Properties of 2-dimensional time-like ruled surfaces in the Minkowski space \mathbb{R}_1^n

Murat Tosun^a, Ismail Aydemir^b, and Nuri Kuruoglu^b

Received 21 February 2005, in revised form 23 September 2005

Abstract. Some results, which are well known for the ruled surfaces in the Euclidean space \mathbb{R}^n , are generalized here to the case of \mathbb{R}^n_1 . In particular, it is shown that a time-like ruled surface in \mathbb{R}^n_1 is developable if and only if it has zero Gaussian curvature; moreover, it is then minimal if and only if it is totally geodesic.

Key words: ruled surfaces, Minkowski spaces.

1. INTRODUCTION

We shall assume throughout the paper that all manifolds, maps, vector fields, etc. are differentiable of class C^{∞} . First of all, we give some properties of a general submanifold M of the Minkowski n-space \mathbb{R}^n_1 . Suppose that \overline{D} is the Levi-Civita connection of \mathbb{R}^n_1 and D is the Levi-Civita connection of M. Then, if X,Y are the vector fields of M and if V is the second fundamental tensor of M, we may decompose $\overline{D}_X Y$ into a tangential and a normal component:

$$\overline{D}_X Y = D_X Y + V(X, Y). \tag{1}$$

Equation (1) is called Gauss equation [1]. If ξ is any normal vector field on M, we find the Weingarten equation by decomposing $\overline{D}_X \xi$ into a tangential and a normal component:

$$\overline{D}_X \xi = -A_{\xi}(X) + D_X^{\perp} \xi, \tag{2}$$

^a Department of Mathematics, Faculty of Arts and Science, Sakarya University, 54187 Sakarya, Turkey; tosun@sakarya.edu.tr

b Department of Mathematics, Faculty of Arts and Science, Ondokuz Mayis University, Samsun, Turkey

where A_{ξ} determines at each point a self-adjoint linear map and D^{\perp} is a metric connection in the normal bundle $\chi^{\perp}(M)$. We use the same notation A_{ξ} for the linear map and the matrix of the linear map [²].

A normal vector field ξ is called parallel in the normal bundle $\chi^{\perp}(M)$ if $D_X^{\perp}\xi=0$ for each vector field X. If η is a normal unit vector at the point $p \in M$, then

$$G(p, \eta) = \det A_n$$

is the Lipschitz-Killing curvature of M at p in the direction η [3].

Let V be the second fundamental tensor of M. If

$$V(X,X)=0$$

for X in the tangent bundle $\chi(M)$, then X is called an asymptotic vector field on M. If

$$V(X,Y) = 0$$

for all $X, Y \in \chi(M)$, then M is totally geodesic [⁴].

Suppose that $X, Y \in \chi(M)$, while $\xi \in \chi^{\perp}(M)$. If the standard metric tensor of \mathbb{R}^n_1 is denoted by \langle , \rangle , then we have

$$<\overline{D}_{X}Y, \xi> = < V(X,Y), \xi>$$

and

$$<\!\overline{D}_{X}Y,\xi>\!=\!<\!A_{\xi}(X),Y>.$$

From the above equations we obtain

$$< V(X,Y), \xi > \; = \; < A_{\xi}(X), Y > .$$

If $\xi_1, \xi_2, ..., \xi_{n-2}$ constitute an orthonormal base field of the normal bundle $\chi^{\perp}(M)$, then we set

$$\langle V(X,Y), \xi_j \rangle = V_j(X,Y)$$

or

$$V(X,Y) = \sum_{j=1}^{n-2} V_j(X,Y) \xi_j.$$

The mean curvature vector H of M at the point p is given by

$$H = \sum_{i=1}^{n-2} \frac{\operatorname{tr} A_{\xi_j}}{2} \xi_j.$$

Here ||H|| is the mean curvature. If H = 0 at each point p of M, then M is said to be minimal [5].

2. TWO-DIMENSIONAL TIME-LIKE RULED SURFACE IN \mathbb{R}^n_1

A time-like ruled surface M in \mathbb{R}^n_1 is generated by time-like line l with unit direction time-like vector e(s) along a space-like curve α . For this ruled surface

$$\psi(s, v) = \alpha(s) + ve(s)$$

is a parameterization. Throughout this paper, α is supposed to be an orthogonal trajectory of the generators.

Let $\{e, e_1\}$ be an orthonormal base field of $\chi(M)$, so that

$$\langle e, e \rangle = -1, \quad \langle e_1, e_1 \rangle = 1, \quad \langle e, e_1 \rangle = 0.$$
 (3)

Let us denote the Levi-Civita connection of the Minkowski space \mathbb{R}_1^n by \overline{D} . Because the lines in \mathbb{R}_1^n are geodesics, we have

$$\overline{D}_{\cdot}e = 0. \tag{4}$$

If we substitute this equation into Eq. (1), we get

$$V(e, e) = 0.$$

Considering Eq. (3), we can easily see that $\overline{D}_e e_1 \perp e$ and $\overline{D}_e e_1 \perp e_1$. This implies $\overline{D}_e e_1 \in \chi^{\perp}(M)$. Therefore,

$$\overline{D}_{e}e_{1} = V(e, e_{1}). \tag{5}$$

Let $\{\xi_1, \xi_2, ..., \xi_{n-2}\}$ be vector fields, which constitute an orthonormal base $T_M^{\perp}(p)$. Then $\{e_1, e_2, \xi_1, \xi_2, ..., \xi_{n-2}\}$ is a base of $T_{\mathbb{R}^n_1}(p)$ at $p \in \mathbb{R}^n_1$. Together with (2) we can write

$$\begin{split} \overline{D}_{e}\xi_{j} &= a_{11}^{j}e + a_{12}^{j}e_{1} + \sum_{i=1}^{n-2}b_{1i}^{j}\xi_{i}, \quad 1 \leq j \leq n-2, \\ \overline{D}_{e_{1}}\xi_{j} &= a_{21}^{j}e + a_{22}^{j}e_{1} + \sum_{i=1}^{n-2}b_{2i}^{j}\xi_{i}, \quad 1 \leq j \leq n-2. \end{split}$$

Comparing Eqs. (6) with Eq. (4) leads us to

$$a_{21}^j = -a_{12}^j$$
, $a_{11}^j = 0$, $1 \le j \le n - 2$.

Moreover, we find

$$A_{\xi_j} = \begin{bmatrix} 0 & a_{12}^j \\ -a_{12}^j & a_{22}^j \end{bmatrix}.$$

The matrix A_{ξ_j} corresponds to the shape operator of M and A_{ξ_j} is a symmetric matrix in the sense of Lorentz.

The Lipschitz-Killing curvature at $p \in M$ in the direction of ξ_j is given by

$$G(p,\xi_i) = -(a_{12}^j)^2.$$
 (7)

If we use Eqs. (6), we see

$$a_{12}^{j} = \left\langle \overline{D}_{e} \xi_{j}, e_{1} \right\rangle = -\left\langle \xi_{j}, \overline{D}_{e} e_{1} \right\rangle \tag{8}$$

and from (5) and with (8) we get

$$\overline{D}_{e}e_{1} = V(e, e_{1}) = \sum_{j=1}^{n-2} \langle \xi_{j}, \overline{D}_{e}e_{1} \rangle \xi_{j} = -\sum_{j=1}^{n-2} a_{12}^{j} \xi_{j}.$$
(9)

In addition, the Gaussian curvature of M denoted by G is expressed by (see $[^6]$)

$$G = -\langle \overline{D}_e e_1, \overline{D}_e e_1 \rangle.$$

With the elements of A_{ξ_i} , the Gaussian curvature of M is

$$G = -\sum_{j=1}^{n-2} (a_{12}^j)^2. (10)$$

Hence, from Eqs. (7) and (10) we obtain

$$G(p) = \sum_{j=1}^{n-2} G(p, \xi_j), \quad p \in M.$$
 (11)

Moreover, if the Lipschitz-Killing curvature $G(p, \xi_j)$ is equal to zero at $p \in M$ for each j, $1 \le j \le n-2$, then Gaussian curvature G(p) will be zero. This shows that M is an intrinsically developable surface, i.e., locally isometric to open sets of Minkowski plane. Conversely, if M is intrinsically developable, then $G(p, \xi_j)$ is equal to zero at $p \in M$ for each j, $1 \le j \le n-2$. Therefore, one may say that M is intrinsically developable if and only if the Lipschitz-Killing curvature is zero at each point $[^6]$.

In $[^{6}]$ it is shown that the mean curvature vector H of the time-like ruled surface M is

$$H = \frac{1}{2}V(e_1, e_1).$$

Theorem 1. Let M be a 2-dimensional time-like ruled surface in \mathbb{R}_1^n . Then the generators of M are asymptotic and geodesic of M.

Proof. Since the generators are the geodesics of \mathbb{R}_1^n , we write

$$\overline{D}_{e}e=0.$$

If we set this into the Gauss equation, we find

$$D_{e}e + V(e,e) = 0$$
 or $D_{e}e = -V(e,e)$.

Since $D_e e \in \chi(M)$ and $V(e, e) \in \chi^{\perp}(M)$ we reach $D_e e = 0$ and V(e, e) = 0. This completes the proof of the theorem.

Definition 1. Let M be a 2-dimensional time-like ruled surface in \mathbb{R}^n_1 . If the tangent planes of M are constant along the generators of M, then M is called developable $[^7]$.

Theorem 2. Let M be a 2-dimensional time-like ruled surface in \mathbb{R}_1^n . Then M is developable and minimal if and only if M is totally geodesic.

Proof. Assume that M is developable and minimal. If we have $X = ae + be_1$ and $Y = ce + de_1$ in $\chi(M)$, then

$$V(X,Y) = acV(e,e) + (ad + bc)V(e,e_1) + bdV(e_1,e_1).$$

Since the lines in \mathbb{R}_1^n are geodesic and M is minimal, we find that $V(e,e) = V(e_1,e_1) = 0$. Moreover, $\overline{D}_e e_1$ is equal to zero since M is developable. From Eq. (5) we get

$$V(e, e_1) = 0.$$

Hence, we have V(X,Y) = 0 for all $X,Y \in \chi(M)$. This means that M is totally geodesic.

Conversely, assume that V(X,Y) = 0 for all $X,Y \in \chi(M)$. Therefore we have the relations

$$V(e, e) = 0$$
, $V(e_1, e_1) = 0$, $V(e, e_1) = 0$.

By using these equations and Eq. (9) we find $\overline{D}_e e_1 = 0$. This shows that M is totally developable. Moreover, $V(e_1, e_1) = 0$ implies that H = 0. This means that M is minimal.

3. SOME CHARACTERIZATIONS FOR 2-DIMENSIONAL TIME-LIKE RULED DEVELOPABLE SURFACES IN THE MINKOWSKI SPACE \mathbb{R}_1^n

Let $\{e,e_1\}$ be an orthonormal basis of $\chi(M)$, as above, and $\{\xi_1,\xi_2,...,\xi_{n-2}\}$ be an orthonormal basis of $\chi^{\perp}(M)$. We give covariant derivative equations of the orthonormal basis $\{e_1,e_2,\xi_1,\xi_2,...,\xi_{n-2}\}$ of $\chi(\mathbb{R}^n_1)$ as follows:

$$\begin{split} & \bar{D}_{e_1}e = c_{11}e + c_{12}e_1 + c_{13}\xi_1 + \dots + c_{1n}\xi_{n-2}, \\ & \bar{D}_{e_1}e_1 = c_{21}e + c_{22}e_1 + c_{23}\xi_1 + \dots + c_{2n}\xi_{n-2}, \\ & \bar{D}_{e_1}\xi_1 = c_{31}e + c_{32}e_1 + c_{33}\xi_1 + \dots + c_{3n}\xi_{n-2}, \\ & \vdots \\ & \bar{D}_{e_1}\xi_{n-2} = c_{n1}e + c_{n2}e_1 + c_{n3}\xi_1 + \dots + c_{nn}\xi_{n-2}. \end{split}$$

If we calculate the coefficient c_{st} , $1 \le s, t \le n$, and write Eqs. (12) in the matrix form, we obtain

$$\begin{bmatrix} \overline{D}_{e_{1}} e \\ \overline{D}_{e_{1}} e_{1} \\ \overline{D}_{e_{1}} \xi_{1} \\ \vdots \\ \overline{D}_{e_{1}} \xi_{n-2} \end{bmatrix} = \begin{bmatrix} 0 & c_{12} & c_{13} & \cdots & c_{1n} \\ c_{12} & 0 & c_{23} & \cdots & c_{2n} \\ c_{13} & -c_{23} & 0 & \cdots & c_{3n} \\ \vdots & & & & \vdots \\ c_{1n} & -c_{2n} & -c_{3n} & \cdots & 0 \end{bmatrix} \begin{bmatrix} e \\ e_{1} \\ \xi_{1} \\ \vdots \\ \xi_{n-2} \end{bmatrix}.$$
(13)

By using Eq. (13) we can prove the following theorem.

Theorem 3. Let M be a 2-dimensional time-like ruled surface in \mathbb{R}^n_1 , and $\{e, e_1\}$ be an orthonormal base field of the tangential bundle $\chi(M)$, as above. In this case, the following propositions are equivalent:

- (i) *M* is developable,
- (ii) the Lipschitz-Killing curvature $G(p,\xi_j)$, $1 \le j \le n-2$, is equal to zero,
- (iii) the Gaussian curvature G is equal to zero,
- (iv) in Eq. (13), c_{2k} , $3 \le k \le n$, is equal to zero,
- (v) $A_{\xi_i}(e)$ is equal to zero,
- (vi) $\overline{D}_e e_1$ is an element of $\chi(M)$.

Proof. (i) \Rightarrow (ii): Assume that M is developable, i.e., $\overline{D}_e e_1 = 0$. Equation (7) says that the Lipschitz-Killing curvature at the point p in the direction of ξ_j is given by

$$G(p,\xi_j) = -(a_{12}^j(p))^2, \quad 1 \le j \le n-2.$$
 (14)

Due to $\overline{D}_e e_1 = 0$ and from Eq. (9)

$$\overline{D}_{e}e_{1} = -\sum_{j=1}^{n-2} (a_{12}^{j}) \xi_{j} = 0.$$
 (15)

Considering Eqs. (14) and (15) yields

$$G(p, \xi_j) = 0, \quad 1 \le j \le n - 2.$$

- (ii) \Rightarrow (iii): This follows directly from Eq. (11), as shown above.
- (iii) \Rightarrow (iv): Assume that G = 0, $\forall p \in M$. From Eq. (10) we have $a_{12}^j = 0$, $1 \le j \le n-2$. Since $a_{21}^j = -a_{12}^j$ in (6), also $a_{12}^j = 0$. This means that $\overline{D}_{e_1} \xi_j$ has no component in the direction e. Hence, we see that $c_{2k} = 0$, $3 \le k \le n$, in Eqs. (12), due to (13).
- (iv) \Rightarrow (v): Suppose that $c_{2k} = 0$, $3 \le k \le n$, in Eqs. (12). This shows that $\overline{D}_e \xi_j$ has no component in the direction e. Thus we have $a_{12}^j = 0$, $1 \le j \le n 2$, in Eqs. (6).

Moreover, using Weingarten equation (2), we write

$$A_{\xi_{i}}(e) = 0, \quad 1 \le j \le n - 2,$$

since $a_{11}^{j} = -\langle \overline{D}_{e} \xi_{j}, e \rangle = \langle \xi_{j}, \overline{D}_{e} e \rangle = 0.$

(v) \Rightarrow (vi): Let $A_{\xi_j}(e)$ be equal to zero. Then, from Weingarten equation (2) we have $a_{11}^{j,j}=0$, $a_{12}^{j}=0$, $1\leq j\leq n-2$. Since $\left\langle e,\xi_j\right\rangle=0$ implies $\left\langle \overline{D}_e e_1,\xi_j\right\rangle=\left\langle e,\overline{D}_{e_1}\xi_j\right\rangle=-a_{12}^j$, we find

$$\langle \overline{D}_e e_1, \xi_j \rangle = 0.$$

From this equation we get

(vi) \Rightarrow (i): Let $\overline{D}_e e_1$ be an element of $\chi(M)$. Then $\langle \overline{D}_e e_1, \xi_j \rangle$ will be equal to $-a_{12}^j$, $1 \le j \le n-2$, which is again equal to zero. On the other hand, $\langle e_1, e_1 \rangle = 1$ implies that $\langle \overline{D}_e e_1, e_1 \rangle = 0$ and $\langle e_1, e \rangle = 0$ implies that $\langle \overline{D}_e e_1, e_1 \rangle = 0$. Thus $\overline{D}_e e_1 \in \chi^{\perp}(M)$.

Using Eq. (9), we get that $\overline{D}_e e_1 = 0$, since a_{12}^j , $1 \le j \le n-2$, is equal to zero. This means that the tangent planes of M are constant along the generator e of M, i.e., M is developable. This finishes the proof.

REFERENCES

- Beem, J. K., Ehrlich, P. E. and Easley, K. L. Global Lorentzian Geometry, 2nd edition. Marcel Dekker, New York, 1996.
- 2. Chen, B. Y. Geometry of Submanifolds. Marcel Dekker, New York, 1973.
- Houh, C. Surfaces with maximal Lipschitz-Killing curvature in the direction of mean curvature vector. *Proc. Amer. Math. Soc.*, 1972, 35, 537–542.
- 4. Thas, C. Properties of ruled surfaces in the Euclidean space E^n . Acad. Sinica, 1978, **6**, 133–142.
- 5. Thas, C. Een (lokale) studie van de (m + 1)-dimensionale varieteiten, van de n-dimensionale euklidische ruimte Rⁿ (n³ 2m + 1 en m³ 1), beschreven door een eendimensionale familie van m-dimensionale lineaire ruimten. Palais Der Akademien-Herttogsstraat, I Brüssel, 1974.
- Tosun, M. and Aydemir, I. On 2-dimensional time-like ruled surfaces in the Minkowski space
 R₁ⁿ. Bull. Pure Appl. Sci., 1998, 17E, 247–256.
- 7. O'Neill, B. Semi-Riemannian Geometry. Academic Press, New York, 1983.

Ajasarnaste kahemõõtmeliste joonpindade omadusi Minkowski ruumis \mathbb{R}_1^n

Murat Tosun, Ismail Aydemir ja Nuri Kuruoglu

Mõned tulemused, mis on hästi tuntud joonpindade puhul eukleidilises ruumis \mathbb{R}^n , on üldistatud siin ruumi \mathbb{R}^n_1 juhule. Nii on tõestatud, et ajasarnasel joonpinnal ruumis \mathbb{R}^n_1 on puutujatasand piki iga moodustajat konstantne siis ja ainult siis, kui Gaussi kõverus on null; lisaks sellele on taoline joonpind minimaalne siis ja ainult siis, kui ta on täielikult geodeetiline.