Properties of 2-dimensional time-like ruled surfaces in the Minkowski space $\mathbb{R}_{1}^{\boldsymbol{n}}$

Murat Tosun ${ }^{\text {a }}$, Ismail Aydemir ${ }^{\text {b }}$, and Nuri Kuruoglu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Arts and Science, Sakarya University, 54187 Sakarya, Turkey; tosun@sakarya.edu.tr
${ }^{\text {b }}$ Department of Mathematics, Faculty of Arts and Science, Ondokuz Mayis University, Samsun, Turkey

Received 21 February 2005, in revised form 23 September 2005

Abstract

Some results, which are well known for the ruled surfaces in the Euclidean space \mathbb{R}^{n}, are generalized here to the case of \mathbb{R}_{1}^{n}. In particular, it is shown that a time-like ruled surface in \mathbb{R}_{1}^{n} is developable if and only if it has zero Gaussian curvature; moreover, it is then minimal if and only if it is totally geodesic.

Key words: ruled surfaces, Minkowski spaces.

1. INTRODUCTION

We shall assume throughout the paper that all manifolds, maps, vector fields, etc. are differentiable of class C^{∞}. First of all, we give some properties of a general submanifold M of the Minkowski n-space \mathbb{R}_{1}^{n}. Suppose that \bar{D} is the Levi-Civita connection of \mathbb{R}_{1}^{n} and D is the Levi-Civita connection of M. Then, if X, Y are the vector fields of M and if V is the second fundamental tensor of M, we may decompose $\bar{D}_{X} Y$ into a tangential and a normal component:

$$
\begin{equation*}
\bar{D}_{X} Y=D_{X} Y+V(X, Y) \tag{1}
\end{equation*}
$$

Equation (1) is called Gauss equation [${ }^{1}$]. If ξ is any normal vector field on M, we find the Weingarten equation by decomposing $\bar{D}_{X} \xi$ into a tangential and a normal component:

$$
\begin{equation*}
\bar{D}_{X} \xi=-A_{\xi}(X)+D_{X}^{\perp} \xi \tag{2}
\end{equation*}
$$

where A_{ξ} determines at each point a self-adjoint linear map and D^{\perp} is a metric connection in the normal bundle $\chi^{\perp}(M)$. We use the same notation A_{ξ} for the linear map and the matrix of the linear map [${ }^{2}$].

A normal vector field ξ is called parallel in the normal bundle $\chi^{\perp}(M)$ if $D_{X}^{\perp} \xi=0$ for each vector field X. If η is a normal unit vector at the point $p \in M$, then

$$
G(p, \eta)=\operatorname{det} A_{\eta}
$$

is the Lipschitz-Killing curvature of M at p in the direction $\eta\left[{ }^{3}\right]$.
Let V be the second fundamental tensor of M. If

$$
V(X, X)=0
$$

for X in the tangent bundle $\chi(M)$, then X is called an asymptotic vector field on M. If

$$
V(X, Y)=0
$$

for all $X, Y \in \chi(M)$, then M is totally geodesic [$\left.{ }^{4}\right]$.
Suppose that $X, Y \in \chi(M)$, while $\xi \in \chi^{\perp}(M)$. If the standard metric tensor of \mathbb{R}_{1}^{n} is denoted by \langle,$\rangle , then we have$

$$
<\bar{D}_{X} Y, \xi>=<V(X, Y), \xi>
$$

and

$$
<\bar{D}_{X} Y, \xi>=<A_{\xi}(X), Y>
$$

From the above equations we obtain

$$
<V(X, Y), \xi>=<A_{\xi}(X), Y>
$$

If $\xi_{1}, \xi_{2}, \ldots, \xi_{n-2}$ constitute an orthonormal base field of the normal bundle $\chi^{\perp}(M)$, then we set

$$
<V(X, Y), \xi_{j}>=V_{j}(X, Y)
$$

or

$$
V(X, Y)=\sum_{j=1}^{n-2} V_{j}(X, Y) \xi_{j}
$$

The mean curvature vector H of M at the point p is given by

$$
H=\sum_{j=1}^{n-2} \frac{\operatorname{tr} A_{\xi_{j}}}{2} \xi_{j}
$$

Here $\|H\|$ is the mean curvature. If $H=0$ at each point p of M, then M is said to be minimal [${ }^{5}$].

2. TWO-DIMENSIONAL TIME-LIKE RULED SURFACE IN $\mathbb{R}_{1}^{\boldsymbol{n}}$

A time-like ruled surface M in \mathbb{R}_{1}^{n} is generated by time-like line l with unit direction time-like vector $e(s)$ along a space-like curve α. For this ruled surface

$$
\psi(s, v)=\alpha(s)+v e(s)
$$

is a parameterization. Throughout this paper, α is supposed to be an orthogonal trajectory of the generators.

Let $\left\{e, e_{1}\right\}$ be an orthonormal base field of $\chi(M)$, so that

$$
\begin{equation*}
\langle e, e\rangle=-1, \quad\left\langle e_{1}, e_{1}\right\rangle=1, \quad\left\langle e, e_{1}\right\rangle=0 \tag{3}
\end{equation*}
$$

Let us denote the Levi-Civita connection of the Minkowski space \mathbb{R}_{1}^{n} by \bar{D}. Because the lines in \mathbb{R}_{1}^{n} are geodesics, we have

$$
\begin{equation*}
\bar{D}_{e} e=0 . \tag{4}
\end{equation*}
$$

If we substitute this equation into Eq. (1), we get

$$
V(e, e)=0
$$

Considering Eq. (3), we can easily see that $\bar{D}_{e} e_{1} \perp e$ and $\bar{D}_{e} e_{1} \perp e_{1}$. This implies $\bar{D}_{e} e_{1} \in \chi^{\perp}(M)$. Therefore,

$$
\begin{equation*}
\bar{D}_{e} e_{1}=V\left(e, e_{1}\right) \tag{5}
\end{equation*}
$$

Let $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n-2}\right\}$ be vector fields, which constitute an orthonormal base $T_{M}{ }^{\perp}(p)$. Then $\left\{e_{1}, e_{2}, \xi_{1}, \xi_{2}, \ldots, \xi_{n-2}\right\}$ is a base of $T_{\mathbb{R}_{1}^{n}}(p)$ at $p \in \mathbb{R}_{1}^{n}$. Together with (2) we can write

$$
\begin{align*}
& \bar{D}_{e} \xi_{j}=a_{11}^{j} e+a_{12}^{j} e_{1}+\sum_{i=1}^{n-2} b_{1 i}^{j} \xi_{i}, \quad 1 \leq j \leq n-2 \tag{6}\\
& \bar{D}_{e_{1}} \xi_{j}=a_{21}^{j} e+a_{22}^{j} e_{1}+\sum_{i=1}^{n-2} b_{2 i}^{j} \xi_{i}, \quad 1 \leq j \leq n-2
\end{align*}
$$

Comparing Eqs. (6) with Eq. (4) leads us to

$$
a_{21}^{j}=-a_{12}^{j}, \quad a_{11}^{j}=0, \quad 1 \leq j \leq n-2 .
$$

Moreover, we find

$$
A_{\xi_{j}}=\left[\begin{array}{cc}
0 & a_{12}^{j} \\
-a_{12}^{j} & a_{22}^{j}
\end{array}\right] .
$$

The matrix $A_{\xi_{j}}$ corresponds to the shape operator of M and $A_{\xi_{j}}$ is a symmetric matrix in the sense of Lorentz.

The Lipschitz-Killing curvature at $p \in M$ in the direction of ξ_{j} is given by

$$
\begin{equation*}
G\left(p, \xi_{j}\right)=-\left(a_{12}^{j}\right)^{2} \tag{7}
\end{equation*}
$$

If we use Eqs. (6), we see

$$
\begin{equation*}
a_{12}^{j}=\left\langle\bar{D}_{e} \xi_{j}, e_{1}\right\rangle=-\left\langle\xi_{j}, \bar{D}_{e} e_{1}\right\rangle \tag{8}
\end{equation*}
$$

and from (5) and with (8) we get

$$
\begin{equation*}
\bar{D}_{e} e_{1}=V\left(e, e_{1}\right)=\sum_{j=1}^{n-2}\left\langle\xi_{j}, \bar{D}_{e} e_{1}\right\rangle \xi_{j}=-\sum_{j=1}^{n-2} a_{12}^{j} \xi_{j} \tag{9}
\end{equation*}
$$

In addition, the Gaussian curvature of M denoted by G is expressed by (see [${ }^{6}$])

$$
G=-\left\langle\bar{D}_{e} e_{1}, \bar{D}_{e} e_{1}\right\rangle
$$

With the elements of $A_{\xi_{j}}$, the Gaussian curvature of M is

$$
\begin{equation*}
G=-\sum_{j=1}^{n-2}\left(a_{12}^{j}\right)^{2} . \tag{10}
\end{equation*}
$$

Hence, from Eqs. (7) and (10) we obtain

$$
\begin{equation*}
G(p)=\sum_{j=1}^{n-2} G\left(p, \xi_{j}\right), \quad p \in M \tag{11}
\end{equation*}
$$

Moreover, if the Lipschitz-Killing curvature $G\left(p, \xi_{j}\right)$ is equal to zero at $p \in M$ for each $j, 1 \leq j \leq n-2$, then Gaussian curvature $G(p)$ will be zero. This shows that M is an intrinsically developable surface, i.e., locally isometric to open sets of Minkowski plane. Conversely, if M is intrinsically developable, then $G\left(p, \xi_{j}\right)$ is equal to zero at $p \in M$ for each $j, 1 \leq j \leq n-2$. Therefore, one may say that M is intrinsically developable if and only if the LipschitzKilling curvature is zero at each point [${ }^{6}$].

In [${ }^{6}$] it is shown that the mean curvature vector H of the time-like ruled surface M is

$$
H=\frac{1}{2} V\left(e_{1}, e_{1}\right)
$$

Theorem 1. Let M be a 2-dimensional time-like ruled surface in \mathbb{R}_{1}^{n}. Then the generators of M are asymptotic and geodesic of M.

Proof. Since the generators are the geodesics of \mathbb{R}_{1}^{n}, we write

$$
\bar{D}_{e} e=0 .
$$

If we set this into the Gauss equation, we find

$$
D_{e} e+V(e, e)=0 \text { or } D_{e} e=-V(e, e)
$$

Since $D_{e} e \in \chi(M)$ and $V(e, e) \in \chi^{\perp}(M)$ we reach $D_{e} e=0$ and $V(e, e)=0$. This completes the proof of the theorem.

Definition 1. Let M be a 2-dimensional time-like ruled surface in \mathbb{R}_{1}^{n}. If the tangent planes of M are constant along the generators of M, then M is called developable [${ }^{7}$].

Theorem 2. Let M be a 2-dimensional time-like ruled surface in \mathbb{R}_{1}^{n}. Then M is developable and minimal if and only if M is totally geodesic.

Proof. Assume that M is developable and minimal. If we have $X=a e+b e_{1}$ and $Y=c e+d e_{1}$ in $\chi(M)$, then

$$
V(X, Y)=a c V(e, e)+(a d+b c) V\left(e, e_{1}\right)+b d V\left(e_{1}, e_{1}\right)
$$

Since the lines in \mathbb{R}_{1}^{n} are geodesic and M is minimal, we find that $V(e, e)=V\left(e_{1}, e_{1}\right)=0$. Moreover, $\bar{D}_{e} e_{1}$ is equal to zero since M is developable. From Eq. (5) we get

$$
V\left(e, e_{1}\right)=0
$$

Hence, we have $V(X, Y)=0$ for all $X, Y \in \chi(M)$. This means that M is totally geodesic.

Conversely, assume that $V(X, Y)=0$ for all $X, Y \in \chi(M)$. Therefore we have the relations

$$
V(e, e)=0, \quad V\left(e_{1}, e_{1}\right)=0, \quad V\left(e, e_{1}\right)=0
$$

By using these equations and Eq. (9) we find $\bar{D}_{e} e_{1}=0$. This shows that M is totally developable. Moreover, $V\left(e_{1}, e_{1}\right)=0$ implies that $H=0$. This means that M is minimal.

3. SOME CHARACTERIZATIONS FOR 2-DIMENSIONAL TIMELIKE RULED DEVELOPABLE SURFACES

IN THE MINKOWSKI SPACE \mathbb{R}_{1}^{n}

Let $\left\{e, e_{1}\right\}$ be an orthonormal basis of $\chi(M)$, as above, and $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n-2}\right\}$ be an orthonormal basis of $\chi^{\perp}(M)$. We give covariant derivative equations of the orthonormal basis $\left\{e_{1}, e_{2}, \xi_{1}, \xi_{2}, \ldots, \xi_{n-2}\right\}$ of $\chi\left(\mathbb{R}_{1}^{n}\right)$ as follows:

$$
\begin{align*}
& \bar{D}_{e_{1}} e=c_{11} e+c_{12} e_{1}+c_{13} \xi_{1}+\ldots+c_{1 n} \xi_{n-2} \\
& \bar{D}_{e_{1}} e_{1}=c_{21} e+c_{22} e_{1}+c_{23} \xi_{1}+\ldots+c_{2 n} \xi_{n-2} \\
& \bar{D}_{e_{1}} \xi_{1}=c_{31} e+c_{32} e_{1}+c_{33} \xi_{1}+\ldots+c_{3 n} \xi_{n-2} \tag{12}\\
& \vdots \\
& \bar{D}_{e_{1}} \xi_{n-2}=c_{n 1} e+c_{n 2} e_{1}+c_{n 3} \xi_{1}+\ldots+c_{n n} \xi_{n-2}
\end{align*}
$$

If we calculate the coefficient $c_{s t}, 1 \leq s, t \leq n$, and write Eqs. (12) in the matrix form, we obtain

$$
\left[\begin{array}{l}
\bar{D}_{e_{1}} e \\
\bar{D}_{e_{1}} e^{1} \\
\bar{D}_{e_{1}} \xi_{1} \\
\vdots \\
\bar{D}_{e_{1}} \xi_{n-2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & c_{12} & c_{13} & \cdots \\
c_{1 n} \\
c_{12} & 0 & c_{23} & \cdots \\
c_{2 n} \\
c_{13} & -c_{23} & 0 & \cdots \\
\vdots & & & \\
3 n \\
c_{1 n} & -c_{2 n} & -c_{3 n} & \cdots
\end{array}\right]\left[\begin{array}{c}
e \\
e_{1} \\
\xi_{1} \\
\vdots \\
\xi_{n-2}
\end{array}\right] .
$$

By using Eq. (13) we can prove the following theorem.
Theorem 3. Let M be a 2-dimensional time-like ruled surface in \mathbb{R}_{1}^{n}, and $\left\{e, e_{1}\right\}$ be an orthonormal base field of the tangential bundle $\chi(M)$, as above. In this case, the following propositions are equivalent:
(i) $\quad M$ is developable,
(ii) the Lipschitz-Killing curvature $G\left(p, \xi_{j}\right), 1 \leq j \leq n-2$, is equal to zero,
(iii) the Gaussian curvature G is equal to zero,
(iv) in Eq. (13), $c_{2 k}, 3 \leq k \leq n$, is equal to zero,
(v) $A_{\xi_{i}}(e)$ is equal to zero,
(vi) $\quad \bar{D}_{e} e_{1}$ is an element of $\chi(M)$.

Proof. (i) \Rightarrow (ii): Assume that M is developable, i.e., $\bar{D}_{e} e_{1}=0$. Equation (7) says that the Lipschitz-Killing curvature at the point p in the direction of ξ_{j} is given by

$$
\begin{equation*}
G\left(p, \xi_{j}\right)=-\left(a_{12}^{j}(p)\right)^{2}, \quad 1 \leq j \leq n-2 . \tag{14}
\end{equation*}
$$

Due to $\bar{D}_{e} e_{1}=0$ and from Eq. (9)

$$
\begin{equation*}
\bar{D}_{e} e_{1}=-\sum_{j=1}^{n-2}\left(a_{12}^{j}\right) \xi_{j}=0 . \tag{15}
\end{equation*}
$$

Considering Eqs. (14) and (15) yields

$$
G\left(p, \xi_{j}\right)=0, \quad 1 \leq j \leq n-2 .
$$

(ii) \Rightarrow (iii): This follows directly from Eq. (11), as shown above.
(iii) \Rightarrow (iv): Assume that $G=0, \quad \forall p \in M$. From Eq. (10) we have $a_{12}^{j}=0$, $1 \leq j \leq n-2$. Since $a_{21}^{j}=-a_{12}^{j}$ in (6), also $a_{12}^{j}=0$. This means that $\bar{D}_{e_{1}} \xi_{j}$ has no component in the direction e. Hence, we see that $c_{2 k}=0,3 \leq k \leq n$, in Eqs. (12), due to (13).
(iv) \Rightarrow (v): Suppose that $c_{2 k}=0, \quad 3 \leq k \leq n$, in Eqs. (12). This shows that $\bar{D}_{e} \xi_{j}$ has no component in the direction e. Thus we have $a_{12}^{j}=0,1 \leq j \leq n-2$, in Eqs. (6).

Moreover, using Weingarten equation (2), we write

$$
A_{\xi_{j}}(e)=0, \quad 1 \leq j \leq n-2,
$$

since $a_{11}^{j}=-\left\langle\bar{D}_{e} \xi_{j}, e\right\rangle=\left\langle\xi_{j}, \bar{D}_{e} e\right\rangle=0$.
(v) $\Rightarrow(\mathrm{vi})$: Let $A_{\xi,}(e)$ be equal to zero. Then, from Weingarten equation (2) we have $a_{11}^{j_{j}}=0, a_{12}^{j}=0,1 \leq j \leq n-2$. Since $\left\langle e, \xi_{j}\right\rangle=0 \quad$ implies $\left\langle\bar{D}_{e} e_{1}, \xi_{j}\right\rangle=\left\langle e, \bar{D}_{e_{1}} \xi_{j}\right\rangle=-a_{12}^{j}$, we find

$$
\left\langle\bar{D}_{e} e_{1}, \xi_{j}\right\rangle=0
$$

From this equation we get
(vi) \Rightarrow (i): Let $\bar{D}_{e} e_{1}$ be an element of $\chi(M)$. Then $\left\langle\bar{D}_{e} e_{1}, \xi_{j}\right\rangle$ will be equal to $-a_{12}^{j}, \quad 1 \leq j \leq n-2$, which is again equal to zero. On the other hand, $\left\langle e_{1}, e_{1}\right\rangle=1$ implies that $\left\langle\bar{D}_{e} e_{1}, e_{1}\right\rangle=0$ and $\left\langle e_{1}, e\right\rangle=0$ implies that $\left\langle\bar{D}_{e} e_{1}, e\right\rangle=0$. Thus $\bar{D}_{e} e_{1} \in \chi^{\perp}(M)$.

Using Eq. (9), we get that $\bar{D}_{e} e_{1}=0$, since $a_{12}^{j}, 1 \leq j \leq n-2$, is equal to zero. This means that the tangent planes of M are constant along the generator e of M, i.e., M is developable. This finishes the proof.

REFERENCES

1. Beem, J. K., Ehrlich, P. E. and Easley, K. L. Global Lorentzian Geometry, 2nd edition. Marcel Dekker, New York, 1996.
2. Chen, B. Y. Geometry of Submanifolds. Marcel Dekker, New York, 1973.
3. Houh, C. Surfaces with maximal Lipschitz-Killing curvature in the direction of mean curvature vector. Proc. Amer. Math. Soc., 1972, 35, 537-542.
4. Thas, C. Properties of ruled surfaces in the Euclidean space E^{n}. Acad. Sinica, 1978, 6, 133-142.
5. Thas, C. Een (lokale) studie van de ($m+1$)-dimensionale varieteiten, van de n-dimensionale euklidische ruimte $R^{n}\left(n^{3} 2 m+1\right.$ en $\left.m^{3} 1\right)$, beschreven door een eendimensionale familie van m-dimensionale lineaire ruimten. Palais Der Akademien-Herttogsstraat, I Brüssel, 1974.
6. Tosun, M. and Aydemir, I. On 2-dimensional time-like ruled surfaces in the Minkowski space R_{1}^{n}. Bull. Pure Appl. Sci., 1998, 17E, 247-256.
7. O’Neill, B. Semi-Riemannian Geometry. Academic Press, New York, 1983.

Ajasarnaste kahemõõtmeliste joonpindade omadusi Minkowski ruumis \mathbb{R}_{1}^{n}

Murat Tosun, Ismail Aydemir ja Nuri Kuruoglu

Mõned tulemused, mis on hästi tuntud joonpindade puhul eukleidilises ruumis \mathbb{R}^{n}, on üldistatud siin ruumi \mathbb{R}_{1}^{n} juhule. Nii on tõestatud, et ajasarnasel joonpinnal ruumis \mathbb{R}_{1}^{n} on puutujatasand piki iga moodustajat konstantne siis ja ainult siis, kui Gaussi kõverus on null; lisaks sellele on taoline joonpind minimaalne siis ja ainult siis, kui ta on täielikult geodeetiline.

