameters calculated in genetical applications of mixed linear models
are usually different ratios of variance components, showing the piops of
variability of observations caused by specified factors. In generaetratios are
called intraclass correlation coefficients. Different linear combinationthede
coefficients are used in applications. For example, in genetic studies based
half-sib families, the intraclass correlation coefficient measures on¢equidithe
additive genetic contribution, called the heritability coefficient of the olexbtrait.
Several heritability coefficients used in population genetics are discus$éd],
for example.

In spite of a large number of applications, the estimation theory of the intraclass
correlation coefficient has many unsolved problems. Only few articlemvaitable
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about the accuracy of estimates and about the effect of data strudireover, all
these papers focus on balanced data designs only{4pe [n the present paper

we estimate the accuracy of the estimators of the intraclass correlation iemeffic

in unbalanced designs but assuming the simplest mixed linear model — theagne-w
random model. We also estimate the effect of data imbalance and structure on th
accuracy of the intraclass correlation coefficient. Theoretical resdtdlastrated

with statistical modelling.

2. THE MODEL AND THE ESTIMATES

In the following we use the matrix notation in terms of matrix blocks accepted,
e.g., in P°]. ForinstanceA = {4A;}!_, is anr x s block-diagonal matrix with
r; X 8; matricesA; on the main diagonal, = r;+ ... +r;ands = s;+ ... + s;.
Consider the mixed linear model

Yij = I+ ui + e (1)

or, in matrix notation,
y=1lyu+Zu+e,

wherey is the N x 1 vector of observed valueg; is the only fixed effect in
the model (the mean)/y = (1 ... 1)y andZ = {41,,}¢ , are known design
matrices of ordetNV x 1 and N x a, respectively, associating fixed and random
effects withy, v’ = (uy ... u,)’ is a vector of random effectg is an N x 1
vector of random residuals. The number of levels in a random factoiitraally
marked as:, and the number of objects per tith level in the one-way model is
denoted byn;.

The expectation and the variance-covariance structure are refae sesn

E(y) =p, Var(u)= aiIa, Var(e) = O'?IN, Cov(u,e') =0

and
V = Var(y) = {q02Jp, + 021, %4, (2)

wherel andJ denote the identity matrix and square matrix of ones, respectively.
It is assumed that the effects ande;; in the model (1) are independently and
normally distributed so that

ui ~ N(0,02), ejj~N(0,02), (i=1,2,..,a;5=1,2....n). (3)

It is well known that the sum of squares corresponding to the main edisdt
expressed as

SS(u) =y [{dJm/ni}?:1_JN/N}Y:Y/Qlyy (4)
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and the sum of squares corresponding to the error term and expeesse
SS(e) =y [In — {adn;/ni }ic] ¥y = ¥'Qay,

are statistically independent and ti$&t(¢) /o2 is Chi-squared distributed:
SS(e) /o2 ~ XX—a- (5)
If the data set is balanced, thatig,= n fori =1, ..., a, then it also holds that
SS(u)/(noy, + 02) ~ Xo1-

In the case of unbalanced data the last distribution is not true. Howevegted
in [7], the formulas derived in’| can be used to express the quadratic form (4) as a
linear combination of independent central Chi-squared variables obthe f

SS(u) =y'Qiy ~ D> AiX, (6)

i=1

wherelq, Ao, ..., Ag are the distinct nonzero eigenvalue<pfV with multiplicities
my,mo, ..., mg, respectively, and/ is the variance matrix of observed values
defined by Eq. (2). As the further operations with the mixture distribution (6)
are complicated, an approximation, based on Satterthwaite’s procefjuamad
presented in], is used in the form

D Ao, B A (7
=1
where )
O mN TS g
=1 17\ =1 17

The approximation is exact when the data set is balanced, that is,whem for
i=1,...,a["]

The ANOVA estimators of variance component$ and o2 are obtained by
equating the mean squares with their expected values and are expressed a

52 = 5 [MS(u) — MS(e)]

and
62 = MS(e),

whereMS(u) = SS(u)/(a — 1), MS(e) =SS(e)/(N — a), and

1 1 —
d:a_1<NN;nf>. 9)

245



The estimatorp of the intraclass correlation coefficiept which measures the
magnitude of random effects, is calculated as the ratio of variances:

. or MS(u) — MS(e)
P= 624+ 62 MS(u) + (d — 1)MS(e) (10)

3. THE ACCURACY OF THE ESTIMATED INTRACLASS
CORRELATION COEFFICIENT

There is no exact formula for the variance of the intraclass correlation
coefficient estimate even in the balanced case. Usually an approximateldormu
is used:
2(1+ (n = Dp]*(1 = p)*

nn—1)(a—1)
derived in [[°] using a first-order Taylor-series expansion of the equality (10) with

replacingd. In unbalanced data the approximation\atr(5) was published in'f!]
and has the following form:

Var(p) ~

2(N - 1)1 = p)*[1 + (d - 1)p]?

Var(p) ~ 2N = a)(a—1)

(11)

Derivation of this formula is based on an approximate formula for the vagiahc
the ratio of two random variables:

Var(y/x)
~ [E(y)/E(x))* { Var(y)/[E(y)]* + Var(z)/[E(z)]* — 2Cov(y, z/[E(y)E(z)]) } ,

applied to the estimate of the intraclass correlation coefficient expressaaykhr
sums of squares.

Next an alternative expression fdfar(p) is derived based on approxima-
tions (7) and on the first-order Taylor series expansion of the variahtbe
nonlinear function of parameter estimator of the form

Var[f ()] ~ [0f (w) /9] Var (i), (12)

where the derivative is evaluated at the mearty of

Theorem 1.In a one-way random model under the normality assumpt{@js
the variance of the intraclass correlation coefficient estimate can appeiely be
expressed as

L 2N —a)P(N —atm = 2)(1 - p)’ 13
T PN 027N —a— 4ol (13)

Var(p)

where m A, and d are defined by formul#8) and (9).
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Proof. Letw = MS(u)/MS(e). Then, on the basis of (10),

p=— = (). (14)
Following (5)—(7), we get thab is approximately distributed as follows:

mA
——FL N
(CL — 1)0_2 m,N—a>

N
~

whereF;, n_ is theF-distribution havingn and N —a degrees of freedom. Here,
depending on the context, denote both the distribution and random variable with
the F-distribution. Because of

Var(Fp n—a) = 2(N —a)* (N —a+m —2)/[m(N —a —2)*(N — a — 4)]
we have

(mA)?  2(N —a)*>(N —a+m —2)
(a—1)%26% m(N —a—2)%2(N —a—4)

Var(w) ~
From (14) it follows that

of (w) d

o (b+d—1)2

or, becaused = [1 + (d — 1)p]/(1 — p),

of(w) _ (1—p)°

ow d
and, based on the approximation (12),

1-p)*  (mN? 2N —a)®(N—a+m—2)

Var(p) > G20 m(N —a— 25N —a— 1)
2mA(N —a)* (N —a+m—2)(1—p)*
d*(a—1)2(N—a—2)%3(N —a—4)ct’
which completes the proof of Theorem 1. O

The real data analysis uses mainly the square root of the sampling variance
(sampling standard deviation) of a parameter estimate. The reason is tliardtan
deviations are easier to interpret and they are also the basis for theaceund
significance testing of the estimation procedures.
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4. A SIMULATION STUDY

We carried out a simulation study to investigate the accuracy of the derived
formula, applied in estimating the standard deviatigp) of the intraclass correla-
tion coefficient estimatg. The data sizeV = 360 was used as a typical number
in small practical experiments. A practical advantage of this sample size is that
it can be divided in different ways into smaller groups of equal size. nithmber
of groups,a, used in simulations, was taken 4, 20, and 90. Random effects were
generated by normal distributions (3). Without the loss of generality, sevaflu
o2 = 1 was used throughout the simulations. In generation of random effgcts
the intraclass correlation coefficiemtvas taken equal to 0.0125, 0.0625, 0.15, and
0.8. Small values op were chosen because only these have a real meaning in
most applications. One larger valye £ 0.8) was chosen to verify the accuracy
of the derived formula near the upper limit of intraclass correlation coeffic
values. To control the expressions ®fp) in the case of different data designs
D = {ny,na,...,n,.}, the measure of design imbalance introducedhip the

form
a ; 2
v(D)=1 /a ; (%)

was used. Hencd,/a < v(D) < 1, and the measure(D) attains its maximum
value 1 if and only if the desigb is balanced. The algorithm for generating designs
with a specified degree of imbalance proposed |ngp. 76—80, was realized in
SAS Interactive Matrix Language?d] and used to generate data sets with three
specified degrees of imbalance: = 0.3, 0.6, 0.9. Due to the very intensive
computer calculations, only 1000 simulations were made with each combination
of the values of the parametersp, andv. This modelling size provided an idea

of general tendencies. The parameters compared were (a) the exbstgmdard
deviationo (p) of the estimated intraclass correlation coefficient; (b) the predicted
standard deviationog (p|p) of the intraclass correlation coefficient estimate
calculated as the square root of the approximation (11); (c) the predizrdard
deviationok (p|p) of the intraclass correlation coefficient estimate calculated as the
square root of the approximation (13); (d) the estimated standard deveati@n)

of the intraclass correlation coefficient estimate calculated as the squad the
approximation (11) withp substituted forp; (e) the estimated standard deviation
ok (p|p) of the intraclass correlation coefficient estimate calculated as the square
root of the approximation (13) with substituted fop. The simulation results are
presented in Table 1.

The results in Table 1 show that in the case of small valueg, dfoth the
approximations (11) and (13) give quite similar results that seem to be edbias
For large intraclass correlation coefficients the formula (10) underestniaeeal
values ofp. The estimat@ s (5|5) based on the expression (11), and the estimate
ok (p|p) based on the expression (13), underestineete®) when the number of
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groups is small and the intraclass correlation coefficient is large. Therelifte
from simulated values is smaller by using the expression (13).

Table 1. The observed, predicted, and estimated standard dewsatibrthe intraclass
correlation coefficient estimaig for different p values, data set imbalancesand numbers
of groupsa. The data sizéV = 360 and residual variance? = 1 were kept constant.

p Tvial BG) o) ] os(lo)] 6sGla)T o Glp)'] ox (o)

0.0125 0.3 4| 0.0147 0.0468 0.0460 0.0459 0.0471 0.0531
20 0.0122 0.0249 0.0257 0.0261 0.0254 0.0264

90 0.0133 0.0459 0.0517 0.0459 0.0460 0.0466

0.6 4 0.0118 0.0209 0.0210 0.0201 0.0221 0.0221

20 0.0129 0.0225 0.0286 0.0240 0.0234 0.0239

90 0.0140 0.0471 0.0446 0.0444 0.0451 0.0453

09 4 0.0116 0.0183 0.0193 0.0183 0.0196 0.0188

20 0.0118 0.0214 0.0371 0.0232 0.0225 0.0222

90 0.0139 0.0449 0.0485 0.0529 0.0449 0.0448

0.0625 0.3 4| 0.0587 0.0794 0.0806 0.0730 0.0897 0.0849
20 0.0608 0.0418 0.0381 0.0371 0.0451 0.0442

90 0.0631 0.0496 0.0636 0.0597 0.0511 0.0514

0.6 4 0.0585 0.0592 0.0580 0.0523 0.0653 0.0591

20 0.0620 0.0378 0.0616 0.0627 0.0397 0.0389

a0 0.0602 0.0491 0.0579 0.0600 0.0494 0.0491

09 4 0.0620 0.0543 0.0563 0.0536 0.0582 0.0554

20 0.0641 0.0361 0.0780 0.0739 0.0373 0.0371

90 0.0607 0.0479 0.0906 0.0855 0.0488 0.0484

0.15 0.3 4| 0.1231 0.1210 0.1312 0.1054 0.1563 0.1250
20 0.1453 0.0706 0.0628 0.0598 0.0777 0.0739

90 0.1448 0.0585 0.0740 0.0715 0.0606 0.0597

0.6 4 0.1377 0.1097 0.1126 0.0959 0.1309 0.1113

20 0.1477 0.0613 0.0777 0.0750 0.0639 0.0620

a0 0.1462 0.0549 0.0825 0.0805 0.0561 0.0555

09 4 0.1364 0.0979 0.1114 0.0959 0.1156 0.0994

20 0.1472 0.0594 0.0882 0.0841 0.0639 0.0619

90 0.1490 0.0528 0.0816 0.0821 0.0543 0.0539

0.8 0.3 4| 0.6614 0.2230 0.1407 0.1555 0.1691 0.1879
20 0.7728 0.0821 0.0765 0.1010 0.0844 0.0894

90 0.7950 0.0406 0.0598 0.0589 0.0442 0.0446

0.6 4 0.6903 0.2034 0.1395 0.1496 0.1554 0.1685

20 0.7770 0.0640 0.1722 0.1703 0.0657 0.0697

90 0.7945 0.0332 0.0572 0.0612 0.0350 0.0355

09 4 0.7042 0.1922 0.1433 0.1534 0.1370 0.1476

20 0.7823 0.0640 0.4972 0.5041 0.0944 0.0991

90 0.7965 0.0309 0.0294 0.0297 0.0308 0.0311

* Observed standard deviatioa$s) were found from 1000 replicated samples.

t Predicted standard deviatioos (5|p) andox (5|p) were calculated as square roots of

formulas (11) and (13), respectively.

1 Estimated standard deviatiofig (5|5) andc x (5|p) were calculated as square roots of
formulas (11) and (13), respectively, witlsubstituted fop.
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5. THE EFFECT OF DATA IMBALANCE

In the following it is proved thaVar(5) expressed by (13) attains its minimum
if and only if the data set is balanced.

Theorem 2. For fixed values of N, ag2, and o2, Var(p) attains a minimum if and
only if the data set is balanced.

Proof. Rewrite the expression (13) in the form

A(N—a—2 A)? 2(N —a)?(1 - p)*
Var(p) ~ |[PEW Za=2) | (mA? ] AN -aPU-p)!

d?(a—1) d?>(a—1)?] (N—a—2)*2(N —a—4)o}
(15)
where only the first part depends on the design. From formulas (8peneral
properties of eigenvalues we have

m\ = imi)\i =tr(QiV), mA\? = im@)\f = tr [(QlV)Q] . (16)

i=1 i=1

From formula (4) we have

tr(Q1V) = (N——Zn> +(a—1)o?
As we also have the expression tbof the form (9), we can write
tr(Q1V) = (a — 1)(0? + doy),
from which it follows that

_t(@QiV) e 1
sy L@V -l @D

S o02(a—1) o2  o2(a—

From the expressions (16) and (17) we have for the first addend squere
brackets of (15) that

m)\2(N—a—2) B aﬁ(N—a—2)tr[(Q1V)2]
Ela=1)2 [r(QiV) — (a— 1o
iy TV (a=1)02]
= 2) [tr(Q,V)]? [1 tr(QlV)] '

Here the first term does not depend on design. The second term hasiiteumin
value equal to the reciprocal of the rank@f, which is equal ta: — 1, if and only
if n; = n forall i (['*], p. 303). For the third term we have

P Gt 4 B PR, -0 I SUL A
tr(Q1V) - 02 + do? B do? )’
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which has its minimum, equal td + o2 /no2)?, if and only if n; = n for all ,
becausel is at its maximum, namely = n, if and only if n, = n for all 4.
Similarly, we have for the second addend in the square brackets of éit5) th

O G 1 (A Y (R A

- 2 2
doz do?

Pla—-1?2  [tr(QiV)]?

The last expression here has its minimuaff{1 + o2 /no?2)? if and only if n; = n
for all 7. We therefore conclude thatar(p) is at its minimum, which is given by

the formula
4 2\ 2 2\ 2
0y,(N —a—2) logs 4 lops
1 1
[ (a—1) + no? toultt no?

AN — (1~ p)*
“IN—a—22(N —a—4)o?

%

Var(p)

2(02 +nop)*(1 - p)"(N — a)*(N - 3)

u

oin?(a—1)(N —a—2)2(N —a—4)

_ 21+ (n = DpP(1 — p)*(N — a)*(N —3)
= n2(a—1)(N —a—2)2(N —a —4) ) (18)

if and only if the data set is balanced. This completes the proof of Theorerii2

Note that the minimum oWar(p) expressed by (18) and corresponding to
balanced data has the same form as approximiéie(p) derived in [°] assuming
balanced data.

To visualize the effect of data imbalance on the accuracy of the estimated
intraclass correlation coefficient, modelling experiments were used. S$thnda
deviations of the intraclass correlation coefficient estimate were calculgted b
formula (13) in the case of different combinations of data imbalance andliassa
correlation coefficients. Since there are different data designsspameing to
a given imbalance, on an average five designs were generated witspaified
v(D) value, and the average valuex(fp) was used to characterize the effect of the
corresponding imbalance. Figure 1 shows the dependence of therstdrgmtion
of the estimated intraclass correlation coefficient@d) and onp, keeping the
data sizeV = 360, number of groups = 20, and error variance? = 1.

The modelling results show that even a quite notable increase in data imbalance
does practically not reduce the accuracy of the intraclass correlatiffictent
estimate. Yet, in case of very imbalanced data, the standard deviajionarkases
quickly with imbalance. In modelling experiments with other numbers of groups
(not shown here) the influence of data imbalance on the accuracy oflagsa
correlation coefficient estimators was stronger at a small number of grdtis
also observed that in case of very unbalanced design the accuraayecfeases
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Fig. 1. The pattern ofo (p) in different data set imbalances and true intraclass cioel
coefficient values foV = 360, a = 20, o2 = 1. Note that they-axis is directed downward.

more drastically at small values of the intraclass correlation coefficientnidss
imprecise estimates were obtained for average valugs of

6. OPTIMAL DESIGN

The number of objects per group, which minimizes the sampling variancg of
is derived in [9] for balanced designs, considering the group sizs a continuous
argument and studying the derivatives of the expressiéfofs2). The minimum
Var(62), and alsas(62), is obtained by considering

N(r+1)+1

"= N1+ 2

observations per group, where= aﬁ/az. Modelling experiments with different
data sizes, numbers of groups, and values of the intraclass correlagfiitient
showed that the same group sizes guarantee the smallest valiaeg@fando (p).
Figure 2 shows the pattern af(5), calculated as the square root of the
expression (18), and optimum number of observations per groupd floum fixed

252



ll""""""

N

; illlllllllllldiiliiﬁ {!!H)\m}Hlmlﬂlﬂllmn.. =,

Fig. 2. The pattern ofr () and the optimal number of observations per group (verticalis
for integer numbers and dotted line on thg-plane for continuous numbers) in different true
intraclass correlation coefficient value¥ (= 360, o2 = 1). Note that they-axis is directed
downward.

data sizeN = 360 in the case of different group sizes and intraclass correlation
coefficient values. Based on Fig. 2 and on the results presented in Tatile
following conclusions were made: (1) the effect of data design is the smalles
when the values of the intraclass correlation coefficient are close to iteetiezd
limits; (2) a small number of groups, even with a large number of observations
may cause dramatic loss of accuracy, except in the case of small valpedrof
case of the latter (usual in, for example, genetic studies) a very small mwhbe
observations per group should be avoided.
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Uus lahend dispersioonanaltitsiga hinnatud
intraklass-korrelatsioonikordaja varieeruvusele

Tanel Kaart

On tuletatud valem populatsioonigeneetilistes uuringutes rakendatava peamise
parameetri — intraklass-korrelatsioonikordaja — hinnangu dispersemoniami-
seks juhuslike méjudega uhefaktorilisel dispersioonanaliitsil. Tuletatiedniva
digsust ja intraklass-korrelatsioonikordaja hinnangu tépsuse soéltanbhete
struktuurist on uuritud modelleerimiseksperimentide abil. Lisaks on tbestatud, e
intraklass-korrelatsioonikordaja hinnang on vahima varieeruvusegkatasiliste
andmete korral.
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