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Abstract. A generalization of Voronoi's theory to perfect quadratic form over algebraic
number fields is studied. This generalization follows Koecher’s ideaN&gh. Ann., 1960,
141, 384-432) of using the minimums @t f(X) for the positive definite quadratic form
f(X). As a result some useful properties of perfect quadratic $oane presented and the
upper and lower bounds of Hermite’s constant are proved.
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1. INTRODUCTION

In this paper an additive generalization of Voronoi’s theory to algebraic number
fields is studied. Usingace minimumsgi.e. minimums of quadratic forrir f (X);
see Eg. (1)) it is possible to introduce perfect forms, extreme forms, and the
generalization of Hermite’s constant. Koech§rifitroduced the perfect forms with
respect to the trace minimums and, following his work, Ohgj [studied binary
perfect forms over real quadratic field¥(v/2), Q(v/3), andQ(v/5). It should
be pointed out that the systematic approach to this generalization has not been
published so far.

The present paper was motivated also by the difference between this generaliza-
tion (herein calledadditive generalization) andmultiplicative generalization
introduced in Baeza and Icaz4 and Icaza {] (they considemorm minimums
i.e. minimums ofNm f(X)) and completed in Coulangeoti[Let us consider the
following example. LeiK be a totally real algebraic number field anddet K be
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totally positive. We writeDx for the ring of algebraic integers @. The function
7 1s defined for unary forms by the equation

2y _ min{Nm]K/Q(amQNa: € Ok \ {0}}

(see P], Remark 1, p. 12). A&mg q(2?) > 1 for all 2 € Ok, and the equality
Nmy q(2*) = 1 holds at units of0k, we haveyj (az?) = 1 for each totally
positivea € K. In multiplicative generalization, Coulangeon considered Humbert
tuples up to scaling (seé]). Consequently, from the multiplicative point of view,
there is only one unary form which is of course extreme. Hence, the siuatio
in dimension one is trivial from the multiplicative point of view. For additive
generalization, let us consider the number figld/3). Lete > 1 denote the
fundamental unit inQ(v/3). In our case Hermite’s functiomQ(\/g) on a positive

definite unary formuz? is defined by
min{TrQ(\/g)/Q(axz)\x € Oq(va) \ {0}}
Nmg5),q(a)

An immediate computation shows that

’YQ(\/§)(@$2) =

'yQ(\/g)(exz) =4 > ’)/Q(\/g)(aSC2)

for any unary formuz? that is neither equivalent nor homothetic to the unary form
ex?. Henceez? is a critical unary form ove)(v/3) (see Definition 4). See also
Example 1 for the difference of perfect forms in these generalizations.

Perfect forms (in the sense of additive generalization) are closelyddiathe
reduction theory of positive definite quadratic forms over algebraic nufigids
(see ['"]). The explicit descriptions of these reduction domains have not been
published by now, which also motivates the study of additive generalization.

As a result, the necessary conditions of the well-known Voronoi’s theare
generalized to algebraic number fields (Theorem 5).

Given a unary perfect form over a totally real algebraic humber fi€|da
method for obtaining an initial perfect quadratic form of rankverkK is presented
(Theorem 1 and Remark 2). Ong (see Theorem 3.2.4]jgfve a construction of
initial perfect forms for number field® (v/2), Q(v/3), andQ(v/5). Ong’s result
will be generalized to an arbitrary totally real algebraic number field (Téraerl
and 2). Once we have an initial perfect form of ramkover K, we can find
all perfect forms (up to equivalence) of ramk over IK by applying Voronoi's

algorithm. Among these perfect forms there is a quadratic f@@é@ such that

the unary formuz? is perfect oveik and¢(()m) is the principal perfect form ove)
of rankm

m m m

¢ém)(x17733m)22$12+z Z TiTj.
=1

i=1 j=i+1
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Hence, by Theorem 1 and by applying the generalization of Voronoi@righgn

(to binary quadratic forms over real quadratic fields, 2€)[it is possible to find

all perfect quadratic forms (up to equivalence and homothety) Bver

Section 4 is concluded with the upper bound of the additive Hermite's cdnstan

in terms of the number field and the rational Hermite’s constant (Theorethi§).
shown that the given upper bound is the best possible. In Section 5 iticsied
how these results can be used to show that particular binary forms aralcritic
these examples new constructions for lattiegsand Es are presented.

2. DEFINITIONS AND NOTATIONS

Let K be an algebraic number field withreal embeddings, ..., s, and2s
complex embeddings, 11, .. ., 0pt2s, With 0,451, = 7,45 fOr 1 < i < s, where
the overbar “~ ” denotes the complex conjugate.

Definition 1. A tuple (f;)/X; of r positive definite quadratic formf, ..., f,. of
rank m and s positive definite Hermitian formg..+, . .., f.1s of rankm is called
a Humbert tuple of rankn.

For each Humbert tupléf;)’X7 we associate a tuple of symmetric ands
Hermitian matrice§4;)! X7 such thatf;(z) = 2zt A,z forall 1 <i <r +s.

A quadratic form (Hermitian form)f over a totally real number field
(respectively a totally complex number fiel®) is said to be positive definite if

o;(f) is positive definite for each= 1, ..., r (respectivelyi = 1,.. ., s).
Let 7;: 01(K) — 0y(K), i = 2,...,r, and7}: 0,41(K) — 0;(K), j =
r+2,...,r+ s, be field isomorphisms.

Definition 2. A Humbert tuple(fi, ..., fr+s) is called a conjugate tuple if there
exist a positive definite quadratic forfnovero; (IK) and a Hermitian fornh over
or+1(IK) such that

(f1oeos fras) = (Fm2(f), - me(£), 9, 7042(9)s - Ts(9)).

If K is totally real (totally comple), then a Humbert tuple(fi,...,f,)
(respectively(fi,..., fs)) is called a conjugate tuple if there exist a positive
definite quadratic form oveK (respectively a positive definite Hermitian form
overK) such that(f1, ..., f.) = (o1(f),...,0.(f)) (respectively(f1,..., fs) =
(o1(h),...,05(h))).

If K is totally real (totally complex) and is a positive definite quadratic form
(respectively a positive definite Hermitian form) oW€rthen we use the same letter
f for the Humbert tupléo; (f), ..., o.(f)) (respectively(oi(f),...,as(f))).

Throughout this papef?,, k denotes the set of all Humbert tuples of rank
over a number fieldk.
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The groupGL(m, K) acts onP,, k via the embedding

GL(m,K) — GL(m,R)" x GL(m, C)?, M ~ (o(M))IZE7.
By the trace minimum of the Humbert tupléi, . . ., fr+s) of rankm we mean
the setM( f) of nonzero vectorsy € Of} where the positive definite quadratic
form (overR)

T r+Ss
D filei(X)+2 ) filou(X)) (1)
=1 i=r+1

of m-[K: Q] variables attains its first minimurxy, (i.e. the smallest nonzero value
onZ™K: RN If fis either a positive definite quadratic form over totally fi&abr

a positive definite Hermitian form over totally compli&x then the quadratic form
(1) overR is Tr f(X). (This explains the namteace minimur) If f is a Humbert
tuple, then we writél'r f(X) for the quadratic form (1). ObviousIyirf(X) is
positive definite iff; is positive definite foralf = 1,...,r + s.

Definition 3. A Humbert tuplg(f;)} is perfect if it is uniquely determined by its
trace minimums and;.

By definition, a Humbert tuplg of rankm has

1
N = Tim(m%— ) + sm?
2
coefficients. Hence, if is also perfect, then we must hayeM(f) > N (for
quadratic forms over real numbers see af§p [
Let us consider a function on Humbert tuples of ramk

~ min{Trf(X)]|0# X € O}

’YIK( ) - d(f)l/mUK Q] s
where .
d(f) =[] det(fo) - T det(£:)*
=1 i=r+1

The real numbeiti( f) is called the determinant of the Humbert tugle
Clearly,yk (f) is invariant under the action ByL(m, Ok ) and multiplication
by positive real scalars.

Definition 4. A Humbert tuplef of rank m is called extremdcritical) if the
function~y attains a local maximur{respectively a global maximyrat f.

Theadditive Hermite’s constant,, k is defined by

Ym, K = sup Y (f).
fepm,]K
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Definition 5. The Humbert tuplef with the corresponding tuple of matrices
(A4;)I17 is called weakly eutactic if the adjoint matrik; lies in the open convex

hull ofo—i(XYt), X e M(f),forall 1 <i < r+s,thatis there exis{r+s)-tuples
of positive realp™ € (Rso)"**, X € M(f) such that

A= > o XX,
XeM(f)
holds foralll < i <r + s.

The name “weak eutaxy” is due to Coulangeon (g [lcaza f] called
such Humbert tuples eutactic forms. For quadratic forms over real ngntiftisr
definition coincides with the usual definition of eutaxy (s&€¥).

3. PERFECT QUADRATIC FORM

For the convenience of the readers, we recall here the definition offecpe
Humbert tuple from1].

Proposition 1. Let f be a Humbert tuple of rank: with the corresponding tuple
of matrices(A;):=}"*. Thenf is perfect if and only if there exist

1
N = Tim(m;— ) + sm?

trace minimum vectorsXy,..., Xy € M(f) such that the block-diagonal
matrices

diag{o1(X;X;), ..., 0rs(XiX:)},  i=1,...,N,
are linearly independent.
Remark 1. This was the definition for perfection given by Koecher (Sgg [
The proof is obvious (see als§][pp. 15-16; §]; [°], Theorem 3.2.10).

Proposition 2. Let f be a Humbert tuple oveK. Assume thad; € R~ is the
trace minimum off. If f is perfecfthen there exist a conjugate tugleverK and
a € R~ such thatf = ah.

Proof. Let K = Q(&) for some algebraic numbér Let Vi, ..., Vr be the trace
minimum vectors off = (f1,..., fr+s). By assumptionTrf(V;) = A; for all
1<I1<T. Leth = Al—lf. Obviouslyh is a perfect Humbert tuple with minimum
vectorsVy, ..., VpandTrh(V;) = 1forall 1 < i < T. It remains to prove that
is a conjugate tuple. By Definition 3, the system of linear equations

Teh(Vi)=1, k=1,...,T, )
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yields the unique solution (the Humbert tuglie After expanding the system (2)
we have

T r+s m
Zzhl WOl sz +2ZZZ hy 4701 szvk] +2 Z Zhl 1501 szvk z)
=1 i=1 =1 i=1j5>1 l=r+1i=1

r+s m m

+4 Z ZZ (hiij ) R(01(Viei Vi j)) — S(hai5)S(01(Vi i Vie )] = 1,

I=r+1 =1 j>1

wherel < k& < T (hereR andy denote the real and imaginary parts, respectively).
Applying Cramer’s formula to the linearly independent subsystem of sy&gm
we gethy, ;; as the expression of determinants. Since any algebraic numbék

is a Q-linear combination oft, ¢, ..., ¢(K: ®I-1 we obtains;(a) from o (a) by
exchangingk < [. Hence, exchanging < [ (i.e. ox(§) < oy(&)) in the
expression ohy, ;;, we geth ;;. Clearly,hy, ;; € o0 (IK) for any: andy.

The proposition is proved. O
Corollary 1. If (ay22?,...,a,2?) is a perfect unary Humbert tuple over a totally
real number fieldK, then(al, ...yap) = (o1(a),...,o0.(a)) for a totally positive

algebraic number € K.

For the rest of the paper, we identify unary perfect Humbert tuplga)z?)7_,
with az? for some totally positive: € K. (This involves no loss of generality.)

Corollary 2. Any perfect Humbert tuple over a totally reéotally complex
number fieldK is proportional to a positive definite quadrafi@spectively positive
definite Hermitialn form f overIK.

Coulangeon{] proved that any multiplicatively perfect Humbert tuple o%ér
is equivalent (once conveniently rescaled) to the Humbert tuple with emntffiege
extensiorlL of K. Baeza et al.'f] found that the multiplicatively extreme binary
quadratic Humbert form ove®(1/2), which is also a multiplicatively perfect
Humbert tuple, has entries i}(v/2, V/3).

Let us consider an example to illustrate the difference between additive
generalization and multiplicative generalization.

Example 1. From the multiplicative point of view, there exists only one class of
multiplicatively perfect binary forms ovef}(v/D) for eachD = 2, 3,5 (see [9)).

Ong [] proved that there are at least two classes of perfect forms QyefD)

for eachD = 2,3,5. For the convenience of the reader we present here the list
of binary perfect forms ove®(v/D), D = 2,3, 5, and the list of multiplicatively
perfect binary forms over the same fields. ket 1 denote the fundamental unit

in Q(v'D), D = 2,3, 5. Write € for the field conjugate of.
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D | Binary perfect forms ove®(v/D) | Multiplicatively perfect binary

forms overQ(v/D)
9 ef2 3 =52 1 e/2 1 €/2
DT ()
(7 =) (¥ 2a)
() (4 7)
<<2e V3/3 26{ 3) <725\é/§/3 726%/5/3))’
(<2 +2V3 1+\/_> (2—§\/§ 1\/§>>
1+v3 2+2v3 1-v3 2-2v3
5 (s ) (o ) (e ) (L )

(5 ") (8. 2F7)

(This example was pointed out by an anonymous referee.)

By a positive lattice we mean the lattice associated to a positive definite
quadratic form. Recall that a positive lattide(over Z) is of E-type if for any
positive latticeZ’ the minimum vectors of. ® L’ can be written as ® I/, where
l € Landl’ € L' (see 1], §7.1). We refer to'] for more facts and the existence
of positive lattices oE-type.

Proposition 3. Let f(x) = ) fijz;z; be a perfect quadratic form oveZ.
and L be the corresponding lattice. If is of E-type then the Humbert tuple
(f,-.., H([K: Q] copieg is not perfect over any algebraic number fiéd

Proof. Throughout this proofn denotes the rank of. Write n = [K: Q].
Let L; denote the lattice of the rational quadratic foffin(xz?). Since L is

of E-type, we have that minimal vectors @f, ® L can be written ag; ® I,
wherel; is a minimum vector offr(z2) and/ is @ minimum vector off. Write
min(f) = {f()|l € Z™ \ {0}}. Clearly, the first minimum of the Humbert tuple
(f,...,f)isn-min(f). Applying the inequality between arithmetic and geometric

means, we have
Tr(v?) > n Y/Nm(v2) > n.

The first equality holds ifi? is an integer and the second equality holds/fis a

unit in Ok. Combining these equalities, we obtaire Z. Hence, there are only
m(m + 1)/2 linearly independent block-diagonal matrices (see Definition 1). This
proves that the Humbert tupl¢, . . ., f) is not perfect. O
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Nevertheless, we have a method to obtain perfect forms over a totally real
number fieldK from perfect quadratic forms ové).

Theorem 1. Let K be a totally real algebraic number field and & denote its
ring of integers. Letz? be a perfect unary quadratic form ovéhk with lattice
L, overZ and letg be a perfect quadratic form ovét with lattice L. If L, or L

is of E-typethen the quadratic formyg is perfect oveik.

Proof. Let m = rank(g). Letvy,...,v; € Ok be the trace minimum vectors of
the unary formuz? and letV;, . .., Vi € Z™ be the minimum vectors af. Hence,
by the hypothesisl(, or L is of E-type), the trace minimum vectors of arev;V;

(1 <i<tandl < j <T), and so\; = Tr(ag(v;Vj)) is a ratlonal number.
Seeking a contradiction, suppose there exists a Humbert tuaple. . , h,.) of rank
m overKK such thatTr(h(v;V;)) = A forall1 < i < tandl < j < T. For
1<p<tandl <qg<T wehave

Moo= Y D haoiop)VE i +2) 0 o) VeV,

=1 \i=1 i=1 j>i
= Z(Zhl”al >V2 +2ZZ<Zhlzjal )‘/%VJ
=1 =1 =1 j>1 =
SinceVi, ..., Vp determine the quadratic forpnup to positive scalar multiple, we

get
T
cogig = hio(vy), I<p<t.
Fixing i andj, by the perfection of.z> we have
(h1ijs -y hngj) = Hij(o1(a), ..., o00(a)), Hi;j € Q.
This gives us the rational quadratic form
H(xy, .. ZH;L‘ +QZZ T
i=1 j>1i

Finding the trace values afy anda H atvV for anyv € M(az?) andV € M(g),
we obtain

Tr(av?)g(V) = Ay = Tr(av?)H(V).

Thereforegy = H andag is uniquely determined by its trace minimum vectors. The
theorem is proved. O
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Lete > 1 be the fundamental unit of a real quadratic number figld/D).
If a quadratic formf is over a number field, then we denote it briefly by /K.
We can immediately verify that the unary formg222/Q(v/2), ez?/Q(+/3), and
e\/ng/Q(\/g) are perfect. Hence, this theorem generalizes the theorem proved
by Ong (Theorem 3.2.1 irf]).

Theorem 2. Let K; and KK, be totally real number fields with degreg and
ro, respectively. Letf; and f; be perfect quadratic forms oveK; and Ko,
respectively. Denote the rank ¢f by m; (i = 1,2). We defineCs(M(f)) to
be theQ-linear space generated Hyut|u € M(f)}. If

1. K; andKK; are linearly disjoint andgcd(disc(K ), disc(K3)) = 1;

2. {vew|ve M(fi),we M(f2)} € M(f1 @ fa);

3. dim Lo(M(f1)) - dim Lo(M(fa)) > ryrgmmelmumatl),

thenf; ® f- is a perfect quadratic form ovékK; K.

Proof. Since the number field¥; and K, are linearly disjoint and their
discriminants are mutually prime, it follows that the ridlk, k, iS generated by
01 ® 02 = 0102, Whereo; € Ok, andoy € Ok, (see Ch. 3in 1[2]). The rank of
f1® faismims.

Write » = riro. Let o0y1,...,0, be the embeddings oK K, into
R. It follows immediately that the number of linearly independent matrices
diag{oy(uut),...,or(uu!)}, u € M(f1 ® f2), over R equals the number of
linearly independent matricea:!, v € M(f; @ f»), overQ.

Hence, the number of linearly independent matrices (u € M(f1 ® f2))
must be at least
mima(mima + 1)

N =1riry 5

By hypothesis we obtain

Lo(M(f1)) ® L2M(f2)) C Lay(M(f1® f2)).
Hencedim £o(M(f1 ® f2)) = N. This proves thaf; ® f, is perfect. O]

Remark 2. Let az? be a perfect unary quadratic form over a totally real algebraic
number field K. Since the principal perfect quadratic forgy satisfies the
hypothesis of Theorem 1 (by Theorem 7.1.2 )] the perfect quadratic form
agq can be used as the initial perfect quadratic form in Voronoi’s algorithm.

This motivates the study of perfect unary quadratic forms over totally real
algebraic number fields.

On the other hand, if we have a perfect form of rankover a totally real
number fieldK, then we can find all perfect forms (up to equivalence) of rank
overK by the generalization of Voronoi’s algorithm. Among them there is a perfect

1 See also Ch. 3, Proposition 17 #]f
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quadratic formug, with a perfect unary formz? overK and the principal perfect
form ¢o of rank m by Remark 2. Thus we can find all perfect quadratic forms
over K (up to equivalence) by Theorem 1 and by applying the generalization of
\Voronoi’s algorithm.

We conclude that in order to find all perfect forms (up to equivalengej o
a totally real algebraic number fiel it is sufficient to have an initial perfect
quadratic form.

We have solved the problem of finding an initial perfect form for realdyatic
algebraic number fields and partially for the maximal totally real subfield of
cyclotomic fields.

Theorem 3 (Theorem 1in[*3]). LetD > 1 be a square-free integer.
1. Suppose thak? — D| attains a minimum at integér > 0. If D = 2 (mod 4) or
D = 3 (mod 4), then the unary forma? = (a3 + azv/D)z?, with

a; = 2kD, as=k*+D—1,
is perfect and{1, k — vD} C M (az?).
2. Letk > 0 be the smallest integer such th&k — 1)2 — D] is minimal. If
D = 1(mod 4), then the unary fornaz? = (a1 + aQ%):ﬁ, with

143D
4 Y

1+D

a1 =1—k"+(1+ D)k — ar =2k — 2k + —— ~ 2,

is perfect and{1, —k + #} C M(az?).

Theorem 4. Let ¢, be a primitivepth root of unity, wherep is a prime. The unary
quadratic form(2 — ¢, — ¢, )z? is a perfect quadratic form oveR(¢, + ¢, ).
Moreover ¢ € Z[(, + ¢,']* is a minimum vector of2 — ¢, — ¢, 1)a? iff
02— — ¢t =(2— ¢ — ¢ ")e? holds for somer € Gal(Q(¢, + ¢, 1)/ Q).

Applying Theorem 2, we obtain the following result.

Corollary 3. Letn > 1 be a square-free odd integer= p; - - - p,, and3/n. The
unary quadratic form

k
<H(2 —Cps — Cp_ll)> a?

i=1

is perfect overQ (¢, + ¢, 1), where(,, is a primitivep;th root of unity and(,, is a
primitive nth root of unity.

The proofs will be published in near future.
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4. EXTREME FORMS AND ADDITIVE HERMITE'S CONSTANT

Lemma 1. Let f = (f;)!X7 andg = (g;)/* be nonproportional Humbert tuples
of rankm overK. Writen = [K: Q]. ThenF;, = (1—t)f +tgis a Humbert tuple
andop(t) = d(F;)'/™ is a strictly concave function for atl € [0, 1].

Proof. Obviously(1 — t) f; + tg; is positive definite for alt € [0, 1]. HenceF; is
a Humbert tuple.
Denote by f and g the block-diagonal matricesdiag{fi,..., frts,

Frats--s Frast and diag{g1,...,gr4s:Grp1s---+Grps}, respectively.  Let
w1, ..., w, be aZ-basis ofOx and set

al(wl)lm . ol(wn)lm
B = e 7
On(w)ly oo op(wn)ln
wherel,,, denotes the identity matrix ef. rows. Obviously the matricet_gth and

B' B are positive definite oveR. Applying Theorem 4 of ], Ch. 4, §12, we get
an invertible matrix” such that

T'B'{BT = diag{1,...,1},

T'B'4BT = diag{B1, . .., Bum ).

Hence,
1
d(F; —d tg) —t+t
and )
d? [ B—1
log(d(Fy)) = — —_— 0.
a0z og(d(F)) ;<1—t+tﬁk> -
Sincelog is a concave function, we have also tHéF;) is a concave function and
S0 isg(t) = d(F)Y/™m, O

Let (-, -) be a symmetric positive definite bilinear form on fRevector space

X =[R2 o TR,
=1

i=1

(X is spanned by Humbert tuples ovEj) such that(f,g) > 0 for all f € P, k
andg € P, k. Let D be a discrete set iR,,, k \ {0}, that is, an arbitrary compact
setK C P,k \ {0} contains only finitely many points dp. For eachf € P,,, k
we let (seed], p. 389)

p(f) = up(f) = inf{(f,y)|ly € D}.
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Lemma 2 (Lemma 3 in[!]). For eachf € P, g ande > 0 there exists a
neighbourhood/ C P,, k of f such that

M(g) SM(f) and  |ul(g) —p(f)l<e
forall g € U.

For the rest of the paper we fiR = {vo'lv € OF \ {0}} and (f,vd") =
Trf(v).

Theorem 5. The extreme Humbert tupleoverK is perfect and weakly eutactic.

Proof. Seeking a contradiction, suppose that the extreme Humbert fupte

(fs)i27 is not perfect. Due to Lemma 2 there exists a neighbourload P,,, k

such thatM(g) € M(f) for all g € U. Fix a Humbert tupley € U/ that is not
proportional tof. Without loss of generality, we assume thdy) = (f). Let

Fy=(1-p)f+pg

be a Humbert tuple with

F® = (1—p)fe + pgn

at thekth position for eactk = 1,...,r + s. One can choose a real numbgr

such thatFp(k) is positive definite for all < £ < r + sandp € (—po, po). Using
the extremality, one has

plFp) o plf)  _ p(Fo)

A(E)V = d(f)iTem  d(Fy)

and there exists a minimal vector= (ug, ..., u,,) such that

d(E) Y™™ (f + plg — f),ua’) < d(f)~Y"™ (f,ua)  Vp € (—po, po)-

Sinceu(f) = u(g), i.e. (g — f,uut) = 0, we have

d(F,) =Y (fouaty < d(f)"mm(fuat)  Vp € (—po, po).

Cancelling out the equal term, we obtaitF),) > d(f) for all p € (—po, po)-
Hence the continuous functidR — R, p ~» d(F}) has a local minimum ai = 0.
This gives a contradiction to Lemma 1. Hengtes perfect.

Let us show thajf is weakly eutactic. Without loss of generality, we assume
thatdet(fy) = 1 forall1 < k < r + s. (Obviously f is weakly eutactic iff
af = (a1 f1,. .., risfris) a € (Rso) %, is weakly eutactic.) We writd R (x)
for the trace of a matrix. If H andH’ are both either symmetria x m matrices
overR or complexm x m Hermitian matrices, then we denote

(H,H")y = TR(HH').
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We identify the space af: x m symmetric matrices biR™(™+1)/2 and the space
of complexm x m Hermitian matrices b)IRm2 in the natural way. For a fixed

nonzero tupley = (g1, . . ., gr+s) Of realm x m symmetric matricesy, ..., g, and
complexm x m Hermitian matriceg, 11, . . . , gr+s, We define the following linear
half-spaces:

Uy = {(&k,ij) € R™M™D2 | ((grii), (rij)de = 0, Erij = Erji s
Ui = {(&ij) € R™ | ((ghij), (Erij))e > 0, Enij = Engi}-

Suppose that¥, contains the point which represents the semidefinite form

op(u)op(u)tif 1 <k <r Orak(u)ak(u)t ifr+1<k<r+sforallue M(f).
Letr < kg < k + s. Consider the forms

Y = o it k# ko,
ESY = (fi+ pgr)  if k= ko.

The tupleF, = (F,Sk))7"+5 is a Humbert tuple fop small enough. Moreover, we
can assume that the inequality

d(Fp) ™" u(F,) < d(f)" " u(f)
holds for thisp. Suppose € M(f) N M(F,) (suchv exists by Lemma 2). Then

d(F,) 7M™ ((f,08") + 20{gkys 1o (v0"))a) < d(f) 7" (f,00").
Also, for a suitably chosen small positigeve have

d(Fp) ™™™ ((f,00") + 2p{gh s Ty (v3"))a) = d(Ep) ™M (f,00"),
due to the assumptiofyy,, o, (vt'))e > 0. Putting those inequalities together

and cancelling out equal terms, we obtain the inequalkity fx,) < det(Fp(kO)). It
follows from Lemma 1 that

d
(ko)
i (det( ; )) ‘p:o > 0.
Expanding the derivative, we find

d
dp (det( ) ’ ng()yl] Bf det fkg ngo,mfko ij*

Here f;, denotes the dual form ofy,. Hence, the point iR™” corresponding
to the Hermitian formf; lies in the interior of any linear half-spacky, that
contains the points representing the fdiaq, (u)-x)(ok, (u) - x) forallu € M(f).
Therefore it lies in the interior of the convex hullR™”, determined by the forms

(ko (1) - %) (ko (u) - %), w € M(f).
The argumentation is similar for quadratic forms, i.e. for real embeddinis of
(see P, pp. 20-21). O
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Combining Corollary 2 with the last theorem, we obtain the following corollary.

Corollary 4. If f is an extreme Humbert tuple over totally real or totally complex
K and f has a rational minimum\{, then f is a conjugate tuple.

Using the properties of extreme Humbert tuples, it is possible to give some
estimates for bounds of the additive Hermite’s constant. Hermite's congtent (
guadratic forms over rational numbers) is denotedypyi.e. the notation of the
number field is omitted in the subscript).

Theorem 6. For any algebraic number fielK and for anym > 1 we have the
upper bound

TYm, K < V- [K: Q]‘disc(]K”l/UKi Q]. (3)

Proof. Let f = (fi,..., fr+2s) be a conjugate tuple. Applying matrig to
f=diag{fi,..., frros}, We get a positive definite quadratic fofover @ such
that

min{ F(X)| X € Z"™ & QI\ {0}} = min{Tr(f(X))|X € Of \ {0}}.
Hence
min{Tr(f(X))|X € O\ {0}}

min{F(X)| X € Z™F: Q1 {0}} 2/[K: Q]
dot(FY /R det(B)

= ye(F)- |disc(]K)’1/[]K: Q)
Vo[- )+ |dise(IK) |/ QL .

yk(f) =

IN

This is the best upper bound. For example, the upper bound is attained for
Y1,Q(v3) V2, @(v3) @d, g (y3)- The last two cases can be verified immediately

using the results of Ongf]. However, the explicit values of, are known only
for2 < ¢ <8[9
The following corollary follows immediately from Theorem 6.

Corollary 5. Let f be a positive quadratic form over an algebraic number fi€ld
If the rational quadratic formilr f is critical over @, then f is critical overIK.

Let~;  denote the Hermite—Humbert constant introduced by Icaza MBee [

Proposition 4. For any algebraic number fiellX of degreen over@Q, we have

Ym,K Z N VK-
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Proof. Let f be a Humbert tuple of rank such that
N min{Nm f(X)|X € O\ {0}}
m,K — m :
Vd(f)

This tuple exists by Theorem 2 of][ Let 0 # y € O be a trace minimum vector
of f. Applying the inequality between arithmetic and geometric means, we have

Trf(y) = ny/Nmf(y ’\‘/min{Nmf(X)]X € O\ {0}}.

From this we obtain

» min{Trf X e O\ 1{0
ne Y VK S { (d(?]t“)l/nm M }} < Ym K- O

5. TWO EXAMPLES

Let {,, be a primitiventh root of unity. To shorten the notation, we writg
instead of¢,, + ¢ L.

Example 2. Let K = Q(6y) and consider the positive definite binary quadratic
form f(z,y) = (14 69)%(2% + Oozy + y*). One immediately verifies that (f)
attains the upper bound given in Theorem 6. Heficecritical overlk.

Taking the trace form of, we obtain the critical senary quadratic fo¥rg (cf.
Section 4.5 in{]) over Q.

Example 3. Similarly, let K = Q(62) and considerf (z,y) = (620 + 03,)(x? +
G201y + y?). Arguing as in the previous example, we obtain tffids a critical
quadratic form. Henceyk (f) gives the upper bound (3) afd f (X ) is equivalent
to Fg (cf. Section 4.4 in{]), sinceTrf(X) is a critical quadratic form of rank
overQ.

The algebraic construction of those two quadratic foring (X) is the
construction of Craig!f] in terms of a trace function.

One can easily verify that the unary quadratic forfhst 69)%z2 and (62 +
03,)x> are perfect over the number fieldg0y) and@Q(620), respectively (see also
[17]). Denote by

(bém)(xl,..., Zm2—|—z Z T

i=1 j=1+1

the initial rational perfect form of rank:.. Thus, for eachn > 0 the initial
perfect forms over the number fiel@3(6y) and Q(6y) are (1 + 0g)%¢{™ and
(620 + 9§0>¢§;”>, respectively, by Theorem 1.
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6. OPEN PROBLEMS

The main open problem is the generalization of eutaxy for a quadratic form
over algebraic number fields. Weak eutaxy (see Definition 5) is not énfarg
generalizing sufficient conditions of the well-known Voronoi’s theorem.
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Voronoi teooria aditiivsest Uldistusest algebralistele
arvukorpustele

Alar Leibak

On uuritud taiuslike ruutvormide Voronoi teooria aditiivset Uldistust algebra
tele arvukorpustele, kus positiivselt maaratud ruutvormide vdi Hermitetniade
asemel on vaadeldud Humberti korteeze. On naidatud, et aditiivse Udlmsfittes
piisab, kui vaadelda ainult erikujulisi Humberti korteeze (lause 2). Ostébed
taiuslike vormide omadusi ja konstruktsioone, kuidas saada olemasolaéaisst
likest vormidest uusi taiuslikke vorme (lause 2, teoreemid 1 ja 2).

On uldistatud Voronoi teoreemi (st ekstremaalse ruutvormi tarvilik ja piisav
tingimus) tarvilik tingimus algebralistele arvukorpustele (teoreem 5).
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