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Abstract. Some results, which are well known for the ruled surfaces in the Euclidean space ,
n

�

are generalized here to the case of 1 .n
�  In particular, it is shown that a time-like ruled surface in 

1
n

�  is developable if and only if it has zero Gaussian curvature; moreover, it is then minimal if and 
only if it is totally geodesic. 
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1. INTRODUCTION

We shall assume throughout the paper that all manifolds, maps, vector fields, 
etc. are differentiable of class .C∞  First of all, we give some properties of a 
general submanifold M  of the Minkowski -n space 1 .n

�  Suppose that D  is the 
Levi-Civita connection of 1

n
�  and D  is the Levi-Civita connection of .M  Then, 

if ,X Y  are the vector fields of M  and if V  is the second fundamental tensor of 
,M  we may decompose XD Y  into a tangential and a normal component: 

( , ).X XD Y D Y V X Y= + (1)  

Equation (1) is called Gauss equation [1]. If ξ  is any normal vector field on ,M
we find the Weingarten equation by decomposing XD ξ  into a tangential and a 
normal component: 

( ) ,X XD A X Dξξ ξ⊥= − + (2) 

https://doi.org/10.3176/phys.math.2005.4.03

https://doi.org/10.3176/phys.math.2005.4.03


 236

where Aξ  determines at each point a self-adjoint linear map and D⊥  is a metric 
connection in the normal bundle ( ).Mχ

⊥  We use the same notation Aξ  for the 
linear map and the matrix of the linear map [2]. 

A normal vector field ξ  is called parallel in the normal bundle ( )Mχ
⊥  if 

0XD ξ⊥ =  for each vector field .X  If η  is a normal unit vector at the point 
,p M∈  then 

 

( , ) detG p A
η

η =  
 

is the Lipschitz–Killing curvature of M  at p  in the direction η  [3]. 
Let V  be the second fundamental tensor of .M  If 

 

( , ) 0V X X =  
 

for X  in the tangent bundle ( ),Mχ  then X  is called an asymptotic vector field 
on .M  If 
 

( , ) 0V X Y =  
 

for all , ( ),X Y Mχ∈  then M  is totally geodesic [4]. 
Suppose that , ( ),X Y Mχ∈  while ( ).Mξ χ⊥∈  If the standard metric tensor 

of 1
n

�  is denoted by , ,  then we have 
 

, ( , ),XD Y V X Yξ ξ< > = < >  
 

and 
 

, ( ), .XD Y A X Yξξ< > = < >  
 

From the above equations we obtain 
 

( , ), ( ), .V X Y A X Yξξ< > = < >  
 

If 1 2 2, , , nξ ξ ξ
−

…  constitute an orthonormal base field of the normal bundle 
( ),Mχ

⊥  then we set 
 

( , ), ( , )j jV X Y V X Yξ< > =  
 

or  
 

2

1

( , ) ( , ) .
n

j j
j

V X Y V X Y ξ
−

=

=∑  

 

The mean curvature vector H  of M  at the point p  is given by 
 

2

1

tr
.

2
j

n

j
j

A
H

ξ
ξ

−

=

=∑  

 

Here H  is the mean curvature. If 0H =  at each point p  of ,M  then M  is 
said to be minimal [5]. 
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2. TWO-DIMENSIONAL  TIME-LIKE  RULED  SURFACE  IN  1�
n  

 
A time-like ruled surface M  in 1

n
�  is generated by time-like line l  with unit 

direction time-like vector ( )e s  along a space-like curve .α  For this ruled surface 
 

( , ) ( ) ( )s v s ve sψ α= +  
 

is a parameterization. Throughout this paper, α  is supposed to be an orthogonal 
trajectory of the generators. 

Let 1{ , }e e  be an orthonormal base field of ( ),Mχ  so that 
 

1 1 1, 1, , 1, , 0.e e e e e e= − = =                               (3) 
 

Let us denote the Levi-Civita connection of the Minkowski space 1
n

�  by .D  
Because the lines in 1

n
�  are geodesics, we have 

 

0.eD e =                                                     (4) 
 

If we substitute this equation into Eq. (1), we get 
 

( , ) 0.V e e =  
 

Considering Eq. (3), we can easily see that 1eD e e⊥  and 1 1.eD e e⊥  This implies 

1 ( ).eD e Mχ
⊥

∈  Therefore, 
 

1 1( , ).eD e V e e=                                                 (5) 
 

Let 1 2 2{ , , , }nξ ξ ξ
−

…  be vector fields, which constitute an orthonormal base 
( ).MT p⊥  Then 1 2 1 2 2{ , , , , , }ne e ξ ξ ξ

−

…  is a base of 
1
( )nT p

�
 at 1 .np∈�  Together 

with (2) we can write 
 

1

2

11 12 1 1
1

2

21 22 1 2
1

, 1 2,

, 1 2.

n
j j j

e j i i
i

n
j j j

e j i i
i

D a e a e b j n

D a e a e b j n

ξ ξ

ξ ξ

−

=

−

=

= + + ≤ ≤ −

= + + ≤ ≤ −

∑

∑

                        (6) 

 

Comparing Eqs. (6) with Eq. (4) leads us to 
 

21 12 11, 0, 1 2.j j ja a a j n= − = ≤ ≤ −  
 

Moreover, we find 
 

12

12 22

0
.

j

j

j j

a
A

a a
ξ

 
=  

−  
 

 

The matrix 
j

Aξ  corresponds to the shape operator of M  and 
j

Aξ  is a symmetric 
matrix in the sense of Lorentz. 



 238

The Lipschitz–Killing curvature at p M∈  in the direction of jξ  is given by 
 

2
12( , ) ( ) .j

jG p aξ = −                                               (7) 
 

If we use Eqs. (6), we see 
 

12 1 1, ,j
e j j ea D e D eξ ξ= = −                                       (8) 

 

and from (5) and with (8) we get 
 

2 2

1 1 1 12
1 1

( , ) , .
n n

j
e j e j j

j j

D e V e e D e aξ ξ ξ
− −

= =

= = = −∑ ∑                         (9) 

 

In addition, the Gaussian curvature of M  denoted by G  is expressed by (see [6]) 
 

1 1, .e eG D e D e= −  
 

With the elements of ,
j

Aξ  the Gaussian curvature of M  is 
 

2
2

12
1

( ) .
n

j

j

G a
−

=

= −∑                                              (10) 

 

Hence, from Eqs. (7) and (10) we obtain 
 

2

1

( ) ( , ), .
n

j
j

G p G p p Mξ
−

=

= ∈∑                                 (11) 

 

Moreover, if the Lipschitz–Killing curvature ( , )jG p ξ  is equal to zero at p M∈  
for each ,j  1 2,j n≤ ≤ −  then Gaussian curvature ( )G p  will be zero. This 
shows that M  is an intrinsically developable surface, i.e., locally isometric to 
open sets of Minkowski plane. Conversely, if M  is intrinsically developable, 
then ( , )jG p ξ  is equal to zero at p M∈  for each ,j  1 2.j n≤ ≤ −  Therefore, 
one may say that M  is intrinsically developable if and only if the Lipschitz–
Killing curvature is zero at each point [6]. 

In [6] it is shown that the mean curvature vector H  of the time-like ruled 
surface M  is 
 

1 1

1
( , ).

2
H V e e=  

 

Theorem 1. Let M  be a 2-dimensional time-like ruled surface in 1 .n
�  Then the 

generators of M  are asymptotic and geodesic of .M  
 
Proof. Since the generators are the geodesics of 1 ,n

�  we write 
 

0.eD e =  
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If we set this into the Gauss equation, we find 
 

( , ) 0eD e V e e+ =  or ( , ).eD e V e e= −  
 
Since ( )eD e Mχ∈  and ( , ) ( )V e e Mχ

⊥
∈  we reach 0eD e =  and ( , ) 0.V e e =  This 

completes the proof of the theorem. 
 
Definition 1. Let M  be a 2-dimensional time-like ruled surface in 1 .n

�  If the 
tangent planes of M  are constant along the generators of ,M  then M  is called 
developable [7]. 
 
Theorem 2. Let M  be a 2-dimensional time-like ruled surface in 1 .n

�  Then M  
is developable and minimal if and only if M  is totally geodesic. 
 
Proof. Assume that M  is developable and minimal. If we have 1X ae be= +  and 

1Y ce de= +  in ( ),Mχ  then 
 

1 1 1( , ) ( , ) ( ) ( , ) ( , ).V X Y acV e e ad bc V e e bdV e e= + + +  
 
Since the lines in 1

n
�  are geodesic and M  is minimal, we find that 

1 1( , ) ( , ) 0V e e V e e= = . Moreover, 1eD e  is equal to zero since M  is developable. 
From Eq. (5) we get 

 

1( , ) 0.V e e =  
 
Hence, we have ( , ) 0V X Y =  for all , ( ).X Y Mχ∈  This means that M  is totally 
geodesic. 

Conversely, assume that ( , ) 0V X Y =  for all , ( ).X Y Mχ∈  Therefore we 
have the relations 

 

1 1 1( , ) 0, ( , ) 0, ( , ) 0.V e e V e e V e e= = =  
 
By using these equations and Eq. (9) we find 1 0.eD e =  This shows that M  is 
totally developable. Moreover, 1 1( , ) 0V e e =  implies that 0.H =  This means that 
M  is minimal. 

 

 
3. SOME  CHARACTERIZATIONS  FOR  2-DIMENSIONAL  TIME-

LIKE  RULED  DEVELOPABLE  SURFACES   
IN  THE  MINKOWSKI  SPACE  1�

n  
 
Let 1{ , }e e  be an orthonormal basis of ( ),Mχ  as above, and 1 2 2{ , , , }nξ ξ ξ

−

…  
be an orthonormal basis of ( ).Mχ

⊥  We give covariant derivative equations of 
the orthonormal basis 1 2 1 2 2{ , , , , , }ne e ξ ξ ξ

−

…  of 1( )n
χ �  as follows: 
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1

1

1

1

11 12 1 13 1 1 2

1 21 22 1 23 1 2 2

1 31 32 1 33 1 3 2

2 1 2 1 3 1 2

... ,

... ,

... ,

... .

e n n

e n n

e n n

e n n n n nn n

D e c e c e c c

D e c e c e c c

D c e c e c c

D c e c e c c

ξ ξ

ξ ξ

ξ ξ ξ

ξ ξ ξ

−

−

−

− −

= + + + +

= + + + +

= + + + +

= + + + +

�

                      (12) 

 

If we calculate the coefficient ,stc  1 , ,s t n≤ ≤  and write Eqs. (12) in the matrix 
form, we obtain 

 

1

1

1

1

12 13 1

1 12 23 2 1

1 13 23 3 1

1 2 3 22

0

0

0  .

0

e
n

e n

e n

n n n ne n

D e
c c c e

D e c c c e

D c c c

c c cD

ξ ξ

ξξ −

−

 
    
    
    
   = − 
    
    
   − −     

 

�

�

�

� ��

�

                    (13) 

 

By using Eq. (13) we can prove the following theorem. 
 
Theorem 3. Let M  be a 2-dimensional time-like ruled surface in 1 ,n

�  and 

1{ , }e e  be an orthonormal base field of the tangential bundle ( ),Mχ  as above. In 
this case, the following propositions are equivalent: 
(i) M  is developable, 
(ii) the Lipschitz–Killing curvature ( , ),jG p ξ  1 2,j n≤ ≤ −  is equal to zero, 
(iii) the Gaussian curvature G  is equal to zero, 
(iv) in Eq. (13), 2 ,kc  3 ,k n≤ ≤  is equal to zero, 
(v) ( )

j
A eξ  is equal to zero, 

(vi) 1eD e  is an element of ( ).Mχ  
 
Proof. (i) ⇒  (ii): Assume that M  is developable, i.e., 1 0.eD e =  Equation (7) 
says that the Lipschitz–Killing curvature at the point p  in the direction of jξ  is 
given by 

 

2
12( , ) ( ( )) , 1 2.j

jG p a p j nξ = − ≤ ≤ −                            (14) 
 

Due to 1 0eD e =  and from Eq. (9) 
 

2

1 12
1

( ) 0.
n

j
e j

j

D e a ξ
−

=

= − =∑                                       (15) 

 

Considering Eqs. (14) and (15) yields 
 

( , ) 0, 1 2.jG p j nξ = ≤ ≤ −  
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(ii) ⇒  (iii): This follows directly from Eq. (11), as shown above. 
(iii) ⇒  (iv): Assume that 0,G =  .p M∀ ∈  From Eq. (10) we have 12 0,ja =  

1 2.j n≤ ≤ −  Since 21 12
j ja a= −  in (6), also 12 0.ja =  This means that 

1e jD ξ  has no 
component in the direction .e  Hence, we see that 2 0,kc =  3 ,k n≤ ≤  in Eqs. (12), 
due to (13). 

(iv) ⇒  (v): Suppose that 2 0,kc =  3 ,k n≤ ≤  in Eqs. (12). This shows that 
e jD ξ  has no component in the direction .e  Thus we have 12 0,ja =  1 2,j n≤ ≤ −  

in Eqs. (6). 
Moreover, using Weingarten equation (2), we write 

 

( ) 0, 1 2,
j

A e j nξ = ≤ ≤ −  
 

since 11 , , 0.j
e j j ea D e D eξ ξ= − = =  

(v) ⇒  (vi):  Let ( )
j

A eξ  be equal to zero. Then, from Weingarten equa-
tion  (2)   we have 11 120, 0,j ja a= = 1 2.j n≤ ≤ −  Since , 0je ξ =  implies 

1,e jD e ξ =

1 12, ,j
e je D aξ = −  we find 

 

1, 0.e jD e ξ =  
 

From this equation we get 
(vi) ⇒  (i): Let 1eD e  be an element of ( ).Mχ  Then 1,e jD e ξ  will be equal to 

12 ,ja−  1 2,j n≤ ≤ −  which is again equal to zero. On the other hand, 1 1, 1e e =  
implies that 1 1, 0eD e e =  and 1, 0e e =  implies that 1, 0.eD e e =  Thus 

1 ( ).eD e Mχ
⊥

∈  
Using Eq. (9), we get that 1 0,eD e =  since 12 ,ja  1 2,j n≤ ≤ −  is equal to zero. 

This means that the tangent planes of M  are constant along the generator e  of 
,M  i.e., M  is developable. This finishes the proof. 
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Ajasarnaste  kahemõõtmeliste  joonpindade  omadusi  
Minkowski  ruumis  

1
�

n  
 

Murat Tosun, Ismail Aydemir ja Nuri Kuruoglu 
 
Mõned tulemused, mis on hästi tuntud joonpindade puhul eukleidilises ruumis 
,n

�  on üldistatud siin ruumi 1
n

�  juhule. Nii on tõestatud, et ajasarnasel joon-
pinnal ruumis 1

n
�  on puutujatasand piki iga moodustajat konstantne siis ja ainult 

siis, kui Gaussi kõverus on null; lisaks sellele on taoline joonpind minimaalne 
siis ja ainult siis, kui ta on täielikult geodeetiline. 

 


