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1. INTRODUCTION

In this paper we present the complete enumeration of binary perfect forms over
real quadratic extensiaR(+/6). Itis a continuation of the work started by Ortg,[
wherecomplete lists of perfect forms ové)(v/2), Q(v/3), andQ(+/5) aregiven.

Ong studied the cases where the real quadratic field is the maximal totally real
subfield of a cyclotomic field. The present paper considers a more general case,
which appears to be unknown in the literature.

The perfect quadratic forms are also related to the description of a reduction
domain of quadratic forms (se8]. Koecher showed ir?] that a reduction domain
is a union of perfect polyhedral cones, which are associated to perfect forms of the
same rank. Until now, neither the explicit description of the reduction domain nor
reduction algorithm for positive definite quadratic forms with algebraic coefficients
have been published (except for unary quadratic forms over the real quadratic
number field or totally real cyclic cubic field3]). Explicit results in the reduction
theory of quadratic forms are interesting for people working in the field of the
geometry of numbers and its applications, and this motivates the enumeration of
perfect forms as well.
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The perfect quadratic forms with rational coefficients are closely related
the extreme forms by the well-known Voronoi’s theorem, thus those forms are
also interesting for applications of the geometry of numbers. For instanee, th
significance of extreme quadratic forms relies on the interesting propeftibs o
associated lattices in the realdimensional spac®"™. The lattices associated to
critical forms represent the densest lattice packing of equal sphels. in

Unfortunately, the theory of perfect quadratic forms with algebraicfunefits
is much less studied than the theory of rational perfect quadratic fornrefdane
the results are important mainly in connection with the corresponding rational
guadratic forms. For example, there are several constructions krmweffect
forms with algebraic coefficients, which correspond to perfect forms raitional
coefficients (se€'[’] and Chapter 7 in9]).

Although the main result of the paper (Theorem 2) includes the complete
enumeration of perfect binary quadratic forms with coefficier®if/6), we also
present some theoretical results such as
1. the construction of a unary perfect form with a coefficientQy/D) for

arbitrary square-fre® > 1 (Theorem 1);

2. the use of field automorphisms in the application of Voronoi’s algorithm

(Propositions 2, 3 and Corollary 1).

The latter results are necessary for applying Voronoi’s algorithm toegierf
guadratic forms with coefficients in a normal extensiofof

The main result agrees with PresteF$fesult of counting inequivalent elliptic
fixed' points under the action of the Hilbert modular grcSIp(Q,OQ(\/é)) (see
Section 4).

The rational quadratic formir_Q(\/g)/Q(qbg) and TrQ(\/_g)/Q(@) are also
perfect. Moreover, they are critical quaternary quadratic forms witional
coefficients. But the rational quadratic fofﬁnQ(\/g)/Q(f) is not perfect for any
f € A{do,..., o7, 010,011, 012} Since the set of minimum vectors @fis not big
enough (see Subsections 5.1-5.13).

2. DEFINITIONS AND VORONOI'S ALGORITHM

LetK be a totally real algebraic number field anddgt be the ring of algebraic
integers inK. Letr = [K: Q] andoy, ..., o, be the embeddings & into R.

Let f be a quadratic form oveK, i.e. f(z) = f(z1,...,2n) = 3, ; fijziw;
(fi; = f5:) with f;; € K for all 7 andjj.

Definition 1. A quadratic formf(z) = Zm‘ fijzix; is called positive definite over
K if oy (f(x)) = >, ; ok(fij)ziz; is positive definite foralk = 1,...,r.

Letwy,...,w, be aZ-basis ofOk. If f(x) is a positive definite quadratic form
overK of rankn, then
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Trq(f(@) = DY olfij)(@iaon(w) + ... + @i ox(w,))

k=114,j=1

x(zjpok(wi) + ...+ zj0k(wr))

= > > wuminTrxjgfywiwn)  (fij = fi) (1)
i,j=11,m=1
is a positive definite quadratic form ov@ of rankrn.

We write 1.(f) for the smallest positive value dfry g (f(x)) on o)
that is,

u(f) = min { Tric/q (F(X))IX € 02\ {0} }.

If fis a positive definite quadratic form ovE&r, then we set

M(f) = {x € O I Teg g (£(X)) = () } -

The setM(f) is called the set of minimum vectors 6f Throughout this paper we
do not distinguish between and—m for eachm € M(f).

Definition 2. The positive definite quadratic forfhoverK is called perfec{in the
sense of Vorondif it is uniquely determined by the s&t(f) and the first minimum

u(f) of Try gy (f ()

Proposition 1. Let f be a positive definite quadratic form of ramk Thenf is

. . . s n(nt1 :
perfect(in the sense of Koech§t]) if and only if there emst% block matrices

diag{ci(mm?'),...,o.(mm")}, m e M(f),

that are linearly independent ov&, or equivalentlythere existr@ matrices

mm!, m € M(f), that are linearly independent ové.
Proof. Obvious. O

Proposition 1 was the definition for the perfection given by Koechk(see
also [']).

If f(x)is a perfect form of rank, then obviously#M(f) > r”("jl).

Let P,, k denote the set of all positive definite quadratic forms of rardver
K. Write det(f) = det (flj)

Definition 3. The positive definite quadratic forfine P, i is called critical if the
function

w(g)
(Nm det(g))l/"r

YK : Pax — Rso, Yk(9) =
attains global maximum at.
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Definition 4. A matrix S € GL(n,Ok) is called an automorph of € P, i,
f(x) = 2" (fi)z, if (fi;) = S'(fij)S.

For eachS € GL(n,Oxk) we write 7g for the mappingP, x — Pn K
defined byZs(f) = S'(fi;)S, wheref(z) = x'(f;;)=. We call quadratic forms

f, g € Py x equivalent and writgf ~ ¢ if there existZg such thayy = Tg(f).
For a quadratic fornyf andS € GL(rank f, Ok) we write f[S] for S*(fi;)S.

Definition 5. A mappingZs is called an automorphism ¢f if S is an automorph
of f.

Throughout this paper we work with values @fx ,q f(x) only, therefore
we are interested in automorphismsTfk /q f () to exploit the “symmetry” of
Voronoi's algorithm. This will be done by considering the action&af(IK/Q) if
K is a normal extension, and the automorphism group efP,, . This motivates
the following definition.

Definition 6. By the automorphism afry /g f () (f € Pp,x) Wwe mean a mapping
of the formr o 75, whereS € GL(n, Ox) andt € Gal(IK/Q) such that

(ToTs)(f) = .
If K is not a normal extensionhen we set = Id.

We emphasize that Definition 6 does not involve arbitrary automorphism of the
rational quadratic form defined by (1).

Clearly, every automorphism gfis also an automorphism Gl /g f (). We
denote the automorphism group pfand Tr /q f(z) by Aut(f) and Autr:(f),
respectively. ByStab(f) we mean the subgrouy € Gal(IK/Q)|o(f) ~ f}.

Voronoi’s algorithm is discussed in detail ih¥°]. Theoretical background of
perfect polyhedral cones with respect to bilinear product can badfou[>°].

Here we give a short outline of the algorithm and in Section 3 we discuss some
theoretical results concerning the method.

Let M(f) = {mu,...,m:}. To each trace minimum vectet; we associate a
tuple of linear forms

Ak = (Moo s Akor)
such that

/\]m(.%') = Uz(mk) = Ji(mk71)$1 + ...+ Ui(mkm)xn.

Write 2 = (\2,1,..., A%,.). The perfect polyhedral corié; associated to perfect
form f with trace minimumsn, . .., m; is defined as a polyhedral cone generated
by tuples of quadratic forms?, ..., \?, that is

t

k=1
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The perfect polyhedral cones partition the &gty thus two perfect polyhedral
conesll; # I, have no common inner points by Proposition 2790 [

We write Sym,, (IK) for the set of all symmetrie x n-matrices with entries in
K. The set of all symmetric positive semidefinite< n-matrices with entries ifK
will be denoted bySym,, - (K). Let

(A,B) =Y TR(A"BY),
=1

whered = (AW ... A", B=(BW ... BM)ecR®Sym, (K).
The perfect polyhedral cone can be described also in terms of symmetric
matrices, which satisfy a certain number of homogeneous linear inequalities

Iy ={B|B € R®Sym,(K),y(B) = (A, B) >0,{=1,...,u},
whereA, € R ® Sym,, ((K). The dimension ofl is N = r”(”T“). The cone
I1; is determined by hyperplanesi, = {B € R ® Sym,,(K)|(V,, B) = 0},
U, € R®Sym,, (K), and bounded by facesiW, = I1; N H, of dimensionN — 1.
Write Ay, = (o1(mym},), ..., or(mym})). Every edge

A = {pArlp € Rxo}, k=1,...,s,

is the solution of a system @f — 1 linearly independent equatio¥,, B) = 0,
¢ =1,...,N — 1. Moreover,V, is determined byV — 1 linearly independent
edges

(W, Ap) =0, k=1,...,N—1,

with an unknown¥,.

To each(N — 1)-dimensional facdV of II; there corresponds a uniquely
determined neighbouring perfect polyhedral cahewith I1; N 1I, = W, such
that the perfect forng is not multiple off (see E]; Koecher also proved that I
andll, are arbitrary perfect polyhedral cones, then the interseétion 11, is an
r-dimensional face ofl; andIl,, where0 < r < N).

We call the formsf and g neighbouring forms along the fad&, or simply,
neighbouring forms. As Barne¥][pointed out, the practical efficiency of Voronoi’s
method lies in the simplicity of the relation between neighbouring forms f lagtd
g be neighbouring forms along the fadé = {A € R®Sym,, -,(K)|(¥, A) = 0}
and¥ € R ® Sym,,(K). Denote by (x) the indefinite quadratic form

Y(e) = bywiy (b = by)
ij=1

corresponding to the fad#’, that is, if B = (b;;), then¥ = (01(B), ..., 0.(B)).
Koecher f] proved (if K is a real quadratic extension, see also Theorem 3.1.6
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in [1]) that if W is a face ofil; determined by théV — 1 independent edge forms

A, ..., Ay, then the neighbouring form corresponding to the neighbouring cone
I1, along the facéV, i.e. W = IIy N 11, is
g=f+X

and) > 0 is uniquely determined by

e { T )

r € O A Try q(¢(r)) <0

—Try /g (x))
Moreover, A is a rational number. The edge forms,..., A, (u > N — 1)
determine the fac®” which is defined by the quadratic forgiff

Tri /q((mi)) >0 (i > u)

and the system (2) has rank — 1.

For the rest of this section we assume thats a normal extension. We can
simplify our computations by making the following observations:

1. If fis perfect, therw (f) is also perfect for any € Gal(IK/Q).

2. If f andg are neighbouring forms, ther( f) ando(g) are neighbouring forms
too for anyo € Gal(K/Q). Once we have the neighbouring forms ff
we have also the neighbouring formsagff) for any field automorphism # 1
without applying Voronoi’s algorithm.

3. The set of neighbours gfis a union of orbits bystab(f) (see Proposition 4).

4. The equivalent face®”, W’ of II; under action byAut(f) yield equivalent
neighbouring formg;, ¢’ (see Proposition 5). Leb € Autr.(f) and let the
faceWW be determined by minimum vectars,, . .., m,, € M(f) by (2). Write
¢ = 70 7Tg, wherer € Gal(K/Q) andS € GL(rankf, Ok). If the positive
semidefinite quadratic forny corresponds to the fadé’, then by permuting
minimum vectors by: ~ S7~!(z) we obtain a new face, sa¥’, determined
by St (m1),..., ST (my)

Tri /(W' (ST (mi)) = Trrjgle()(m) =0 (i=1,...,u),
Trg /(' (ST~ (mi)) = Trr/g(e(¥)(mi) >0 (i > u).
Thus we may take (') = 1. SinceS is an automorphism of, the facedV,

W' are equivalent undekutr(f) (see Proposition 5 and Corollary 1). Also,
we have

FHx =0 HH+207 W) = (f+ M),

The groupAutr,(f) partitions the se{M C M(f)|[#M = N — 1} into
orbits K1, ..., Ky. According to Corollary 1 we apply Voronoi’s algorithm
to the representatives &f, ..., Ky only.

217



Starting with any perfect formy, we find all its inequivalent neighbours,
discarding any neighbour equivalentfoWe now find all inequivalent neighbours
of these forms, discarding any neighbour equivalent to perfect fahmady found,
and so on. This process stops after a finite number of steps becausexistr
only finitely many inequivalent (up to homothety) perfect forms (see Fitipa 8
in[2]). At each step (i.e. finding all inequivalent neighbours of a pefftach f), if
the groupAutT, (f) is nontrivial, we partition the se¥1( f) into orbits of Autr (f)
and study the representatives of each orbit. Then we apply Corollarhé tesult.

The total number of systems &f — 1 linear equations izé#]&({)). It can be

very large even if we have used the partitiondyt. (f), thus computer algorithm
was used to study those systems.

However, in a computational number theory software which handles systems
of linear equations with algebraic coefficients (such as KASH), it is plestiluse
rational numbers only. Let, . .., w, be aZ-basis ofOk and letl,, be the identity
matrix withn rows. Set

o1(wi)l, o1(w2)lp ... o1(wr)ln
B = : : :
or(w)Iy op(w2)ly ... op(we)ly

Let A be the symmetric matrix associated to the quadratic féraf rank n.
Then
Bldiag{o1(A),...,0.(A)}B

is a symmetric matrix with rational entries and with rows.
The computer algorithm was implemented twice:

1. using computational algebraic number theory software KASithis case the
algebraic coefficients were treated directly;

2. using the C programming language with CARAbrary and only the matrices
with rational entries.
The results obtained using both implementations coincide.
Voronoi ['°] proved the perfection of the quadratic form

n
2 2 :
¢0 = Z.%'Z + wia:j,
i=1

1<j

which can be used as an initial perfect form for Voronoi’s algorithm irr#tienal

case. In our case, we do not have such a nice result. But, we have:

1. if az? is a perfect unary form oveéK, thenag, is also perfect ovekK;

2. if K = Q(vD) with square-freeD > 1, then the unary form given in
Theorem 1 provides us with a perfect unary form oider

1 http:/iwww.math.tu-berlin.de/kant/kash.html
2 http:/Iwwwb.math.rwth-aachen.de/carat/
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3. THEOREMS

Proposition 2. If f is a perfect quadratic form oveK, theno(f) is also perfect
forall o € Gal(K/Q).

Proof. Obvious.

Proposition 3. If f and g are neighbouring formsthen o(f) and o(g) are
neighbouring forms for each € Gal(K/Q).

Proof. Since) is defined as a minimum of

Trg/q(f (%)) — u(f)
—Trr/q(¥(x))

over O3 with Tr(y(z)) < 0, we have thah is a rational number. Lef andg
be neighbouring forms along the face determined by the quadraticfor8ince
o € Gal(K/Q), we have

g=f+M = 0(g) = o(f+ ) =a(f)+Ao(¥). O

Proposition 4. The set of neighbouring forms g¢f is a union of the orbits of
Stab(f).

Since equivalent perfect quadratic forms have equivalent neighpdhis
proves the proposition.

Proposition 5. LetW, W' be faces ofl; and W, W’ be equivalent undekut( f).
Suppose that the quadratic formis +)’ correspond tdV, W', respectively. Then
the perfect neighbouring formé+ \¢ and f + \¢’are equivalent.

Proof. Let 75 be the automorphism of such thaty/(z) = (Sz). Since
f(z) = f(Sz), we have

(f + ) (2) = fz) + W'(z) = f(Sz) + M (Sz) = (f + M) (S).
Hencef + Ay’ and f + A\ are equivalent. O

Combining Propositions 4 and 5, we obtain the following corollary.

Corollary 1. Let f be a perfect quadratic form ovéf. ThenAut(f) decomposes
the set of neighbours gfinto orbits byStab( f).
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Theorem 1. Let D > 1 be a square-free integer.
1. Suppose that:> — D| attains a minimum at integér > 0. If D = 2 (mod 4)
or D = 3 (mod 4), then the unary fornaz? = (a; + apv/D)z?, with

a; = 2kD, as=k*+D—1,

is perfectand(1, k — v/ D} C M(ax?).
2. Letk > 0 be the smallest integer such th@2k — 1) — D] is minimal. If
D = 1(mod 4), then the unary fornaz? = (a1 + aQ%)xQ, with

1+3D
4 )

14+ D
a2:2k2—2k++T—2

ap=1-k>+(1+D)k—

is perfect and{1, —k + #} C M(az?).

Proof. Clearly,1 and(k — +/D)? (respectivelyl and(—k + %)2) are linearly
independent ovel). This proves the perfectness.

To show thatl andk — v/D (respectivelyl and —k + #) are the trace
minimum vectors ofaz?, we use rational binary quadratic forms. The trace
TrQ(@)/Q(ax2) of the unary quadratic form can be considered as a binary

quadratic formf(x1,x2) over Q andz;, zo are the coefficients of an algebraic
integer orZ-basis ofOQ( VD)*
Let D =2 (mod4) or D = 3 (mod4). We have

%Tr((al +agV'D)(z1 + 22V D)?) = 2kDx? + 2D(k* + D — 1)z 29 + 2k D22,
Replacingr; by 1 — ka2, we obtain the equivalent binary quadratic form
2kDx? +2D(D — k* — 1)x20 + 2k D3,
which is reduced in the sense that
0<|2D(D —k* —1)| < 2kD.

This proves the claim.
The proof is similar for the casP = 1 (mod 4). O

Corollary 2. The unary forn(8 + 3v/6)z? is perfect ove@Q(1/6).

Up to equivalence and scaling, there are only two unary perfect fofgns:
3v/6)x? and its field conjugatés — 3v/6) 2.

Theorem 2 (Main theorem). There exist exactl¥2 classes of binary perfect forms
with coefficients ifQ(+/6). (The list of representatives is given in Subsectid).
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The proof is based on applying Voronoi’s algorithm to inequivalenteoérf
binary quadratic forms, starting at the initial form

do = (84 3V6) (22 + zy + 3?),

which is perfect by Corollary 2 and by Remark 1 ][ The results of apply-
ing Voronoi’s algorithm to the initial form and perfect forms already fouamd
summarized in Subsections 5.1-5.13.

4. BINARY PERFECT FORMS AND ELLIPTIC FIXED POINTS OF
THE HILBERT MODULAR GROUP

In this section we recall some basic facts about binary perfect formsitpiit
fixed points of the Hilbert modular group. We refer t3][for more facts about
Hilbert modular groups. We attach to each mafvixe GL(2, K) the tuple

(e1(M),...,00(M)) € GL(2,R)"
and obtain the imbedding
GL(2,K) — GL(2,R)". (3)
Write GLT(2,K) = {M € GL(2,K)|det(M) is totally positivg. Let § =

{z € C|3(z) > 0}. Using the imbedding (3), one defines the action of
GL+(2,]K) on $H" as a componentwise fractional-linear transformation, that is, if

(Léfz) € GL™(2,K) and(z1, ..., 2,) € 9", then

a b ~ (oila)zi +oi(D)\
(C d) Gy 20) = <0i(C)Zi +oi(d) )=y
We shall identify the matrix// € GL (2, K) and its image under the embedding
into GL(2,R)".

Let f(z,y) = ax®+bxy + cy? be a positive definite binary quadratic form over
K and assume that;( f) can be factored as follows:

oi(a)(x — my)(x —7y), (T1,...,7) €H".

Here7; denotes the complex conjugatef Therefore we obtain the map from the
set of all positive definite binary quadratic forms o¥eiinto $"

[ (T, ).
Write I' = SL(2, Ox) for the Hilbert modular group dk.
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It is known that the Hilbert modular group acts discontinuouslysgn(see
Remark 3.2 in [?]). The pointsz, 2’ € $" are called equivalent and will be
denoted by ~ 2’ if there exists an\/ € I" such that\M z = z’. One can show that
if positive definite quadratic form$ and f’ satisfya f’ = f[M] for someM € T’
(M € GL™(2,0K)) and totally positivex € KK, then the corresponding points
2/ € §" are equivalent unddr (underGL™ (2, Ok), respectively).

By the elliptic fixed point of[" we mean the point € $" if its stabilizer
I', < I'is not equal to{ £ E}. Moreover,I', is finite andl", /{+E} is cyclic by
Remark 2.14 in?].

For a real quadratic number field with totally positive fundamental uni
we writeT'.) = GL™(2,0k)/{M € GL"(2,0k)|det(M) = %1 € 7} for
the extended Hilbert modular group. Sinke = Q(+/6) has a totally positive
fundamental unit = 5 + 2/6, we consider elliptic fixed points with respect to the
extended Hilbert modular group.) too.

Some binary perfect forms have a large automorphism group, henceittie p
in " associated to those forms are elliptic fixed points. The number of inequivalen
elliptic fixed points of ordee (e € {2,...,6}) for real quadratic extensiaR(v/D)
with D < 97 was computed by Prestél][ As a result of our computation for the
enumeration of the inequivalent binary perfect forms olgr/6) we found the
following classes of forms:

1. One class of perfect forms corresponding to the elliptic fixed pointdér®
under the action by ). The representative of this class is

24 — 86 24 4+ 86

¢8 3 3

and the corresponding elliptic point is

—3++v-3 —3+\/—_3>.

2(3 —v6) " 2(3+ 6) @

(21,22) = <

Under the action by the points(z1, z2), (22, 21) are inequivalent and have
order3 (see also Remark 2).

2. One class of perfect forms corresponding to the elliptic fixed pointadérat
with respect to the group.,. The quadratic form is

24 + 66 12 4+ 86 24 + 4+/6

®9

with the corresponding elliptic fixed point

(01, wp) = ~(3+42v6) + =32 —(3—2V6)+v—31 ©)
P Ve T 26V |
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Under the action by" the points(w;,ws) # (w2, w;) are of order2 (cf.
Remark 3).

3. Two classes of perfect binary forms corresponding to the elliptic faxaiat of
order3. The representatives of these classes are the initial perfect forisand
field conjugate

do = (8+3V6)(2® +zy +v?),
do = (8-3V6)(«®+xy+y°).

The corresponding elliptic fixed point of ordewith respect to the grouds.,

andT' is (7, 7), wherer = ‘1+T*/‘_3 € 9 is the elliptic fixed point of ordeB
with respect to the groupL(2,7%). Sinceg¢, and ¢, differ only by totally
positive scalar multiple, they correspond to the same pomts>.
This result coincides with the number of elliptic fixed points of ordiessd3 found
by Prestel (see p. 208 iA]). Under the action by the inequivalent elliptic fixed
points of ordeB are

(1,7), (21,22), and (zg,21).

With respect to the group.), there is an elliptic fixed poir(tz1, z2) of order6 and
an elliptic fixed point(7, 7) of order3.

Remark 1. Due to the result by Prestel][there are two inequivalent elliptic
fixed points of order with respect to the group .. Thus there exists a class of
imperfect binary quadratic forms corresponding to an elliptic fixed pointdér4.

The same issue arises for binary quadratic forms @@y3). Due to the result
by Prestel there is an elliptic fixed point of ordewith respect to the group.,.
Ong ['] found a complete list of binary perfect forms ov@t+/3), but none of them
corresponds to the elliptic fixed point of ordér The binary imperfect quadratic
form associated to the fixed point (see Proposition 49 [

%(1—1—\/5) + %11 — V3|
is
2® — (L+V3)zy + 24, (6)

The imperfection of the quadratic form (6) follows from the fact that thenber
of minimal vectors is strictly less thah

5. LIST OF BINARY PERFECT FORMS OVER Q(v6)

Since neither explicit description of the reduction domain for binary quadra
forms overQ(v/6) nor the reduction algorithm has been published until now, we
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shall compare invariants such as the determinant of the quadratic formoamd
of the determinant in order to detect the inequivalence of quadratic forns.
Nmdet(f) = Nmdet(g) for binary perfect formg, g, then we study further those
forms to determine whether they are equivalent or not. For example, ffreny it
follows that#M(f) = #M(g) andAut(f) = Aut(g). Throughout this section
we writee for the totally positive fundamental uriit-2+/6 of O@(\/é)- If quadratic

forms f andg are equivalent, thedet(f) = £ det(g) for some integet.
We denote by the image of by nontrivial Galois’ automorphism af)(1/6).
If x is a quadratic form, then the automorphism is applied to each coefficient of
For any perfect forny already found, we skip the investigation of neighbours
of the quadratic forny due to Propositions 2 and 3 ffis not equivalent tgf. This
means that for each pair of perfect forrfisf we pick up only one member for
detailed investigation.
For a binary quadratic form we write

Ms(¢) = {M C M(9)|#M = 5}.

5.1. Initial perfect form ¢y and its neighbours

We start with the perfect form
do = (8 4+ 3V6) (2% + zy + ).

The invariants areet(g) = Y726 andNm det(g) = 22. Since

det(¢o) 6937 + 2832v/6 20
det(do) 25 Q(V6),

it implies thatpg # ¢o.
The minimum vectors oy are

M(do) = {<_2 | \/6>’ (il@a) ’ <_2 0 \/6)’ ® | <_11> | @ } |

The setM(¢y) is decomposed into two orbits by the action of the group

Aut(do) = <<(1) é) , (_11 é>> ~ g,

Hence, there are at most two inequivalent neighbours.

The forms
o1 = (8+3V6)2® —2(2+ V6)zy + (8 + 3V6)y?,
b2 = (8+43V6)z®+ 2Mxy + (8 4 3v6)y>

5)
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are new perfect forms because

Nmdet(¢1) = 48 # Nmdet(do) # Nmdet(¢2) = %'

5.2. Perfect form ¢; and its neighbours

Let us consider the perfect form
b1 = (8 + 3v6)z® — 2(2 + V6)zy + (8 + 3v6)y/2,

with invariantsdet(¢;) = 108 + 44v/6 andNm det(¢;) = 48. Butdet(¢1) =
108 + 44\/6 = (108 — 44\/6)63 = det(¢1)53, hencep, A P1.
The minimum vectors op; are

M(by) = 0 —2+6 3-V6 2 -6
Vo U\ -2+ v6) 0 "\ -2+v6) \-2+6)"
2 -6 0 1
—3+v6)°\1)\0) ("
The groupAut(s1) = ((J,)) decomposes the selfs(¢1) into 12 orbits.
Investigating these orbits by computer, we found the following five clasées o

forms:
o7 = (84 3v6)z? — 2(2 + V6)zy + (20 + 8V6)y?%,

16—i—5\/6 2
— Y,

b3 = (8 4+ 3V6)2? + 2y + 5

andeyg, ¢1, ¢2.

Clearly,¢s represents a new class of perfect forms, because applying any matrix
M e GL(2, OQ(\/€)> to an integral quadratic form, we get an integral form too.
Sincegs is not integral, butyy, ¢1, ¢7, andg, are, the result follows. Investigating
the form¢; (see Subsection 5.8), we find that the number of minimum vectors of
¢7 is 9, which exceeds the number of minimum vectors of the fosmss, and
¢2. Thereforep; represents a new class of perfect forms.

5.3. Perfect form ¢, and its neighbours

The perfect form

20 4+ 9v6
¢o = (84 3V6)z? + 2%[@ + (8 4 3v6)y>
has the invariantslet(¢y) = 2064£840V6 and Nmdet(gy) = 204%.  Since

det(¢2)/det(dz) = BBEINVE s not a unitpy % Ba.
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The minimum vectors ap- are
mon = {(3778) (5%6) (2 2we) (57):

0 -1 1

1/°\V1 /J’\0 '
The automorphism grouput(¢2) = ((V)) decomposes the sf;(¢») into 12
orbits.

Again, investigating these orbits by computer, we found the following five
classes of perfect formsiy, ¢1, ¢2, ¢3, and

16 + 6 ,
2
From the comparison dfmdet(¢4) = 57 to norm of determinant of other

perfect forms already found it follows that, represents a new class of perfect
forms.

¢y = (84 3V6)2® +2- 2y +

5.4. Perfect form ¢35 and its neighbours

Consider the perfect form

16 +5v6 ,
9 7

Since the invariantdet(¢3) = 108 + 441/6, Nm det(¢3) = 48 coincide with
the invariants ofs; (see Subsection 5.2), we can apply the same argument to prove

thatgs o4 ¢s.

The minimum vectors of3 are
M(es) = {(—321\/\/66) ’ <—22_+\/\/66) ’ (Ez_f\/\/%) ’ C??f\/\/%) ’

(%57 0)-0)F

Investigating the neighbours @f, we found seven classes of perfect forms with
the following representative elements;, ¢2, ¢4, ¢7, and

03 = (8+ 3\/6)3:2 + 2zy +

24 — 7/6
b5 = (8 +3V6)2® — 2(3 + V6)zy + T\/_yQ,
3—6
b = (8 4+ V6)x? +2 3\f+(8+3\/5)y2,
24 + 86 12 + 8v6 24 + 4/6
¢9:+T\/_a:2+2 3\/_xy—|— +3 ny.
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SinceNmdet(¢g) = 28, it follows that¢, represents a new class of perfect
forms. The same argument applies ¢@ (Nmdet(¢s) = 132) and to ¢
(Nmdet(¢g) = 43—7).

5.5. Perfect form ¢, and its neighbours

The perfect form

16 6
b1 = (84 3V6)z® +2- 20y + J;\/_yQ,

with det(¢4) = 69 + 28v/6, Nm det(¢4) = 57, and

s = {77201 (09559 (0)- ()

is inequivalent ta, sincedet (¢4)/det (¢q) = 215+1288V6 o Oq(ve):

In order to find all perfect neighbours of;, we must investigate all elements
of M5(¢4) sinceAut(¢4) is a trivial group. The investigation by computer yielded
the following perfect neighboursgis, ¢3, ¢g, 7, ¢g, @andeqp.

5.6. Perfect form ¢5; and its neighbours

Consider the perfect form

b5 = (8 +3V6)z? — 2(3 + V6)zy + ﬂgf

with minimum vectors
o = G0 (09 () (2 o)
() )}

Sincedet(¢s) = 2=2Y0 andNmdet(¢s) = 132, we havedet(¢s)/det(¢5) =

1551*325f ¢ Ogve): Thls givesps £ és.
The groupAut(q55) is trivial. After examining the sed/5(¢s), we found the
following neighboursips, ¢s, ¢, ¢7, and

24 — 8v/6 24 + 86
3\f 2424z +T\[y2,

d11 = (8 +3V6)x? + Q%Exy + (8 = 3V6)y?,

6++/6 96 — 31v6 ,
5 xy+712 Y-

¢s =

b12 = (84 3v6)x? + 2
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An easy computation shows th#tM (¢g) = #M(pg) = 12, det(pg) = ?

anddet(pg) = Mf‘@ (see Subsections 5.9 and 5.10). Hengeot ¢9 and dg
represents a new class of perfect forms. By comparing the norms ofrdesats,
one immediately verifies that the quadratic forns ande., represent new classes
of perfect forms.

5.7. Perfect form ¢¢ and its neighbours

The perfect form

b = (84 V6)x? +2 zy + (8 4 3vV6)y2,

6+ 6
2

has invariantsdet(gbg)_: AU1H98VE and Nm det(¢g) = 257, We haves # oo,
becauselet(¢g)/ det(fg) = LE05HAT26V6 ig not a unit. As
0 1
1/)\0

M(dg) = —24+v6)\ (—2+6 1 0
7 W5 —2v6 )\ 7-3v6 )\ —2+v6) \—2+v6)
andAut(¢g) is a trivial group, we must investigate each elememtfi¢s). As a
result we have the following neighbouring formss, ¢4, ¢s, ¢g, ¢9, andepq.

5.8. Perfect form ¢; and its neighbours
Consider the perfect form
dr = (8 +3V6)z? — 2(2 + V6)zy + (20 + 8v/8)y>.

The invariants ardet(¢7) = 294 + 1201/6 andNm det(¢7) = 36. Put
z\ _ ([ -1 —e1 x!
y - 0 5_1 y/ y

d7(x,y) = (84 3V6)a" +2- 22"y’ + (8 — 3V6)y”.
For the sake of simplicity, we set

then

¢7 = Pr(w,y) = (8 +3V6)a” +2 - 2zy + (8 — 3v/6)y*.
It is easy to see thap; ~ ¢7, andx = ~ o 7p, whereP = (J!), is the

only nontrivial automorphism ofr ¢7. The automorphisny is of order2. By
Proposition 4 the neighbours ¢f occur in pairsf, f. Since
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M = {(5:38)-(ve) Gove) (6208 (1Y),
070 )

and Auty(¢7) = Ca, we have to investigatés elements ofl/5(¢7). Hence, the

inequivalent neighbours af; are g1, é1, ¢3, @3, da, ¢4, G5, b5, ¢7, G5, 11, P12,
and¢12.

5.9. Critical perfect form ¢g and its neighbours

The perfect form

24 — 24
g = TS\/E@J +2-day + %8\/?7;2,
with det(¢s) = L and Nmdet(¢s) = 29, is a critical binary form. Since
bg ~ ¢g, we have thabs is fixed byy = ~ o 7, where
_(3+V6 1
e ()

Hence, the automorphism groups are
Aut(¢s) = (75, 77) = S3, Autt(¢s) = (X, Zs, ) = D12,

s=(L2 ) 1= (4 1)

where

Remark 2. Let z (2') be the elliptic fixed point (4) associated with the form
¢s (respectivelygs). The stabilizerl’, < I' (I'; < T'(,)) is generated byS

(respectivelyS and S’ = (;?2)). The equalityS’z = 2’ follows from immediate
computations. Thus; « 2’ underl’, butz ~ 2/ underT'(,). Due to immediate
computations, we have that has ordeB in I" (6 in I'(,)). See also the table on

page 208 in{].

The minimum vectors o are
w9 = ot ve) (ot ve) (arve) (15 06)
(e G (57 C1F)
CLT O G
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The groupAut(¢g) partitions the sefM/5(¢g) into 76 orbits. Each orbit, if any
element of it determines a face Of;,, gives us the pair of neighbouysand f of

¢g by Corollary 1. Investigating these orbits by computer, we obtain a complete
list of the neighbours ofs: ¢5, 5, d7, dg, P12, aNdpys.

5.10. Critical perfect form ¢¢ and its neighbours

Let us consider the perfect form

24 4 8v6 12 4 8v/6 24 + 4+/6
:JmQ—G—Q \[:Ey—i— ny

P9 3 3 3

with det (¢g) = 80326 andNm det(¢g) = 236,

It follows from immediate computations that represents another class of
critical forms.
Let

5—1 5—1
= <2 ~V6 3- \/6> '
A trivial verification shows thak = — o 7y fixes¢g. Thereforepg ~ ¢g. Writing
o <—1+\/6 3—\/6> _ (—1+\/€ 4—\/(_3>
-2 1-v6)’ -2 1-+6)’
we haveAut(¢g) = (7s, Tr) = Vy andAutry(dy) = (Zs, 71, x) = Ds.

Remark 3. Let w (w’) be the elliptic fixed point (5) associated with the form
(¢9, respectively). The stabilizér,, in T’ (inl'()) is generated by’ (respectively
T andS’ = (;2)). SinceS'w = w’, we havew » w' underT', butw ~ w’ under
I (cf. table on page 208 if]).

The minimum vectors apg are

o - {1 (520 () (319
LI ED ()
(O 0

The groupAut,(¢9) decomposes the sét/5(¢y) into 104 orbits. LetO be
an orbit. If an element oD determines a face dfly, such thatf and ¢y are
neighbouring forms along this face, th¢ris also a neighbouring form afy by
Corollary 1. Examining these orbits by computer gave the following neiglsbafur

¢9: ¢3’ %1 ¢4’ ai ¢6l %1 ¢8l ¢91 ¢101 and%'
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5.11. Perfect form ¢19 and its neighbours

Let us consider the perfect form

6+ v6 96 4+ 13v/6
$10 = (8 +3V6)z* + 2T\[xy + —\/iy2

12

with det(¢19) = 2224896 andNm det(¢10) = 143, The inequivalences % ¢1o

follows from comparing the determinantst(¢1o)/det(gyg) = 31829412994V6

Ok. The groupAutr(¢10) is a trivial group. Since
et 7-3V6)\ [-3+v6) [—2+6) (0) (1
o[ (528 1 (5 6)

there are at mogt neighbours (up to equivalence). Applying the generalization of
Voronoi's algorithm tap,, we obtain the following list of perfect neighbours;,

b6, B9, andeia.

5.12. Perfect form ¢1; and its neighbours

The perfect form
216
¢11 = (84 3V6)z” + 2foy + (8 —3V6)y?

is equivalent tap;;. The values of interesting invariants are

22 484
det(d)ll) = ?7 deet(¢11) = 7

The group of proper automorphisms is a trivial one, but the grbug(¢11) is
generated by the element T, whereR = (9 '), andAut(¢11) = Co.

The perfect formp,; has six minimums:

w2 2 ()6}

thusAgt(@l) decomposes the satl(¢11) into three orbits, each of it giving the
pair f, f of neighbours. By means of computer we found the following list of the

neighbours ofb11: ¢7, ¢, ¢s5, andey ;.
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5.13. Perfect form ¢15 and its neighbours

Let us consider the perfect form

6+ 6 96 — 316 ,
Ty WE T

P12 = (8 4+ 3v6)x? + 2 13

with det(¢12) = 240 andNmdet(p12) = 143, Sincedet(¢12)/det(¢12) =

149+14
1:15 V6 s not a square of a unity 2 % ¢12.

The minimum vectors o5 are

o (GO D6

The automorphism groups are trivial ones, thus all elementg;gt;2) should be
investigated. By means of computer we found a complete list of the neighbburs

¢12: ¢51 ¢7| ¢81 and%'

5.14. Complete list of binary perfect forms over Q(v/6)

Perfect formf Field conjugate off

®0: (8+3V6) (@ +ay+y?) b0 (8-3V6) (@ +wy+y?)

G1: (8+3V6)2?—(442v6)zy+(8+3V6)y? | d1: (8—3V6)2?—(4—2v6)zy+(8—3V6)y?
P21 (8+3V6)a?+220E0 1y 1 (843V6)y? | ot (8-3v6)z2+2202Y0 0yt (8-3v/6)y>
B3 (8+3v/6)a?+2my+ 165V 2 O30 (8—3V/6)a2+2wy+16=5V8 2

Ga: (8+3V6)a? +dzy+ 16502 Pa: (8-3v6)z2+dzy+ 16502

P51 (843v6)a? —(6+2V0)ay+1=10y2 | ¢yt (8-3V6)22—(6-2v/6)my+ 2EVE 2
G (8B+V6)2?+(6+V6)zy+(8+3V6)y? | P6: (8—V6)a2+(6—V6)zy+(8—3V6)y>
O7: (84+3V6)z2+4xy+(8—3v6)y? o7

Pg: HABVO42 gy 20486 2 b3

¢9: 24+8f 2+212+8\f 24+4\/6 2 ¢9

Y+
B10: (8+3V6) 2+(6+\/_)xy+96+13f 2 %: (8—3\/5)x2+(6—\/6)xy+96_1123‘/5y2
P11 (3+3V6)22+2208ay+(8-3v6)y? | P11

G121 (8+3V6)22+(6+VE)ay+2=3Y8y2 | §1g: (8-3v6)a? +(6—v6)y+ WHILVE 2
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5.15. List of perfect forms and their neighbours

Perfect formf Neighbours off
%o b1, ¢2
b0 ¢1,92
il ¢7, 93, b2, P15 P0
$1 ¢7, ¢3, 92, ¢1, o
& o, 6, 63, 02, 61
¢2 b0, 91, 3, P2, P4
& 1,6, Gr, 4 65, 60 0
¢3 ¢1, G2, O7, as P55 P9, P
b4 b2, 93, 96, 07, P9. P10
P4 b2, P3, D6, P71 P95 P10
@5 @3, @5, P6, P17, P8, D115 P12
®s5 b3, 05, D6, O75 P8, P11, P12
é 3, 6, G5, 60 69, 10
o $3, P4, @5, P65 9y P10 o
b7 D11 P1, G35 B3, P4y P4, P50 D5, P17, D11, P12, P12, P8
s ®s5, P5, O7, P9, P12, P12 o
b9 ®3, P3, P4, P4y D6, P65 P84 P9, P10, P10
$10 P4, 6y P9, P12
P10 Par 6, P9, P12
b1 b5, ¢5, ¢7, P11
P12 @5, O7, P8, P10
P12 ®s5, 97, P8, P10
6. DISCUSSION

There are 22 classes of binary perfect forms with coefficient®(v/6) (by
Theorem 2). From!] it follows that the numbers of equivalence classes of binary
perfect forms ove@(v/D) with D = 2,3, 5 are2, 3, 2, respectively. One reason
for the rapid increase in the number of inequivalent binary perfeatdas clearly
the fact that the quadratic number fiel@gv/D), D = 2, 3,5, are the only real
guadratic number fields that are maximal totally real subfields of cyclotomisfield
If the ground field is the maximal totally real subfield of a cyclotomic field, there
exist binary perfect forms having large automorphism groups. Coesely, the
number of perfect neighbours is small. If square-fiee> 5 (i.e. Q(v/D) is not
the maximal totally real subfield of a cyclotomic field), then it can be shown that
for any binary positive quadratic forrfi over Q(v/D) we have the upper bound
#Aut(f) < 12.
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o 01 b~

Taielik loetelu taiuslikest binaarsetest ruutvormidest
kordajatega arvukorpusest Q(v/6)

Alar Leibak

On esitatud taielik loetelu taiuslikest binaarsetest ruutvormidest (ekvivalents
tapsusega ruhm&L(2, (’)Q(\/g)) toime suhtes), kusjuures ruutvormide kordajad

on arvukorpusestQ(+/6). On tdestatud taiuslike ruutvormide omadusi (ile
taielikult reaalse normaallaiend, mis on seotud Voronoi algoritmiga: taiusliku
algruutvormi ehitamine Ule reaalse ruutlaiendi ja ruutvormi automorfismirihma
toime kasutamine.
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