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Abstract. A Riemannian manifold M, g) is semisymmetric ifR(X,Y) o R = 0. An
isometric immersion of M, ¢) into a Euclidean space is semiparallelRf X,Y) o h = 0

holds for the second fundamental tengor Due to Gauss and Ricci equations the second
condition leads to the first one. Especial}(X,Y) o R = 0 holds if (M, g) is foliated by
codimension two locally Euclidean leaves (equivalently, is of conullity two). Here the planar,
hyperbolic, parabolic, and elliptic types can be specified. For many cases of these manifolds
of conullity two it has been shown already that their isometric semiparallel immersions into a
Euclidean space are possible only if the manifold is of planar type. Now the same is established
for the rather general manifolds of conullity two; it is claimed that this holds perhaps for all of
them.

Key words. semisymmetric Riemannian manifolds, manifolds of conullity two, planar type,
semiparallel immersions.

1. INTRODUCTION

The geometry of a Riemannian manifold/, g) depends essentially on its
Levi—Civita connectiorV and the curvature tensét. If R is parallel with respect
to V, i.e. if VR = 0, then M is said to belocally symmetric. E. Cartan
has developed the famous theory of such manifolds, both local and global (see,
e.g., [D.

The geometry of an isometric immersion @/, g) into a Euclidean space
E™ or a space formiV"(c) depends essentially on its van der Waerden—Bortolotti
connectionV (which is actually a pair oV and of the normal connectiox)
and on the second fundamental (mixed) tensofMhe famous Gauss, Peterson—
Codazzi, and Ricci equations establish the well-known relationships befwédgn
V, andR* (here the last one is the curvature (mixed) tensdv 6).
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Such an immersion is said to Iparallel if VA = 0. A conclusion from the
Gauss equation is that a parallel immersion admits only the locally symmetric
(M™, g).

The differential systemsVR =0 and Vh =0 have their integrability
conditionsQ o R = 0 andQ o h = 0, respectively, where the first ingredients
are the curvature 2-form operators; the same integrability conditionsecamitben
also asR(X,Y)o R = 0 and R(X,Y) o h = 0, respectively. The manifold
and immersion satisfying these conditions are calleskmisymmetric manifold
and asemiparallel immersigrrespectively. From the Gauss and Ricci equations it
follows that a semiparallel immersion admits only the semisymmetric manifold.

The local classification of semisymmetric Riemannian manifgltls g) is
given by Szab67. The most interesting is the class of so-called foliated semi-
symmetric manifold§M ™, g), every one of which is foliated by locally Euclidean
leaves of codimension two; subsequently they will be calledrtamifolds of
conullity twa Kowalski has given for the dimension = 3 a more detailed parti-
tion in this class, firstin a 1991 preprint and thenih Pfterwards it was extended
by Boeckx ['] for the arbitrary dimensiom. So theplanar, hyperbolig paraboli,
andelliptic manifolds of conullity two have been distinguished (sgeCh. 7).

The concept of semiparallel isometric immersion and the first results on it
were given in §] and then summarized, together with the further results/jin [
Recent results published ifi{'’] make plausible the following conjecturéf a
semiparallel isometric immersion into a Euclidean sp&ferealizes a Riemannian
manifold(M™, g) of conullity twq then the latter can be only of planar tyde.['°]
it is shown that this is true for arbitrany if m is 3. In [F] and '] it is established
that this conjecture is valid if such an immersion gives a submanifold with plane
generators of codimension two or a normally flat submanifold, respectildig
problem arises: can this conjecture be verified in general?

In the present paper the validity of the above conjecture will be established
a rather general situation using the following known facts.

In ['] it is shown that a submanifold/™ in a Euclidean spacé’” is
semiparallel € semisymmetric, extrinsically) if and only il/™ is a second
order envelope of the symmetric submanifolds. The last ones are dekbribe
Ferus [2~14] as the extrinsic products of two submanifolds; the first of them is the
extrinsic product of standard embeddings of symmetrigpaces, and the second is
the extrinsic product of some circles and a plane,§€c;) x ... x S1(c,) x E™o.

The last product is obviously locally Euclidean and on the above seauied o
envelopeM™ the tangent subspaces of these products form a foliation with locally
Euclidean leaves. There are two possibilities for this envelope to be intligata
conullity two.

The first, simpler possibility realizes when these locally Euclidean leaved$ are o
codimension two in this enveloge™, in other words, when the other component
of the symmetric extrinsic product is two-dimensional, and consequently these
components envelope the semiparallel surfaces. But the semiparalbetesiih
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a Euclidean space are classified completely ($€B:[such a surface is either (i) a
surface with flatv, or (ii) a sphereS?(c), or (iii) a second order envelope of the
Veronese surfacég?(c). This enables us to solve the problem for this possibility;
see Theorems 1 and 2 below.

There is another possibility: the extrinsic product of standard embeddings
symmetric R-spaces carries a foliation, whose leaves haveWland, together
with the leaves enveloped by (c;) x ... x St(c,) x E™°, generate the locally
Euclidean submanifolds of codimension twoAfi”*. Here the problem is solved
for a principal case, where in the role of the standard embedding of a dyimme
R-space is the three-dimensional Segre submanifgidh (k) (see Theorem 3
below).

It is claimed that these results solve perhaps the whole problem above.

2. CLASSIFICATION OF SEMISYMMETRIC RIEMANNIAN
MANIFOLDS

A general classification of the semisymmetric Riemannian manif@ldsg)
is provided by Szabo, locally irf]. First he proves by means of the infinitesimal
and the local holonomy groups that for every semisymmetric Riemannian manifold
(M, g) there exists a dense open subSesuch that around the points 6f the
manifold M is locally isometric to a direct product of semisymmetric manifolds
My x My x ... x M,., whereM, is the open part of a Euclidean space and the
manifoldsM;, i > 0, are infinitesimally irreducible simple semisymmetric leaves.
Here a semisymmetrid/ is called asimple leaff at its every point: the primitive

holonomy group determines a simple decomposifiph/ = Vm(o) + Vx(l), where

this group acts trivially orngO) and there is only one other subspé@%) which is
invariant to this group. A simple leaf is said to be infinitesimally irreducible if at

least at one point the infinitesimal holonomy group acts irreduciblyﬁﬁ.

The dimension/(z) = dimV,” is called theindex of nullityatz andu(x) =
dimM — v(z) theindex of conullityat x.

The classification theorem by Szalp gsserts the following (according to the
formulation given in {]).

Theorem A. Let (M, g) be an infinitesimally irreducible simple semisymmetric leaf
andz a point of M. Then one of the following cases occurs

(@ v(x) = 0andu(x) > 2: (M,g) is locally symmetric and hence locally
isometric to a symmetric space

(b) v(x) = 1andu(z) > 2: (M,g) is locally isometric to an elliptica
hyperbolic or a Euclidean cone

(¢) v(x)=2andu(x) > 2: (M, g) is locally isometric to a K&hlerian cone
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(d) v(z) = dimM — 2 andu(x) = 2: (M, g) is locally isometric to a space
foliated by Euclidean leaves of codimension two or to a two-dimensional
manifold(the last for the case wherBm M = 2).

Note that for(M, g) of the case (d) withv(z) > 2 the termmanifold of conullity
twois used in {].

Kowalski, considering the three-dimensioid| introduced for the manifold of
conullity two the geometric concept asymptotic foliatiorin a preprint of 1991.
Afterwards this concept was published #) find generalized by Boecks][to the
arbitrary dimension of\/ (see also?).

Namely, a codimension one submanifold of a Riemannian man(faldg) of
conullity two is called thessymptotic leatf it is generated by the codimension two
Euclidean leaves of thid/ and if its tangent spaces are parallel along each of the
latter leaves (with respect to the Levi—Civita connecfionf (1, g)).

A codimension one foliation on such ad is called theasymptotic foliatiorif
its integral manifolds are asymptotic leaves.

In what follows a treatment of the asymptotic foliations is given according to
Kowalski [*] (and also {°]).

Let O(M) be the bundle of orthonormal framés;, ...,e,,) on M, m =
dimM. For the bundleD* (M) of the dual coframegw?, ...,w™) the following
structure equations hold:

L . " : :
dw® = W AWy, dw) = wi Awy, + Q] (2.1)

(see [°], Chs. Ill and 1V), Wherew;- and Q; are, respectively, the connection

1-forms and the curvature 2-forms ©f Here orthonormality yields»;'- + wf =0,

QL4+ Q! =0.

! Let M be of conullity two. TherO(M) andO* (M) can be adapted to thig/
so that(es, ..., ;) are tangent to one of the Euclidean leaves and thus the latter
are determined bw! = w? = 0. Since this last differential system is totally
integrable, d' and dv? must vanish as the algebraic consequences ef w? = 0
(due to the Frobenius theorem, second version; $8e [This, together with the
fact that Euclidean leaves are totally geodesic becafise a simple leaf, yields

wi = A,w' + Byw?, wi = Cuw' + Fyw?; (2.2)

here (and also further) € {3,...,m}.

Let the unit vectotX = e; cos ¢+ e2 sin  be taken so that Sp@X, es, ..., e, }
is the tangent plane of an asymptotic leaf. Then X = Ve, + [ey, X] must
belong to the tangent plane of this asymptotic leaf for every value &ince the
tangent distribution of these leaves is a foliation, this tangent plane coftgids).
Thus this plane must contain also

Vxey = Ve eycosp+ Ve,e,sing = (wﬁ(el)ek) cos p + (wﬁ(eg)ek) sin (.
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Hence
(Ayer + Cyez) cosp + (Byer + Eyes) sing

must belong to spdrX, es, ..., e} and therefore must be a multiple &f =
e1 cos ¢ + es sin . The last condition is equivalent to

Bysin? ¢ 4 (A, — E,) cos g sinp — C,, cos® ¢ = 0.

But along this asymptotic leaf' sin ¢ = w? cos ¢, so that this condition reduces
to
Cu(wh)? + (By — Ay)w'w? — By (w?)? =0. (2.3)

According to P°] a foliated M is said to beplanar if it admits infinitely
many asymptotic foliations. If it admits just two (or one, or none, respecjively
asymptotic foliations, it is said to béyperbolic (or parabolic or elliptic,
respectively).

From (2.3) it is seen that the planar foliatéflis characterized byi,, — E,, =
B, =C, =0, i.e. by the fact that (2.2) reduces to

wh = Aw!, W= AR (2.4)

ThenA = ) A.e, determines a vector field on such ah. The relations
(2.4) can be written as? = A,w®, wherea,b, ... run over{1,2}. By exterior
differentiation, using the structure equations (2.1), from here

(dA, — Ayw,, + Ay Ayw’) Aw® — Q2% =0, (2.5)

Q= 1R’ ww" AW being the curvature 2-forms of the Riemanniah Due

to Cartans lemma, from this exterior equation it follows that,d— A,w; is a
linear combination of all,’. Since the latter turn to zero at an arbltrary fixed
pointz € M, dA, = A,w; atxz. Moreover, @, = e,w, atz. Hence
d4 =) (Aywyey + Ayeywy) = 0 atz, due to the orthonormality. This shows
that A is invariant atz, indeed. Actually the vector field consists of vector fields
on the locally Euclidean leaves of codimension two.

3. THE FIRST POSSIBILITY OF SEMIPARALLEL IMMERSED
MANIFOLDS OF CONULLITY TWO

In Introduction it is noted, using the results dff 4], that there are two
possibilities of a semiparallel immersed manifold of conullity two.

Let us start now with the first possibility where the considered submanifold
M™ is the second order envelope bf? x S'(c;) x ... x St(c,) x E™ in E,
m = 2+ q + mg, n > m, hereM? being a parallel surface. The orthonormal
frame bundle can be adapted to such a submanifte, following [17], so that at
an arbitrary pointz € M™ the basic vectors;, are tangent td/?, ey are tangent
to Sl(cf_l), ande;, belong toE™0; hereiy, ji, ... run over{1, 2}, f, g, ... run over
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{3, ...,q+2}, andiy, jo, ... over{q+3, ..., m}. Moreover, le,, 1, normal toM ™,
be directed to the centre of the sphéte ! in which M? lies fully and minimally,
let the nexte,, be normal toM™ and tangent to thi§™~! (hereay, 31, ... run
over{m + 2,...,m + n1}), and lete,- ; be directed to the centre of the circle
S'(cs-1) (heren* = m + ny — 2); if there are more frame vectors normal/™
atz, they will be denoted by:,.

Then M™ is determined inE™ by the following Pfaff system as one of its
integral submanifolds (seé™):

Wt = M = " = 8 =0,

wZLH — ko't = wit = hgljlel = wz-":JFf = wfl =0, (3.1)
“+

w?“ =wit = w;f g — 5]%szwf = wfc =0, (3.2)

wZ)LH =wil = wZ)*+f = wfo =0. (3.3)

By exterior differentiation the equationg”*' = 0in (3.3) andwf"*' = 0in

(3.2) give, respectivelyy w{f; Nkw?' = 0andy_; wj} Akwt +l<:fwaw:$ff =
0, thus due to Cartan’s lemma

, S 4
Wit = At Wl = X el el (3.4)

kilkfwfn*jlf = Mglwil +vlwl.
In the same manner the equatiasf§ = 0in (3.3) andw;'c‘1 = 0in (3.2) give
wfg A h?llklwkl =0 andw}l A hf‘lljlel + k‘fwf A ws,}+f =0, thus

i i _ f f _
Z(h?llklA;?ll o h;yllh )\;(ikl) =0, Z(h?lllﬂ )\ilj1 B hialljl>\i1k1) =0, (3'5)

7 i1
-1 ! ki _ .
Wyt kg Z i R Wt = AGiwds (3.6)
i1

here the coefficients with two subindices are symmetric with respect to these
subindices. .
The equations;!’ ™/ = 0in (3.1) lead to

wzfl A k‘fwf + ko™ AW RO Wt AW = 0.

m+1 1171 [e5}
After substitutions from (3.4) and (3.6) this implies
[} [ 2 f_
Z { Z hi11[j1hk11]l1 + k20111 Ok iy }'U’ll =0,
5 aq
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where| ) means the alternation. Here the expressions between bracek} are
the components of the Levi—Civita curvature tensoift. SinceM? is supposed
to be not locally Euclideamf1 = 0, and so due to (3.4) and (3.5)

wit = NI, Y (R N — B ) =0, (3.7)

1171 i1kt 7M1J1 1151 Vi1k1
11
where the index runs over the scopes of bofhandi.
As is noted in Introduction, a parallel, not locally Euclidean surfat&in a

Euclidean spac&” is either a spheré?(c), or a Veronese surfadé?(k). These
two cases will further be considered separately.

3.1. Case of the sphere S?(c)

Here in (3.1)h§;1jl = 0, and so the scope of, isempty,n; =3, n* =m+1 =
34 q+ mp. ‘

The equations;ff“ — kw" = 01in (3.1) give after exterior differentiation and
using Cartan’s lemma that

5i1j1dlnk - Z )‘Zjlwu = Ai1j1k1wk1>
u

where A;, ;,,, is symmetric with respect to all three indices. Feor# j; this
implies that onlyA}; and\¥, can be nonzero, but faf = j; = 1 andi; = j; =2
it implies that\}; = A4, = A“. Hence the first relations in (3.7) reduce to

W= A%l Wl = N, (3.8)

which in comparison with (2.4) show that the considefé¢d’ of conullity two is
of planar type and now,, = —\".
This result can be formulated as

Theorem 1. A semiparallel submanifold/™ in E™, which is the second order
envelope of product-submanifold&(c) x S'(c2) x ... x SY(c14q) x E™, is
intrinsically of conullity two of planar type.

Note that the relation above leads to
dlnk =) AW, (3.9)
u

because now al; ;,x, turnto zero.
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3.2. Case of the Veronese orbit V2(k)

Due to ['] here the matrice™ = ||hS"; || are as follows:

11J1

hmH? = (kt)/g k%) , R = <’8 _Ok) , R = <2 g) )

The second relation in (3.7) can be considered as the condition that tthecpro
of two symmetric matriceg* and A\* = ||\, || is a symmetric matrix. For

a1 = m + 2 this condition is satisfied trivially. Since

EXY kXY kXS, kMY
m+3 | yu _ 11 12 m+4 | yu 21 22
h A <—l<:)\72‘1 —k)\§‘2> ’ h A (k;Xfl l{:)\qﬁ) ’

the same condition foty; = m + 3 anda; = m + 4 implies \y; = —\{, and
Ay = A5, This, together with the symmetricity conditio; = A}, leads to
{9 = Ay = 0, so that

Wi = Al wd = N2, (3.10)

where\* is the common value of}; and\j,. The comparison with (2.4) shows
that the considered/™ is intrinsically of conullity two of planar type and now
Ay = ="

This result can be formulated as

Theorem 2. A semiparallel submanifold/™ in E™, which is the second order
envelope of product-submanifold& (k) x Sl(ca) x ... x S(ci4q) x E™0, is
intrinsically of conullity two of planar type.

4. GEOMETRICAL DESCRIPTIONS

The geometry of submanifoldg™ in £, considered in Theorems 1 and 2, is
described by the property that they are intrinsically of conullity two of playze.
A further description is possible due to the fact that for both of thesesdhgee
hold similar formulae (3.8) and (3.10). They allow us to introduce at an anpitra
pointz € M™ the vectorl = e, A%, which is due to\* = —A,, opposite to the
vectorA, introduced above at the end of Section 2. So a vectorffisldetermined
on every locally Euclidean leaf of codimension twaoliff™.

For submanifolds\/™ of Theorems 1 and 2 the fieldhas a special quality.

Recall that for every submanifold iB™ the formulaﬂ{ = w® A wi holds (seeT],
formula (2.6)). FoiM™ considered here th§ = wg”ﬁl/\wgmw;‘**%w;wg,
wherea is in the role ofi; in Egs. (3.1)—(3.3), and is eitherf or ig. Due to the
same equations™*! = 0 andwy. , , = —W" 9 — 0, hence her&? = 0. Since
a runs over{1, 2}, from (2.5) it follows that now
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=D AWl = A, (4.1)
This leads to

dl = de, \* + e dA?
et (wgea + wzey —|— w;l*+fen*+f )\ + eu|: Z )\U u - )\uwv)i|

=1) Nw’+9,

wheref is a vector valued 1-form, normal to the locally Euclidean leaf, but this
shows that the integral lines of the vector fiélare the geodesic lines of this leaf.
Since the leafis locally Euclidean, the geodesic lines can be taken for trdirtate
lines of some system of Descartes’ coordinat%s.., 2™ with orthogonal net on
this leaf. There,, = a - andw" = da*, w! = 0.

These considerations have been used already]ifof the case of spheres
S2(c), when the second order envelopg™ has flat normal connection. Now they
are extended also to the case of Veronese ofbfts:). But there is an essential
difference, which concerns the 2-dimensional submanifolds (swfauersecting
orthogonally the locally Euclidean leaves. These surfaces are thedsecoer
envelopes of the spheres or Veronese orbits, respectively.

Since the spheres are totally umbilical, these envelopes, as the orthogonal
surfaces, are here the spheres themselves?]lit {s shown that the radius of
this orthogonal sphere along the geodesic line tangdrista linear function of the
arc length of this geodesic. Indeed, these orthogonal surfacesygentdoe, and
for them

deqg = epwl + e + emi1w™ ™ = eyl + (1 + ke )w™. (4.2)

Thus these surfaces are the spheres with the radiugl> + k2)~'/2. From (4.1)
and (3.9) it follows that 8 = r,w*, wherer,, = —rA" and thus d, = r,w;.
If we consider this in the Descartes’ coordinates above, then duwg te 0 here
Ty = ¢, = const, and due taw" = dz* thusr = c,z* + c.

Hence herel/™ is intrinsically a Riemannian product of an elliptic cone and a
locally Euclidean manifold.

The situation is different in the case of Veronese orbits ' thif is established
that in the Euclidean space of dimensierd the second order envelope of Veronese
orbits V2(k) needs not be such an orbit itself (or its open part), but in dimension
> 7 this envelope can be an arbitrary surface of positive Gaussian crevatu

In [*°] the subcase is investigated, when a semiparadlélin E is the second
order envelope oF?(k) x E™, i.e. there are no circular factors in the product of
Theorem 2; herer = my+2, of course. The formulae (3.9) have been obtained for
this subcase already it’] (see the formulae (3.4) there), but their interpretation as
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showing the planarity is not given yet it’], because this concept was introduced
much later. Also the vector fieldworks in ['], and the absence of circular factors
makes the situation simpler. It is shown that i 0, thenA/™0*2 is a product-
submanifoldM3 x E™o~1 whereM? is the second order envelopelof (k) x E*,
which is a cone with a point-vertex and 1-dimensional generators, whieszrk

on the sphere&™ "0 around the vertex is the second order envelope of Veronese
surfaces/?(k) in "™ (see [°], Theorem 2 form = 2).

5. ANOTHER POSSIBILITY

Another possibility of a semiparallel isometric immersion of the manifold
M™ of conullity two into E™ is noted in Introduction and is the case where
there is only one standard embedding of a symmé¥space, which is a Segre
submanifoldS, 5 (k). The latter is a 3-dimensional complete parallel submanifold
in a sphereS®(k?) c ES, generated by 2-dimensional great sphe$égk) of
S5(k?), intersected orthogonally by great circles$f(k?), and is immersed into
ES symmetric spac®(6,R)/0(2,R) x O(3,R) (see, e.g.,T, Sec. 21).

So letM™ be the second order envelope of product-submanif§ds, (k) x
Sl(c1) x .81 (cq) x E™ with variablek andcy, ...,cq, m = 3 + ¢ + mg. The
orthonormal frame bundle will be adapted to thi€” so that at an arbitrary point
x € M™ the vectors:,, wherea, b, ... run over{1, 2}, are tangent to the generator
sphereS?(k) andes is tangent to the generator circi (k) of S(1,2)(k), going
throughz. Moreover, letey, wheref, g, ... run over{4,...,3 + ¢}, be tangent to
the circleS!(c;_3) ande;,, whereig, jo, ... run over{3 + ¢ + 1,...,3 + ¢ + mo},
belong toE™°. Among the normal td/™ basic vectors of the orthonormal frame
atz, leten,41 be directed to the centre of the sphérgk?) containingS; 2 (k),
ande,, 4114 be normal taS; ») (k) and tangent t&° (k?) (recall, herex € {1,2}).
Finally, lete,,,+ r be directed to the centre of the circdé(c;_3) atz, andeg be the
remaining normal tal/™ basic vectors irE™.

Then M™ is determined by the following Pfaff system, as one of its integral
submanifolds:

m+1 _ wm+1+a — wm+f — w{ — 07

w
W = i, W = B, W = 50ke®, W =kt (5.1)
whtf = w;n” =wl = wg =0, (5.2)

w?”l = w}”““t = w}nﬂc —ypwf = wfc =0, (5.3)

wZ)zH _ w;:+1+a _ wZ)erf — wiﬁo =0. (5.4)

Note that Egs. (5.1) here turn to Egs. (21.5) with= 0 in [7] for a Segre orbit
S(Lz)(k:) if we takem = 3 and use the renumeratidan— 2,2 — 3,3 — 1.
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The first equations in (5.1) give by exterior differentiation
—dInkAw® + WA W +wf Awl 4wl AW =0,
—dlnk Aw® + 3wl AWt 4w Aw! +wi Aw' =0,
a

and from here by Cartan’s lemma

—dInk = kw? + Apw! + A, (5.5)

w1t = kW + Bjw! + B w™, (5.6)

wf = Apw® + B?w3 + Cfw? + C’je‘iowio, (5.7)

wi = Ajw® + B w® + CH w!l + C 5w, (5.8)

u};" = Z Bjw® + Apw® + Dygw9 + Epjgw™, (5.9)
a

wp =Y Biw" + Ajgw® + Epigw! + Fyjow; (5.10)
p

here is symmetry with respect to subscriftsandigjo.
The remaining equations of (5.1) give by exterior differentiation
(60w + 62w — 5szi%+a) AW+ [=08dInk + (W — W™ TITO AW

m~+1+b
+ 5Z(w? Awf +w; Aw') =0,

[—dpdIn k—i—(w?—wﬁiiiﬁ)] /\wb—l—(2w§—wzi%+“)/\w3+w?/\wf+w% Aw' = 0.

Here, in the first exterior equation, the first terms reduce byb =1,a = b = 2,
respectively, to

(2w} — WM Aw! +wi AW, Wi AW+ (2wE — W) A WP
Thus these equations, together with (5.5)—(5.10), give
wd = Pyw" + B;'ﬁwf + B%wio.

Now the same equations hy = b lead toB} = Bjj =0, P = —k, and

w? = w3, so that

wy = Kw?, (5.11)

20J0

w§ = Apw® + Cfw? + Cj?iowio, wiy, = Ajw® + C?iowf +C8 w0, (5.12)



The equationsvy"t = 0, Wi/ =0 in (5.2) give

Kol Apwl +wt awpt + 0 noptl, =0,

k7w Aypwd + @l AW ot AWt =0,

and from hereC¢, = C%, = Dja = Eypi, = 0, W k1 Ayl = 0,

fio m+1
wﬂi{ﬂl = 0.
The equatlons(JJZ)“r =0in(5.4) lead to)y |, wi A w? +wi A w3 = 0, and
thusCyl ;= Fi,j, = 0. Hence (5.12), (5.9), (5.10) reduce to

w§ = Agpw?, wp = A;w?, Ld?c = A’ wf’o = AW (5.13)

K1

The distribution, which is determined by the systefn= 0 (recall,a runs over
{1,2}), is a foliation, because due to (5.11) and (5.13)

dw® = WP AWl + wd A Kw® 4w A Apw® 4w A AW

The leaves of this foliation are generated by the second order envelbies
products of circular generators §f; 5) (k) and ofS*(c2) x ... x S'(c144) x E™.

For them the indices:, v,... can be introduced, which run over the scope
containing 3 and the scopes ¢fandig. These leaves are intrinsically locally
Euclidean, because&,, emn+1, €m+i+a, €m+f, €¢ are normal to them and due to
(5.1)-(5.4)

Qf = Wi AWl +w T AWl FWT TG L i AWl WS AwE = 0.

Hence the considered™ in E™ is intrinsically of conullity two. Since (5.11) and
the first equations in (5.13) can be joined inth = A,w® if we denotex = Asg, it
is of planar type, as shows comparison with (2.4).

The result can be formulated as follows.

Theorem 3. A semiparallel submanifold/™ in E™, which is the second order
envelope of product-submanifolds, o (k) x S*(c1) x ... x S'(cq) x E™, is
intrinsically of conullity two of planar type.

To characterize the geometry of such &afi*, the analysis of the first part of
Section 4 can be repeated. The only difference is that now the scopeiofiixu
contains also the value 3, so that amétfgin (2.5) there is alsé)$, which is zero
too, because due to (5.1) and (5.2)

Qf = Wi AWk el AW Y Wl A
f
= kw? A (—kw®) 4+ kw® A (—kw®) = 0.
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Denoting, as above4,, = —\*, from (2.5) the sameXxt = — > \’(wy —
Aw") can be deduced, only now the scope.pb contains one more value 3. For
the vectorl = ¢, \* there now holds

dl = = A"eqw” + dusk (ern—i-l"d3 + Z em—l—l—i—awa) + 5uf7f€m+fwf +1 Z Nw?,
a v

where all terms, except the last one, are normal to the locally EuclidearTleas
the integral lines of the vector fieldon this leaf are geodesics of this leaf. The
Descartes’ coordinates’, ..., z™ can be taken on this leaf as before in Section 4,
so that these geodesics are some coordinate lines.dJhendz, w;, = 0.

The surfaces, orthogonal to these leaves, are tangeptdad for them (4.2)
hold, as before. Thus these surfaces are two-dimensional spheoss vadius is a
linear function of the coordinate along the geodesics. Hence the subidahift
is intrinsically a Riemannian product of an elliptic cone and a locally Euclidean
manifold.

The second order envelopes of the Segre orbits are investigatéti. [ It
is shown, in particular, that such an envelopeSef ;) (k) with variablek is a
“logarithmic spiral tube”, generated by a family of concentric two-dimendiona
spheres whose orthogonal trajectories are the congruent logarithirats spith
the common pole in the centre of the family spheres.

The spheres above, whose radius is of linear dependence on trdinever
along the geodesics, are the generating spheres of these “logarithraldspas”.

6. CONCLUSIONS

In connection with the conjecture, formulated in Introduction, the following
guestion arises: is this conjecture verified completely by Theorems 1-&abov

The answer concerning the first possibility is positive because theesphed
Veronese surfaces are the only irreducible two-dimensional parabetauifolds,
which are the main symmetric orbits.

For the other possibility the answer is also positive if one restricts onese# to th
case of(mg + ¢ + 3)-dimensional submanifolds. The three-dimensional parallel
submanifolds in a Euclidean space are classifiediR’] (see also {], Secs. 20
and 21). Among them the only ones carrying a foliation whose leaves l&ve fl
are Segre orbit§, ) (k); see Theorem 3.

The case of dimensiox mg + ¢ + 3 remains open. The list of symmetric
R-spaces is given irtf] (see also7°]), but it is not yet clear which of them have
the needed now property.

Nevertheless, it is very plausible that the submanifolds of Theorems &-tBer
only semiparallel submanifolds ig”, which are intrinsically of conullity two.
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Semiparalleelset isomeetrilist sisestust lubavad
Riemanni muutkonnad konullisusega kaks

Ulo Lumiste

Riemanni muutkond konullisusega kaks vib olla kas planaarne, hiipee)oo
paraboolne vai elliptiline. Mitme erijuhu puhul on varem naidatud, et semi-
paralleelset isomeetrilist sisestust eukleidilisse ruumi lubavad ainult ptetaar
tttpi sellised muutkonnad. Nuid on see tdestatud tsna uldiste muutkondksle ja
konullisusega kaks. On oletatud, et see v6ib kehtida ka kdigi viimast ttugi-mu
kondade puhul.
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