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Abstract. Some results, which are well known for the ruled surfaces in the Euclidean space IR”,
are generalized here to the case of ]R';. In particular, it is shown that a time-like ruled surface in
R! isdevelopableif and only if it has zero Gaussian curvature; moreover, it is then minimal if and
onfy if itistotally geodesic.
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1. INTRODUCTION

We shall assume throughout the paper that all manifolds, maps, vector fields,
etc. are differentiable of class C”. First of all, we give some properties of a
general submanifold M of the Minkowski n-space RY. Suppose that D isthe
Levi-Civita connection of R} and D isthe Levi-Civita connection of M. Then,
if X,Y arethevector fieldsof M and if V isthe second fundamental tensor of
M, we may decompose D, Y into atangential and a normal component:

D,Y =D, Y +V(X,Y). (1)

Equation (1) is called Gauss equation [']. If &£ is any normal vector field on M,
we find the Weingarten equation by decomposing D, ¢ into a tangential and a
normal component:

Dyé =—A.(X)+ D¢, @)
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where A. determines at each point a self-adjoint linear map and D isametric
connection in the normal bundle " (M). We use the same notation A for the
linear map and the matrix of the linear map [7].

A normal vector field & is called paralel in the normal bundle y'(M) if
Dy&=0 for each vector field X. If 7 is a normal unit vector at the point
peM, then

G(p,7)=det A,

isthe Lipschitz—Killing curvatureof M at p inthedirection n [?].
Let V bethe second fundamental tensor of M. If

V(X,X)=0

for X inthe tangent bundle y(M), then X is called an asymptotic vector field
on M. If

V(X,Y)=0

forall X,Y e y(M), then M istotally geodesic [].
Suppose that X,Y € (M), while &e y*+(M). If the standard metric tensor
of R} isdenoted by (,), then we have

<D,Y,E>=<V(X,Y), &>
and

<DyY,E>=<A(X),Y >.
From the above equations we abtain

<V(X,Y), & >=<A(X),Y>.

If &,&,,...,&,, congtitute an orthonormal base field of the normal bundle
7-(M), then we set

<V(X,Y),& >=V,(X,Y)

or

n-2
V(x,Y)=Zvj(x,Y)§j.
j=1

The mean curvature vector H of M at the point p isgiven by

n—2‘[|’ASEj
H=Y 24,
j=1

Here |H| is the mean curvature. If H =0 at each point p of M, then M is
said to be minimal [7].
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2. TWO-DIMENSIONAL TIME-LIKE RULED SURFACE IN R}
A time-like ruled surface M in R} is generated by time-like line | with unit
direction time-like vector e(s) along a space-like curve «. For thisruled surface
(s, V) = a(s) +ve(s)

is a parameterization. Throughout this paper, « is supposed to be an orthogonal
trajectory of the generators.
Let {e g} bean orthonormal basefield of y(M), so that

(ee)=-1 (a.,&)=1 (eg)=0. &)

Let us denote the Levi-Civita connection of the Minkowski space R} by D.
Because thelinesin R} are geodesics, we have

D.e=0. 4)
If we substitute this equation into Eq. (1), we get
V(e e)=0.

Consderlng Eq. (3), we can easily seethat Dg | e and D.g L . Thisimplies
D.g € 7 (M). Therefore,

D& =V(e ). ()

Let {&.&,,..., &, be vector fields, which constitute an orthonormal base
Ty (p). Then {g,&,,4,5,,....&, .} isabaseof T,,(p) a peR;]. Together
with (2) we can write '

. _ -2
D.& =ahe+ale + > bl&, 1<j<n-2
i=1
_ . . n-2 . (6)
D& =ale+abe+) bi&, 1<j<n-2

i=1

Comparing Egs. (6) with Eqg. (4) leads usto

al=-a,, a,=0 1<j<n-2

0 a
A, {_ - }
&, 9»
The matrix A. corresponds to the shape operator of M and A isasymmetric
matrix in the sense of Lorentz.

Moreover, we find
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The Lipschitz—Killing curvatureat pe M inthedirection of £; isgiven by
G(p. &) =—(ah)". (7)
If we use Egs. (6), we see
al, =(D£; 6)=—(£, Degy) ®)

and from (5) and with (8) we get
D =V(e el)=nj2j<fj, D& )¢, =—nj2jafzﬁ,-. )
In addition, the Gaussian curvature of M denoted by G is expressed by (see[?])
G=-(D., De8)-
With the elements of A§j , the Gaussian curvatureof M is
G= —:ij(afz)z. (10)
Hence, from Egs. (7) and (10) we obtain

G(M=2.G(p.&) PeM. (1)
j=1

Moreover, if the Lipschitz—Killing curvature G(p, &;) isequa tozeroat pe M
for each j, 1<j<n-2, then Gaussian curvature G(p) will be zero. This
shows that M is an intrinsically developable surface, i.e., locally isometric to
open sets of Minkowski plane. Conversely, if M is intrinsically developable,
then G(p,$;) isequal to zero a peM for each j, 1<j<n-2. Therefore,
one may say that M is intrinsically developable if and only if the Lipschitz—
Killing curvature is zero at each point [].

In[% it is shown that the mean curvature vector H of the time-like ruled
surface M is

1
H=>V(e,8).
V(& &)

Theorem 1. Let M be a 2-dimensional time-like ruled surface in R{. Then the
generatorsof M are asymptotic and geodesic of M.

Proof. Since the generators are the geodesics of R}, we write

D.e=0.
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If we set thisinto the Gauss equation, we find
D.e+V(ee)=0or D.e=-V(ee).

Since D.ge 7(M) and V(e €) e y* (M) wereach D.e=0 and V(e €) =0. This
completes the proof of the theorem.

Definition 1. Let M be a 2-dimensional time-like ruled surface in R]. If the
tangent planesof M are constant along the generatorsof M, then M iscalled
developable[’].

Theorem 2. Let M be a 2-dimensional time-like ruled surface in R}. Then M
is developable and minimal if and only if M istotally geodesic.

Proof. Assumethat M is developable and minimal. If we have X =ae+be and
Y =ce+de in (M), then

V(X,Y)=acV(ee)+(ad +bc)V(e e)+bdV(e,g).

Since the lines in R} are geodesic and M is minimal, we find that
V(e,e)=V(e,g)=0. Moreover, D.g isegua to zero since M is developable.
From Eq. (5) we get

V(e g)=0.

Hence, we have V(X,Y)=0 foral X,Y e y(M). Thismeansthat M istotaly
geodesic.

Conversely, assume that V(X,Y)=0 for al X,Ye y(M). Therefore we
have the relations

V(e e)=0 V(e,e)=0, V(eg)=0.

By using these equations and Eq. (9) we find D,g =0. This shows that M is
totally developable. Moreover, V (e, g)=0 impliesthat H =0. This means that
M isminimal.

3. SOME CHARACTERIZATIONS FOR 2-DIMENSIONAL TIME-
LIKE RULED DEVELOPABLE SURFACES

IN THE MINKOWSKI SPACE R}

Let {e e} bean orthonormal basisof y(M), asabove, and {&,&,, ..., &, o}
be an orthonormal basis of y*(M). We give covariant derivative equations of
the orthonormal basis {e, e,, &, &, ..., &} of x(R]) asfollows:
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D, €= Cyye+ 8 +Cgdy + ..+ Gy o,
D, € = Cye+Cp +Cppéy + .. Conyy o,
Dy & = Cyn€+ Cf +Ciady +.+ G5, o, (12)

DQ;EH =C€+C .8 +C3& + .o+ C &

If we calculate the coefficient ¢, 1<s,t<n, and write Egs. (12) in the matrix
form, we obtain

D ) o
“a® 0 & ¢ - cffe
P8 | g, 0 o oGy
qé:l = CGs G 0 - G & | (13)
_[_)qé:n—z_ _Cln € Gy o 0 | _é:n—z_

By using Eq. (13) we can prove the following theorem.

Theorem 3.Let M be a 2-dimensional time-like ruled surface in R7, and
{e, g} bean orthonormal base field of the tangential bundle y(M), asabove. In
this case, the following propositions are equivalent:

0] M isdevelopable,

(i) the LipschitzKilling curvature G(p,&;), 1< j<n-2, isequal to zero,
(iii)  the Gaussian curvature G isequal to zero,

(iv) in Eq. (13), ¢,,, 3<k<n, isequal to zero,

(v) Aéj (e) isequal to zero,

(i) D.g isan element of »(M).

Proof. (i) = (ii): Assume that M is developable, i.e, D,g =0. Equation (7)
says that the Lipschitz—Killing curvature at the point p in the direction of &; is
given by

G(p.&j) =—(aL(p)* 1sjsn-2 (14)

Dueto D,g =0 and from Eq. (9)
D& =—> (a))&; =0. (15)
=1

Considering Egs. (14) and (15) yields
G(p,¢;)=0, 1<j<n-2
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(i) = (iii): Thisfollowsdirectly from Eqg. (11), as shown above.

(iif) = (iv): Assume that G=0, VpeM. From Eq. (10) we have aiz_
1<j<n-2. Since a), =-a/, in (6), dso a/, =0. This means that Delf has no
component in the direction e. Hence, we see that ¢, =0, 3<k<n, in Egs. (12),
dueto (13).

(iv) = (v): Suppose that c, =0, 3<k<n, in Egs. (12). This shows that
[_)efj has no component in the direction e Thuswe have a), =0, 1< j<n-2,
in Egs. (6).

Moreover, using Weingarten equation (2), we write

A,fj(e):o, 1<j<n-2,

since aflz—<_e§j, >=<§j,[_)e>=0

(V) = (vi): Let A (e) be equa to zero. Then, from Welngarten equar
tion (2) we have all_O al, =0, 1<j<n-2. Since < §> implies
< X §J> <e Del.§]>_ -a},, wefind

(D &)=

From this equation we get

(vi) = (i): Let D.g bean element of »(M). Then ﬁeel,.fj> will be equal to
~a),, 1<j<n-2, which is again equal to zero. On the other hand, (e, g)=1
implies that < E}el,el>=0 and (g,€)=0 implies that <Deq,e>=0. Thus

Deg € 7 (M).

Using Eq. (9), we get that D,g =0, since aiz, 1<j<n-2, isequa to zero.
This means that the tangent planes of M are constant along the generator e of
M, i.e.,, M isdevelopable. This finishes the proof.
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Ajasarnaste kahemdttmeliste joonpindade omadusi
Minkowski ruumis RY

Murat Tosun, Ismail Aydemir ja Nuri Kuruoglu

Moned tulemused, mis on hasti tuntud joonpindade puhul eukleidilises ruumis
R", on dldistatud siin ruumi R} juhule. Nii on tdestatud, et ajasarnasel joon-

pinnal ruumis R} on puutujatasand piki iga moodustajat konstantne siis ja ainult
siis, kui Gaussi kdverus on null; lisaks sellele on taoline joonpind minimaalne

siisjaainult siis, kui ta on téielikult geodeetiline.
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