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Abstract. A generalization of Voronoï’s theory to perfect quadratic form over algebraic
number fields is studied. This generalization follows Koecher’s idea (seeMath. Ann., 1960,
141, 384–432) of using the minimums ofTrf(X) for the positive definite quadratic form
f(X). As a result some useful properties of perfect quadratic forms are presented and the
upper and lower bounds of Hermite’s constant are proved.
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1. INTRODUCTION

In this paper an additive generalization of Voronoï’s theory to algebraic number
fields is studied. Usingtrace minimums(i.e. minimums of quadratic formTrf(X);
see Eq. (1)) it is possible to introduce perfect forms, extreme forms, and the
generalization of Hermite’s constant. Koecher [1] introduced the perfect forms with
respect to the trace minimums and, following his work, Ong [2,3] studied binary
perfect forms over real quadratic fields

�
(
√

2),
�

(
√

3), and
�

(
√

5). It should
be pointed out that the systematic approach to this generalization has not been
published so far.

The present paper was motivated also by the difference between this generaliza-
tion (herein calledadditive generalization) andmultiplicative generalization
introduced in Baeza and Icaza [4] and Icaza [5] (they considernorm minimums
i.e. minimums ofNmf(X)) and completed in Coulangeon [6]. Let us consider the
following example. Let� be a totally real algebraic number field and leta ∈ � be
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totally positive. We writeO� for the ring of algebraic integers of�. The function
γ∗� is defined for unary forms by the equation

γ∗�(ax2) =
min{Nm�/�(ax2)|x ∈ O� \ {0}}

Nm�/�(a)

(see [5], Remark 1, p. 12). AsNm�/�(x2) ≥ 1 for all x ∈ O�, and the equality
Nm�/�(x2) = 1 holds at units ofO�, we haveγ∗�(ax2) = 1 for each totally
positivea ∈ �. In multiplicative generalization, Coulangeon considered Humbert
tuples up to scaling (see [6]). Consequently, from the multiplicative point of view,
there is only one unary form which is of course extreme. Hence, the situation
in dimension one is trivial from the multiplicative point of view. For additive
generalization, let us consider the number field

�
(
√

3). Let e > 1 denote the
fundamental unit in

�
(
√

3). In our case Hermite’s functionγ�(
√

3) on a positive

definite unary formax2 is defined by

γ�(
√

3)(ax2) =
min{Tr�(

√
3)/�(ax2)|x ∈ O�(

√
3) \ {0}}√

Nm�(
√

3)/�(a)
.

An immediate computation shows that

γ�(
√

3)(ex
2) = 4 > γ�(

√
3)(ax2)

for any unary formax2 that is neither equivalent nor homothetic to the unary form
ex2. Hence,ex2 is a critical unary form over

�
(
√

3) (see Definition 4). See also
Example 1 for the difference of perfect forms in these generalizations.

Perfect forms (in the sense of additive generalization) are closely related to the
reduction theory of positive definite quadratic forms over algebraic number fields
(see [1,7]). The explicit descriptions of these reduction domains have not been
published by now, which also motivates the study of additive generalization.

As a result, the necessary conditions of the well-known Voronoï’s theorem are
generalized to algebraic number fields (Theorem 5).

Given a unary perfect form over a totally real algebraic number field�, a
method for obtaining an initial perfect quadratic form of rankm over� is presented
(Theorem 1 and Remark 2). Ong (see Theorem 3.2.1 in [3]) gave a construction of
initial perfect forms for number fields

�
(
√

2),
�

(
√

3), and
�

(
√

5). Ong’s result
will be generalized to an arbitrary totally real algebraic number field (Theorems 1
and 2). Once we have an initial perfect form of rankm over �, we can find
all perfect forms (up to equivalence) of rankm over � by applying Voronoï’s
algorithm. Among these perfect forms there is a quadratic formaφ

(m)
0 such that

the unary formax2 is perfect over� andφ
(m)
0 is the principal perfect form over

�

of rankm

φ
(m)
0 (x1, . . . , xm) =

m∑

i=1

x2
i +

m∑

i=1

m∑

j=i+1

xixj .
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Hence, by Theorem 1 and by applying the generalization of Voronoï’s algorithm
(to binary quadratic forms over real quadratic fields, see [2,3]) it is possible to find
all perfect quadratic forms (up to equivalence and homothety) over�.

Section 4 is concluded with the upper bound of the additive Hermite’s constant
in terms of the number field and the rational Hermite’s constant (Theorem 6).It is
shown that the given upper bound is the best possible. In Section 5 it is indicated
how these results can be used to show that particular binary forms are critical. In
these examples new constructions for latticesE6 andE8 are presented.

2. DEFINITIONS AND NOTATIONS

Let � be an algebraic number field withr real embeddingsσ1, . . . , σr and2s
complex embeddingsσr+1, . . . , σr+2s, with σr+s+i = σ̄r+i for 1 ≤ i ≤ s, where
the overbar “¯ ” denotes the complex conjugate.

Definition 1. A tuple(fi)
r+s
i=1 of r positive definite quadratic formsf1, . . . , fr of

rankm ands positive definite Hermitian formsfr+1, . . . , fr+s of rankm is called
a Humbert tuple of rankm.

For each Humbert tuple(fi)
r+s
i=1 we associate a tuple ofr symmetric ands

Hermitian matrices(Ai)
r+s
i=1 such thatfi(x) = x̄tAσi

x for all 1 ≤ i ≤ r + s.
A quadratic form (Hermitian form)f over a totally real number field

(respectively a totally complex number field)� is said to be positive definite if
σi(f) is positive definite for eachi = 1, . . . , r (respectivelyi = 1, . . . , s).

Let τi : σ1(�) → σi(�), i = 2, . . . , r, and τ ′
j : σr+1(�) → σj(�), j =

r + 2, . . . , r + s, be field isomorphisms.

Definition 2. A Humbert tuple(f1, . . . , fr+s) is called a conjugate tuple if there
exist a positive definite quadratic formf overσ1(�) and a Hermitian formh over
σr+1(�) such that

(f1, . . . , fr+s) = (f, τ2(f), . . . , τr(f), g, τ ′
r+2(g), . . . , τ ′

r+s(g)).

If � is totally real (totally complex), then a Humbert tuple(f1, . . . , fr)
(respectively(f1, . . . , fs)) is called a conjugate tuple if there exist a positive
definite quadratic form over� (respectively a positive definite Hermitian formh
over�) such that(f1, . . . , fr) = (σ1(f), . . . , σr(f)) (respectively(f1, . . . , fs) =
(σ1(h), . . . , σs(h))).

If � is totally real (totally complex) andf is a positive definite quadratic form
(respectively a positive definite Hermitian form) over�, then we use the same letter
f for the Humbert tuple(σ1(f), . . . , σr(f)) (respectively(σ1(f), . . . , σs(f))).

Throughout this paper,Pm,� denotes the set of all Humbert tuples of rankm
over a number field�.
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The groupGL(m,�) acts onPm,� via the embedding

GL(m,�) ↪→ GL(m,�)r × GL(m,�)s, M  (σi(M))r+s
i=1 .

By the trace minimum of the Humbert tuple(f1, . . . , fr+s) of rankm we mean
the setM(f) of nonzero vectorsX ∈ Om� where the positive definite quadratic
form (over�)

r∑

i=1

fi(σi(X)) + 2
r+s∑

i=r+1

fi(σi(X)) (1)

of m · [� :
�

] variables attains its first minimumλ1 (i.e. the smallest nonzero value
on�m·[�: �]). If f is either a positive definite quadratic form over totally real� or
a positive definite Hermitian form over totally complex�, then the quadratic form
(1) over� is Trf(X). (This explains the nametrace minimum.) If f is a Humbert
tuple, then we writeTrf(X) for the quadratic form (1). Obviously,Trf(X) is
positive definite iffi is positive definite for alli = 1, . . . , r + s.

Definition 3. A Humbert tuple(fi)
r+s
i=1 is perfect if it is uniquely determined by its

trace minimums andλ1.

By definition, a Humbert tuplef of rankm has

N = r
m(m + 1)

2
+ sm2

coefficients. Hence, iff is also perfect, then we must have#M(f) ≥ N (for
quadratic forms over real numbers see also [8]).

Let us consider a function on Humbert tuples of rankm

γ�(f) =
min{Trf(X) | 0 6= X ∈ Om�}

d(f)1/m·[� : �]
,

where

d(f) =
r∏

i=1

det(fσi
) ·

r+s∏

i=r+1

det(fi)
2.

The real numberd(f) is called the determinant of the Humbert tuplef .
Clearly,γ�(f) is invariant under the action byGL(m,O�) and multiplication

by positive real scalars.

Definition 4. A Humbert tuplef of rank m is called extreme(critical) if the
functionγ� attains a local maximum(respectively a global maximum) at f .

Theadditive Hermite’s constantγm,� is defined by

γm,� = sup
f∈Pm,�

γ�(f).
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Definition 5. The Humbert tuplef with the corresponding tuple of matrices
(Ai)

r+s
i=1 is called weakly eutactic if the adjoint matrix̃Ai lies in the open convex

hull ofσi(XX
t
), X ∈ M(f), for all 1 ≤ i ≤ r+s, that is, there exist(r+s)-tuples

of positive realsρX ∈ (�>0)
r+s, X ∈ M(f) such that

Ãi =
∑

X∈M(f)

ρX
i σi(XX

t
),

holds for all1 ≤ i ≤ r + s.

The name “weak eutaxy” is due to Coulangeon (see [6]). Icaza [5] called
such Humbert tuples eutactic forms. For quadratic forms over real numbers this
definition coincides with the usual definition of eutaxy (see [8,9]).

3. PERFECT QUADRATIC FORM

For the convenience of the readers, we recall here the definition of a perfect
Humbert tuple from [1].

Proposition 1. Let f be a Humbert tuple of rankm with the corresponding tuple
of matrices(Ai)

i=r+s
i=1 . Thenf is perfect if and only if there exist

N = r
m(m + 1)

2
+ sm2

trace minimum vectorsX1, . . . , XN ∈ M(f) such that the block-diagonal
matrices

diag{σ1(XiXi
t
), . . . , σr+s(XiXi

t
)}, i = 1, . . . , N,

are linearly independent.

Remark 1. This was the definition for perfection given by Koecher (see [1]).

The proof is obvious (see also [2], pp. 15–16; [3]; [9], Theorem 3.2.10).

Proposition 2. Let f be a Humbert tuple over�. Assume thatλ1 ∈ �>0 is the
trace minimum off . If f is perfect, then there exist a conjugate tupleh over� and
a ∈ �>0 such thatf = ah.

Proof. Let � =
�

(ξ) for some algebraic numberξ. Let V1, . . . , VT be the trace
minimum vectors off = (f1, . . . , fr+s). By assumption,Trf(Vl) = λ1 for all
1 ≤ l ≤ T . Let h = 1

λ1
f . Obviouslyh is a perfect Humbert tuple with minimum

vectorsV1, . . . , VT andTr h(Vi) = 1 for all 1 ≤ i ≤ T . It remains to prove thath
is a conjugate tuple. By Definition 3, the system of linear equations

Tr h(Vk) = 1, k = 1, . . . , T, (2)
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yields the unique solution (the Humbert tupleh). After expanding the system (2)
we have

r∑

l=1

m∑

i=1

hl,iiσl(V
2
k,i)+2

r∑

l=1

m∑

i=1

m∑

j>i

hl,ijσl(Vk,iVk,j)+2
r+s∑

l=r+1

m∑

i=1

hl,iiσl(Vk,iVk,i)

+4

r+s∑

l=r+1

m∑

i=1

m∑

j>i

[
<(hl,ij)<(σl(Vk,iVk,j)) −=(hl,ij)=(σl(Vk,iVk,j))

]
= 1,

where1 ≤ k ≤ T (here< and= denote the real and imaginary parts, respectively).
Applying Cramer’s formula to the linearly independent subsystem of system(2),
we gethk,ij as the expression of determinants. Since any algebraic numberα ∈ �
is a

�
-linear combination of1, ξ, ..., ξ[� : �]−1, we obtainσl(α) from σk(α) by

exchangingk ↔ l. Hence, exchangingk ↔ l (i.e. σk(ξ) ↔ σl(ξ)) in the
expression ofhk,ij , we gethl,ij . Clearly,hk,ij ∈ σk(�) for anyi andj.

The proposition is proved.

Corollary 1. If (a1x
2, . . . , arx

2) is a perfect unary Humbert tuple over a totally
real number field�, then(a1, . . . , ar) = (σ1(a), . . . , σr(a)) for a totally positive
algebraic numbera ∈ �.

For the rest of the paper, we identify unary perfect Humbert tuples(σi(a)x2)r
i=1

with ax2 for some totally positivea ∈ �. (This involves no loss of generality.)

Corollary 2. Any perfect Humbert tuple over a totally real(totally complex)
number field� is proportional to a positive definite quadratic(respectively positive
definite Hermitian) formf over�.

Coulangeon [6] proved that any multiplicatively perfect Humbert tuple over�
is equivalent (once conveniently rescaled) to the Humbert tuple with entriesin finite
extension� of �. Baeza et al. [10] found that the multiplicatively extreme binary
quadratic Humbert form over

�
(
√

2), which is also a multiplicatively perfect
Humbert tuple, has entries in

�
(
√

2,
√

3).
Let us consider an example to illustrate the difference between additive

generalization and multiplicative generalization.

Example 1. From the multiplicative point of view, there exists only one class of
multiplicatively perfect binary forms over

�
(
√

D) for eachD = 2, 3, 5 (see [10]).
Ong [3] proved that there are at least two classes of perfect forms over

�
(
√

D)
for eachD = 2, 3, 5. For the convenience of the reader we present here the list
of binary perfect forms over

�
(
√

D), D = 2, 3, 5, and the list of multiplicatively
perfect binary forms over the same fields. Lete > 1 denote the fundamental unit
in
�

(
√

D), D = 2, 3, 5. Write ē for the field conjugate ofe.
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D Binary perfect forms over
�

(
√

D) Multiplicatively perfect binary
forms over

�
(
√

D)

2

((
e
√

2
e
√

2

2

e
√

2

2

e
√

2

)
,

(
−ē

√
2

−ē
√

2

2

−ē
√

2

2

−ē
√

2

))
,

((
1

e/2

e/2
√

6+
√

2

2

)
,

(
1

ē/2

ē/2
√

6−
√

2

2

))

((
e
√

2
e

e
e
√

2

)
,
(
−ē

√
2

ē
ē

−ē
√

2

))

3
((

e
e/2

e/2
e

)
,
(

ē
ē/2

ē/2
ē

))
,

((
1

e/2
e/2
e

)
,
(

1
ē/2

ē/2
ē

))

((
e

2e
√

3/3
2e

√
3/3

e

)
,
(

ē
−2ē

√
3/3

−2ē
√

3/3
ē

))
,

((
2+ 2

3

√
3

1+
√

3

1+
√

3
2+ 2

3

√
3

)
,

(
2− 2

3

√
3

1−
√

3

1−
√

3
2− 2

3

√
3

))

5
((

e
√

5
e
√

5/2

e
√

5/2

e
√

5

)
,
(

−ē
√

5
−ē

√
5/2

−ē
√

5/2

−ē
√

5

))
,

((
1

−e/2
−e/2

1

)
,
(

1
−ē/2

−ē/2
1

))

((
e
√

5
e2

√
5/2

e2
√

5/2

e
√

5

)
,
(

−ē
√

5
−ē2

√
5/2

−ē2
√

5/2

−ē
√

5

))

(This example was pointed out by an anonymous referee.)

By a positive lattice we mean the lattice associated to a positive definite
quadratic form. Recall that a positive latticeL (over �) is of E-type if for any
positive latticeL′ the minimum vectors ofL ⊗ L′ can be written asl ⊗ l′, where
l ∈ L andl′ ∈ L′ (see [11], §7.1). We refer to [11] for more facts and the existence
of positive lattices ofE-type.

Proposition 3. Let f(x) =
∑

fijxixj be a perfect quadratic form over�
and L be the corresponding lattice. IfL is of E-type, then the Humbert tuple
(f, . . . , f)([� :

�
] copies) is not perfect over any algebraic number field�.

Proof. Throughout this proofm denotes the rank off . Write n = [� :
�

].
Let L1 denote the lattice of the rational quadratic formTr(x2). Since L is
of E-type, we have that minimal vectors ofL1 ⊗ L can be written asl1 ⊗ l,
wherel1 is a minimum vector ofTr(x2) and l is a minimum vector off . Write
min(f) = {f(l)|l ∈ �m \ {0}}. Clearly, the first minimum of the Humbert tuple
(f, . . . , f) is n ·min(f). Applying the inequality between arithmetic and geometric
means, we have

Tr(v2) ≥ n n
√

Nm(v2) ≥ n.

The first equality holds iffv2 is an integer and the second equality holds iffv2 is a
unit in O�. Combining these equalities, we obtainv ∈ �. Hence, there are only
m(m + 1)/2 linearly independent block-diagonal matrices (see Definition 1). This
proves that the Humbert tuple(f, . . . , f) is not perfect.
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Nevertheless, we have a method to obtain perfect forms over a totally real
number field� from perfect quadratic forms over

�
.

Theorem 1. Let� be a totally real algebraic number field and letO� denote its
ring of integers. Letax2 be a perfect unary quadratic form overO� with lattice
La over� and letg be a perfect quadratic form over� with latticeL. If La or L
is of E-type, then the quadratic formag is perfect over�.

Proof. Let m = rank(g). Let v1, . . . , vt ∈ O� be the trace minimum vectors of
the unary formax2 and letV1, . . . , VT ∈ �m be the minimum vectors ofg. Hence,
by the hypothesis (La or L is of E-type), the trace minimum vectors ofag areviVj

(1 ≤ i ≤ t and1 ≤ j ≤ T ), and soλ1 = Tr(ag(viVj)) is a rational number.
Seeking a contradiction, suppose there exists a Humbert tuple(h1, . . . , hr) of rank
m over� such thatTr(h(viVj)) = λ1 for all 1 ≤ i ≤ t and1 ≤ j ≤ T . For
1 ≤ p ≤ t and1 ≤ q ≤ T we have

λ1 =
r∑

l=1




m∑

i=1

hl, iiσl(v
2
p)V

2
q, i + 2

m∑

i=1

m∑

j>i

hl,ijσl(v
2
p)Vq,iVq,j




=
m∑

i=1

(
r∑

l=1

hl,iiσl(v
2
p)

)
V 2

q, i + 2
m∑

i=1

m∑

j>i

(
r∑

l=1

hl,ijσl(v
2
p)

)
Vq,iVq,j .

SinceV1, . . . , VT determine the quadratic formg up to positive scalar multiple, we
get

c · gij =
r∑

l=1

hl,ijσl(v
2
p), 1 ≤ p ≤ t.

Fixing i andj, by the perfection ofax2 we have

(h1,ij , . . . , hn,ij) = Hij(σ1(a), . . . , σr(a)), Hij ∈
�

.

This gives us the rational quadratic form

H(x1, . . . , xm) =
m∑

i=1

Hiix
2
i + 2

m∑

i=1

∑

j>i

Hijxixj .

Finding the trace values ofag andaH atvV for anyv ∈ M(ax2) andV ∈ M(g),
we obtain

Tr(av2)g(V ) = λ1 = Tr(av2)H(V ).

Thereforeg = H andag is uniquely determined by its trace minimum vectors. The
theorem is proved.
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Let e > 1 be the fundamental unit of a real quadratic number field
�

(
√

D).
If a quadratic formf is over a number field�, then we denote it briefly byf/�.
We can immediately verify that the unary formse

√
2x2/

�
(
√

2), ex2/
�

(
√

3), and
e
√

5x2/
�

(
√

5) are perfect. Hence, this theorem generalizes the theorem proved
by Ong (Theorem 3.2.1 in [3]).

Theorem 2. Let �1 and �2 be totally real number fields with degreer1 and
r2, respectively. Letf1 and f2 be perfect quadratic forms over�1 and �2,
respectively. Denote the rank offi by mi (i = 1, 2). We defineL2(M(f)) to
be the

�
-linear space generated by{uut|u ∈ M(f)}. If

1. �1 and�2 are linearly disjoint1 andgcd(disc(�1), disc(�2)) = 1;
2. {v ⊗ w | v ∈ M(f1), w ∈ M(f2)} ⊆ M(f1 ⊗ f2);

3. dimL2(M(f1)) · dimL2(M(f2)) > r1r2
m1m2(m1m2+1)

2 ,
thenf1 ⊗ f2 is a perfect quadratic form over�1�2.

Proof. Since the number fields�1 and �2 are linearly disjoint and their
discriminants are mutually prime, it follows that the ringO�

1
�

2
is generated by

o1 ⊗ o2 = o1o2, whereo1 ∈ O�
1

ando2 ∈ O�
2

(see Ch. 3 in [12]). The rank of
f1 ⊗ f2 is m1m2.

Write r = r1r2. Let σ1, . . . , σr be the embeddings of�1�2 into
�. It follows immediately that the number of linearly independent matrices
diag{σ1(uut), . . . , σr(uut)}, u ∈ M(f1 ⊗ f2), over � equals the number of
linearly independent matricesuut, u ∈ M(f1 ⊗ f2), over

�
.

Hence, the number of linearly independent matricesuut (u ∈ M(f1 ⊗ f2))
must be at least

N = r1r2
m1m2(m1m2 + 1)

2
.

By hypothesis we obtain

L2(M(f1)) ⊗ L2(M(f2)) ⊆ L2(M(f1 ⊗ f2)).

HencedimL2(M(f1 ⊗ f2)) > N . This proves thatf1 ⊗ f2 is perfect.

Remark 2. Let ax2 be a perfect unary quadratic form over a totally real algebraic
number field�. Since the principal perfect quadratic formφ0 satisfies the
hypothesis of Theorem 1 (by Theorem 7.1.2 in [11]), the perfect quadratic form
aφ0 can be used as the initial perfect quadratic form in Voronoï’s algorithm.

This motivates the study of perfect unary quadratic forms over totally real
algebraic number fields.

On the other hand, if we have a perfect form of rankm over a totally real
number field�, then we can find all perfect forms (up to equivalence) of rankm
over� by the generalization of Voronoï’s algorithm. Among them there is a perfect

1 See also Ch. 3, Proposition 17 in [12].
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quadratic formaφ0 with a perfect unary formax2 over� and the principal perfect
form φ0 of rank m by Remark 2. Thus we can find all perfect quadratic forms
over� (up to equivalence) by Theorem 1 and by applying the generalization of
Voronoï’s algorithm.

We conclude that in order to find all perfect forms (up to equivalence) over
a totally real algebraic number field� it is sufficient to have an initial perfect
quadratic form.

We have solved the problem of finding an initial perfect form for real quadratic
algebraic number fields and partially for the maximal totally real subfield of
cyclotomic fields.

Theorem 3 (Theorem 1 in
[
13
]
). LetD > 1 be a square-free integer.

1. Suppose that|k2 −D| attains a minimum at integerk > 0. If D ≡ 2 (mod 4) or
D ≡ 3 (mod 4), then the unary formax2 = (a1 + a2

√
D)x2, with

a1 = 2kD, a2 = k2 + D − 1,

is perfect and{1, k −
√

D} ⊆ M(ax2).
2. Letk > 0 be the smallest integer such that|(2k − 1)2 − D| is minimal. If

D ≡ 1 (mod 4), then the unary formax2 = (a1 + a2
1+

√
D

2 )x2, with

a1 = 1 − k2 + (1 + D)k − 1 + 3D

4
, a2 = 2k2 − 2k +

1 + D

2
− 2,

is perfect and{1,−k + 1+
√

D
2 } ⊆ M(ax2).

Theorem 4. Let ζp be a primitivepth root of unity, wherep is a prime. The unary
quadratic form(2 − ζp − ζ−1

p )x2 is a perfect quadratic form over
�

(ζp + ζ−1
p ).

Moreover, ε ∈ �[ζp + ζ−1
p ]∗ is a minimum vector of(2 − ζp − ζ−1

p )x2 iff
σ(2 − ζp − ζ−1

p ) = (2 − ζp − ζ−1
p )ε2 holds for someσ ∈ Gal(

�
(ζp + ζ−1

p )/
�

).

Applying Theorem 2, we obtain the following result.

Corollary 3. Let n > 1 be a square-free odd integern = p1 · · · pk and3/|n. The
unary quadratic form (

k∏

i=1

(2 − ζpi
− ζ−1

pi
)

)
x2

is perfect over
�

(ζn + ζ−1
n ), whereζpi

is a primitivepith root of unity andζn is a
primitiventh root of unity.

The proofs will be published in near future.
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4. EXTREME FORMS AND ADDITIVE HERMITE’S CONSTANT

Lemma 1. Let f = (fi)
r+s
i=1 andg = (gi)

r+s
i=1 be nonproportional Humbert tuples

of rankm over�. Writen = [� :
�

]. ThenFt = (1− t)f + tg is a Humbert tuple
andϕ(t) = d(Ft)

1/mn is a strictly concave function for allt ∈ [0, 1].

Proof. Obviously(1 − t)fi + tgi is positive definite for allt ∈ [0, 1]. HenceFt is
a Humbert tuple.

Denote by f̂ and ĝ the block-diagonal matricesdiag{f1, . . . , fr+s,
f r+1, . . . , f r+s} and diag{g1, . . . , gr+s, gr+1, . . . , gr+s}, respectively. Let
ω1, . . . , ωn be a�-basis ofO� and set

B =




σ1(ω1)Im . . . σ1(ωn)Im
· · ·

σn(ω1)Im . . . σn(ωn)Im


 ,

whereIm denotes the identity matrix ofm rows. Obviously the matricesBt
f̂B and

Bt
ĝB are positive definite over�. Applying Theorem 4 of [14], Ch. 4, §12, we get

an invertible matrixT such that

T tBt
f̂BT = diag{1, . . . , 1},

T tBt
ĝBT = diag{β1, . . . , βnm}.

Hence,

d(Ft) =
1

|det(B)|2 d((1 − t)f̂ + tĝ) =
1

|det(B)|2
nm∏

k=1

(1 − t + tβk)

and
d2

(dt)2
log(d(Ft)) = −

nm∑

k=1

(
βk − 1

1 − t + tβk

)2

< 0.

Sincelog is a concave function, we have also thatd(Ft) is a concave function and
so isϕ(t) = d(Ft)

1/nm.

Let 〈·, ·〉 be a symmetric positive definite bilinear form on the�-vector space

X =
r∏

i=1

�m(m+1)/2 ×
s∏

i=1

�m2

,

(X is spanned by Humbert tuples over�) such that〈f, g〉 > 0 for all f ∈ Pm,�
andg ∈ Pm,�. Let D be a discrete set inPm,� \ {0}, that is, an arbitrary compact
setK ⊂ Pm,� \ {0} contains only finitely many points ofD. For eachf ∈ Pm,�
we let (see [1], p. 389)

µ(f) = µD(f) = inf{〈f, y〉|y ∈ D}.
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Lemma 2 (Lemma 3 in [1]). For eachf ∈ Pm,	 and ε > 0 there exists a
neighbourhoodU ⊂ Pm,� of f such that

M(g) ⊆ M(f) and |µ(g) − µ(f)| < ε

for all g ∈ U .

For the rest of the paper we fixD = {vv̄t|v ∈ Om� \ {0}} and 〈f, vv̄t〉 =
Trf(v).

Theorem 5. The extreme Humbert tuplef over� is perfect and weakly eutactic.

Proof. Seeking a contradiction, suppose that the extreme Humbert tuplef =
(fσi

)r+s
i=1 is not perfect. Due to Lemma 2 there exists a neighbourhoodU ⊂ Pm,�

such thatM(g) ⊆ M(f) for all g ∈ U . Fix a Humbert tupleg ∈ U that is not
proportional tof . Without loss of generality, we assume thatµ(g) = µ(f). Let

Fρ = (1 − ρ)f + ρg

be a Humbert tuple with

F (k)
ρ = (1 − ρ)fk + ρgk

at thekth position for eachk = 1, . . . , r + s. One can choose a real numberρ0

such thatF (k)
ρ is positive definite for all1 ≤ k ≤ r + s andρ ∈ (−ρ0, ρ0). Using

the extremality, one has

µ(Fρ)

d(Fρ)1/nm
≤ µ(f)

d(f)1/nm
=

µ(F0)

d(F0)1/nm

and there exists a minimal vectoru = (u1, . . . , um) such that

d(Fρ)
−1/nm 〈f + ρ(g − f), uūt〉 ≤ d(f)−1/nm 〈f, uūt〉 ∀ρ ∈ (−ρ0, ρ0).

Sinceµ(f) = µ(g), i.e. 〈g − f, uūt〉 = 0, we have

d(Fρ)
−1/nm 〈f, uūt〉 ≤ d(f)−1/nm 〈f, uūt〉 ∀ρ ∈ (−ρ0, ρ0).

Cancelling out the equal term, we obtaind(Fρ) ≥ d(f) for all ρ ∈ (−ρ0, ρ0).
Hence the continuous function� → �, ρ ; d(Fρ) has a local minimum atρ = 0.
This gives a contradiction to Lemma 1. Hencef is perfect.

Let us show thatf is weakly eutactic. Without loss of generality, we assume
that det(fk) = 1 for all 1 ≤ k ≤ r + s. (Obviouslyf is weakly eutactic iff
αf = (α1f1, . . . , αr+sfr+s), α ∈ (�>0)

r+s, is weakly eutactic.) We writeTR(∗)
for the trace of a matrix∗. If H andH ′ are both either symmetricm × m matrices
over� or complexm × m Hermitian matrices, then we denote

〈H, H ′〉• = TR(HH ′).
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We identify the space ofm × m symmetric matrices by�m(m+1)/2 and the space
of complexm × m Hermitian matrices by�m2

in the natural way. For a fixed
nonzero tupleg = (g1, . . . , gr+s) of realm×m symmetric matricesg1, . . . , gr and
complexm×m Hermitian matricesgr+1, . . . , gr+s, we define the following linear
half-spaces:

Ψk = {(ξk,ij) ∈ �m(m+1)/2 | 〈(gk,ij), (ξk,ij)〉• ≥ 0, ξk,ij = ξk,ji},

Ψk = {(ξk,ij) ∈ �m2 | 〈(gk,ij), (ξk,ij)〉• ≥ 0, ξk,ij = ξk,ji}.
Suppose thatΨk contains the point which represents the semidefinite form

σk(u)σk(u)t if 1 ≤ k ≤ r or σk(u)σk(u)
t

if r + 1 ≤ k ≤ r + s for all u ∈ M(f).
Let r < k0 ≤ k + s. Consider the forms

F
(k)
ρ = fk if k 6= k0,

F
(k)
ρ = (fk + ρgk) if k = k0.

The tupleFρ = (F
(k)
ρ )r+s

k=1 is a Humbert tuple forρ small enough. Moreover, we
can assume that the inequality

d(Fρ)
−1/nmµ(Fρ) ≤ d(f)−1/nmµ(f)

holds for thisρ. Supposev ∈ M(f) ∩M(Fρ) (suchv exists by Lemma 2). Then

d(Fρ)
−1/nm

(
〈f, vv̄t〉 + 2ρ〈gk0

, σk0
(vv̄t)〉•

)
≤ d(f)−1/nm〈f, vv̄t〉.

Also, for a suitably chosen small positiveρ we have

d(Fρ)
−1/nm

(
〈f, vv̄t〉 + 2ρ〈gk0

, σk0
(vv̄t)〉•

)
≥ d(Fρ)

−1/nm〈f, vv̄t〉,
due to the assumption〈gk0

, σk0
(vv̄t)〉• ≥ 0. Putting those inequalities together

and cancelling out equal terms, we obtain the inequalitydet(fk0
) ≤ det(F

(k0)
ρ ). It

follows from Lemma 1 that

d

dρ

(
det(F (k0)

ρ )
) ∣∣∣

ρ=0
> 0.

Expanding the derivative, we find

d

dρ

(
det(F (k0)

ρ )
) ∣∣∣

ρ=0
=
∑

ij

gk0,ij
∂

∂fk0,ij
(det(fk0

)) =
∑

ij

gk0,ijf
∗
k0,ij .

Heref∗
k0

denotes the dual form offk0
. Hence, the point in�m2

corresponding
to the Hermitian formf∗

k0
lies in the interior of any linear half-spaceΨk0

that

contains the points representing the form(σk0
(u)·x)(σk0

(u) · x) for all u ∈ M(f).
Therefore it lies in the interior of the convex hull in�m2

, determined by the forms
(σk0

(u) · x)(σk0
(u) · x), u ∈ M(f).

The argumentation is similar for quadratic forms, i.e. for real embeddings of�
(see [5], pp. 20–21).
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Combining Corollary 2 with the last theorem, we obtain the following corollary.

Corollary 4. If f is an extreme Humbert tuple over totally real or totally complex
� andf has a rational minimumλ1, thenf is a conjugate tuple.

Using the properties of extreme Humbert tuples, it is possible to give some
estimates for bounds of the additive Hermite’s constant. Hermite’s constant (for
quadratic forms over rational numbers) is denoted byγ` (i.e. the notation of the
number field is omitted in the subscript).

Theorem 6. For any algebraic number field� and for anym ≥ 1 we have the
upper bound

γm,� ≤ γm·[� : �]|disc(�)|1/[� : �]. (3)

Proof. Let f = (f1, . . . , fr+2s) be a conjugate tuple. Applying matrixB to
f̂ = diag{f1, . . . , fr+2s}, we get a positive definite quadratic formF over

�
such

that

min{F (X)| X ∈ �m·[� : �] \ {0}} = min{Tr(f(X))|X ∈ Om� \ {0}}.

Hence

γ�(f) =
min{Tr(f(X))|X ∈ Om� \ {0}}

d(f)1/m·[�: �]

=
min{F (X)| X ∈ �m·[� : �] \ {0}}

det(F )1/m·[� : �]
det(B)2/[� : �]

= γ�(F ) · |disc(�)|1/[�: �]

≤ γm·[�: �] · |disc(�)|1/[� : �].

This is the best upper bound. For example, the upper bound is attained for
γ1,�(

√
3), γ2,�(

√
2), andγ2,�(

√
3). The last two cases can be verified immediately

using the results of Ong [2,3]. However, the explicit values ofγ` are known only
for 2 ≤ ` ≤ 8 [15].

The following corollary follows immediately from Theorem 6.

Corollary 5. Letf be a positive quadratic form over an algebraic number field�.
If the rational quadratic formTrf is critical over

�
, thenf is critical over�.

Let γ∗
m,� denote the Hermite–Humbert constant introduced by Icaza (see [5]).

Proposition 4. For any algebraic number field� of degreen over
�

, we have

γm,� > n n

√
γ∗

m,�.
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Proof. Let f be a Humbert tuple of rankm such that

γ∗
m,� =

min{Nmf(X)|X ∈ Om� \ {0}}
m
√

d(f)
.

This tuple exists by Theorem 2 of [5]. Let 0 6= y ∈ Om� be a trace minimum vector
of f . Applying the inequality between arithmetic and geometric means, we have

Trf(y) > n n
√

Nmf(y) > n n

√
min{Nmf(X)|X ∈ Om� \ {0}}.

From this we obtain

n · n

√
γ∗

m,� 6
min{Trf(X)|X ∈ Om� \ {0}}

d(f)1/nm
6 γm,�.

5. TWO EXAMPLES

Let ζn be a primitiventh root of unity. To shorten the notation, we writeθn

instead ofζn + ζ−1
n .

Example 2. Let � =
�

(θ9) and consider the positive definite binary quadratic
form f(x, y) = (1 + θ9)

2(x2 + θ9xy + y2). One immediately verifies thatγ�(f)
attains the upper bound given in Theorem 6. Hencef is critical over�.

Taking the trace form off , we obtain the critical senary quadratic formE6 (cf.
Section 4.5 in [9]) over

�
.

Example 3. Similarly, let� =
�

(θ20) and considerf(x, y) = (θ20 + θ2
20)(x

2 +
θ20xy + y2). Arguing as in the previous example, we obtain thatf is a critical
quadratic form. Hence,γ�(f) gives the upper bound (3) andTrf(X) is equivalent
to E8 (cf. Section 4.4 in [9]), sinceTrf(X) is a critical quadratic form of rank8
over

�
.

The algebraic construction of those two quadratic formsTrf(X) is the
construction of Craig [16] in terms of a trace function.

One can easily verify that the unary quadratic forms(1 + θ9)
2x2 and(θ20 +

θ2
20)x

2 are perfect over the number fields
�

(θ9) and
�

(θ20), respectively (see also
[17]). Denote by

φ
(m)
0 (x1, . . . , xm) =

m∑

i=1

x2
i +

m∑

i=1

m∑

j=i+1

xixj

the initial rational perfect form of rankm. Thus, for eachm > 0 the initial
perfect forms over the number fields

�
(θ9) and

�
(θ20) are (1 + θ9)

2φ
(m)
0 and

(θ20 + θ2
20)φ

(m)
0 , respectively, by Theorem 1.
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6. OPEN PROBLEMS

The main open problem is the generalization of eutaxy for a quadratic form
over algebraic number fields. Weak eutaxy (see Definition 5) is not enough for
generalizing sufficient conditions of the well-known Voronoï’s theorem.
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Voronoï teooria aditiivsest üldistusest algebralistele
arvukorpustele

Alar Leibak

On uuritud täiuslike ruutvormide Voronoï teooria aditiivset üldistust algebralis-
tele arvukorpustele, kus positiivselt määratud ruutvormide või Hermite’i vormide
asemel on vaadeldud Humberti korteeže. On näidatud, et aditiivse üldistuse mõttes
piisab, kui vaadelda ainult erikujulisi Humberti korteeže (lause 2). On tõestatud
täiuslike vormide omadusi ja konstruktsioone, kuidas saada olemasolevatesttäius-
likest vormidest uusi täiuslikke vorme (lause 2, teoreemid 1 ja 2).

On üldistatud Voronoï teoreemi (st ekstremaalse ruutvormi tarvilik ja piisav
tingimus) tarvilik tingimus algebralistele arvukorpustele (teoreem 5).
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