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Abstract. A Riemannian manifold(M, g) is semisymmetric ifR(X,Y ) ◦ R = 0. An
isometric immersion of(M, g) into a Euclidean space is semiparallel ifR̄(X,Y ) ◦ h = 0
holds for the second fundamental tensorh. Due to Gauss and Ricci equations the second
condition leads to the first one. EspeciallyR(X,Y ) ◦ R = 0 holds if (M, g) is foliated by
codimension two locally Euclidean leaves (equivalently, is of conullity two). Here the planar,
hyperbolic, parabolic, and elliptic types can be specified. For many cases of these manifolds
of conullity two it has been shown already that their isometric semiparallel immersions into a
Euclidean space are possible only if the manifold is of planar type. Now the same is established
for the rather general manifolds of conullity two; it is claimed that this holds perhaps for all of
them.

Key words: semisymmetric Riemannian manifolds, manifolds of conullity two, planar type,
semiparallel immersions.

1. INTRODUCTION

The geometry of a Riemannian manifold(M, g) depends essentially on its
Levi–Civita connection∇ and the curvature tensorR. If R is parallel with respect
to ∇, i.e. if ∇R = 0, then M is said to belocally symmetric. É. Cartan
has developed the famous theory of such manifolds, both local and global (see,
e.g., [1]).

The geometry of an isometric immersion of(Mm, g) into a Euclidean space
En or a space formNn(c) depends essentially on its van der Waerden–Bortolotti
connection∇̄ (which is actually a pair of∇ and of the normal connection∇⊥)
and on the second fundamental (mixed) tensorh. The famous Gauss, Peterson–
Codazzi, and Ricci equations establish the well-known relationships betweenh, R,
∇̄, andR⊥ (here the last one is the curvature (mixed) tensor of∇⊥).
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Such an immersion is said to beparallel if ∇̄h = 0. A conclusion from the
Gauss equation is that a parallel immersion admits only the locally symmetric
(Mm, g).

The differential systems∇R = 0 and ∇̄h = 0 have their integrability
conditionsΩ ◦ R = 0 and Ω̄ ◦ h = 0, respectively, where the first ingredients
are the curvature 2-form operators; the same integrability conditions can be written
also asR(X, Y ) ◦ R = 0 and R̄(X, Y ) ◦ h = 0, respectively. The manifold
and immersion satisfying these conditions are called asemisymmetric manifold
and asemiparallel immersion, respectively. From the Gauss and Ricci equations it
follows that a semiparallel immersion admits only the semisymmetric manifold.

The local classification of semisymmetric Riemannian manifolds(M, g) is
given by Szabó [2]. The most interesting is the class of so-called foliated semi-
symmetric manifolds(Mm, g), every one of which is foliated by locally Euclidean
leaves of codimension two; subsequently they will be called themanifolds of
conullity two. Kowalski has given for the dimensionm = 3 a more detailed parti-
tion in this class, first in a 1991 preprint and then in [3]. Afterwards it was extended
by Boeckx [4] for the arbitrary dimensionm. So theplanar, hyperbolic, parabolic,
andelliptic manifolds of conullity two have been distinguished (see [5], Ch. 7).

The concept of semiparallel isometric immersion and the first results on it
were given in [6] and then summarized, together with the further results, in [7].
Recent results published in [8−10] make plausible the following conjecture:if a
semiparallel isometric immersion into a Euclidean spaceEn realizes a Riemannian
manifold(Mm, g) of conullity two, then the latter can be only of planar type.In [10]
it is shown that this is true for arbitraryn if m is 3. In [8] and [9] it is established
that this conjecture is valid if such an immersion gives a submanifold with plane
generators of codimension two or a normally flat submanifold, respectively. The
problem arises: can this conjecture be verified in general?

In the present paper the validity of the above conjecture will be establishedin
a rather general situation using the following known facts.

In [11] it is shown that a submanifoldMm in a Euclidean spaceEn is
semiparallel (≡ semisymmetric, extrinsically) if and only ifMm is a second
order envelope of the symmetric submanifolds. The last ones are described by
Ferus [12−14] as the extrinsic products of two submanifolds; the first of them is the
extrinsic product of standard embeddings of symmetricR-spaces, and the second is
the extrinsic product of some circles and a plane, i.e.S1(c1)× ...×S1(cq)×Em0 .

The last product is obviously locally Euclidean and on the above second order
envelopeMm the tangent subspaces of these products form a foliation with locally
Euclidean leaves. There are two possibilities for this envelope to be intrinsically of
conullity two.

The first, simpler possibility realizes when these locally Euclidean leaves are of
codimension two in this envelopeMm, in other words, when the other component
of the symmetric extrinsic product is two-dimensional, and consequently these
components envelope the semiparallel surfaces. But the semiparallel surfaces in
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a Euclidean space are classified completely (see [6,7]): such a surface is either (i) a
surface with flat∇̄, or (ii) a sphereS2(c), or (iii) a second order envelope of the
Veronese surfacesV 2(c). This enables us to solve the problem for this possibility;
see Theorems 1 and 2 below.

There is another possibility: the extrinsic product of standard embeddingsof
symmetricR-spaces carries a foliation, whose leaves have flat∇ and, together
with the leaves enveloped byS1(c1) × ... × S1(cq) × Em0 , generate the locally
Euclidean submanifolds of codimension two inMm. Here the problem is solved
for a principal case, where in the role of the standard embedding of a symmetric
R-space is the three-dimensional Segre submanifoldS(1,2)(k) (see Theorem 3
below).

It is claimed that these results solve perhaps the whole problem above.

2. CLASSIFICATION OF SEMISYMMETRIC RIEMANNIAN
MANIFOLDS

A general classification of the semisymmetric Riemannian manifolds(M, g)
is provided by Szabó, locally in [2]. First he proves by means of the infinitesimal
and the local holonomy groups that for every semisymmetric Riemannian manifold
(M, g) there exists a dense open subsetU such that around the points ofU the
manifold M is locally isometric to a direct product of semisymmetric manifolds
M0 × M1 × ... × Mr, whereM0 is the open part of a Euclidean space and the
manifoldsMi, i > 0, are infinitesimally irreducible simple semisymmetric leaves.
Here a semisymmetricM is called asimple leafif at its every pointx the primitive
holonomy group determines a simple decompositionTxM = V

(0)
x + V

(1)
x , where

this group acts trivially onV (0)
x and there is only one other subspaceV

(1)
x which is

invariant to this group. A simple leaf is said to be infinitesimally irreducible if at
least at one point the infinitesimal holonomy group acts irreducibly onV

(1)
x .

The dimensionν(x) = dimV
(0)
x is called theindex of nullityat x andu(x) =

dimM − ν(x) the index of conullityatx.
The classification theorem by Szabó [2] asserts the following (according to the

formulation given in [5]).

Theorem A. Let(M, g) be an infinitesimally irreducible simple semisymmetric leaf
andx a point ofM . Then one of the following cases occurs:

(a) ν(x) = 0 and u(x) > 2: (M, g) is locally symmetric and hence locally
isometric to a symmetric space;

(b) ν(x) = 1 and u(x) > 2: (M, g) is locally isometric to an elliptic, a
hyperbolic or a Euclidean cone;

(c) ν(x) = 2 andu(x) > 2: (M, g) is locally isometric to a Kählerian cone;
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(d) ν(x) = dimM − 2 andu(x) = 2: (M, g) is locally isometric to a space
foliated by Euclidean leaves of codimension two or to a two-dimensional
manifold(the last for the case wheredimM = 2).

Note that for(M, g) of the case (d) withν(x) > 2 the termmanifold of conullity
two is used in [5].

Kowalski, considering the three-dimensionalM , introduced for the manifold of
conullity two the geometric concept ofasymptotic foliationin a preprint of 1991.
Afterwards this concept was published in [3] and generalized by Boeckx [4] to the
arbitrary dimension ofM (see also [5]).

Namely, a codimension one submanifold of a Riemannian manifold(M, g) of
conullity two is called theasymptotic leafif it is generated by the codimension two
Euclidean leaves of thisM and if its tangent spaces are parallel along each of the
latter leaves (with respect to the Levi–Civita connection∇ of (M, g)).

A codimension one foliation on such anM is called theasymptotic foliationif
its integral manifolds are asymptotic leaves.

In what follows a treatment of the asymptotic foliations is given according to
Kowalski [3] (and also [4,5]).

Let O(M) be the bundle of orthonormal frames(e1, ..., em) on M , m =
dimM . For the bundleO∗(M) of the dual coframes(ω1, ..., ωm) the following
structure equations hold:

dωi = ωj ∧ ωi
j , dωi

j = ωk
j ∧ ωi

k + Ωi
j (2.1)

(see [15], Chs. III and IV), whereωi
j and Ωi

j are, respectively, the connection

1-forms and the curvature 2-forms of∇. Here orthonormality yieldsωi
j + ωj

i = 0,

Ωi
j + Ωj

i = 0.
Let M be of conullity two. ThenO(M) andO∗(M) can be adapted to thisM

so that(e3, ..., em) are tangent to one of the Euclidean leaves and thus the latter
are determined byω1 = ω2 = 0. Since this last differential system is totally
integrable, dω1 and dω2 must vanish as the algebraic consequences ofω1 = ω2 = 0
(due to the Frobenius theorem, second version; see [16]). This, together with the
fact that Euclidean leaves are totally geodesic becauseM is a simple leaf, yields

ω1
u = Auω1 + Buω2, ω2

u = Cuω1 + Fuω2; (2.2)

here (and also further)u ∈ {3, ..., m}.
Let the unit vectorX = e1 cos ϕ+e2 sinϕ be taken so that span{X, e3, ..., em}

is the tangent plane of an asymptotic leaf. Then∇eu
X = ∇Xeu + [eu, X] must

belong to the tangent plane of this asymptotic leaf for every value ofu. Since the
tangent distribution of these leaves is a foliation, this tangent plane contains[eu, X].
Thus this plane must contain also

∇Xeu = ∇e1
eu cos ϕ + ∇e2

eu sinϕ = (ωk
u(e1)ek) cos ϕ + (ωk

u(e2)ek) sin ϕ.
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Hence
(Aue1 + Cue2) cos ϕ + (Bue1 + Eue2) sinϕ

must belong to span{X, e3, ..., em} and therefore must be a multiple ofX =
e1 cos ϕ + e2 sinϕ. The last condition is equivalent to

Bu sin2 ϕ + (Au − Eu) cos ϕ sinϕ − Cu cos2 ϕ = 0.

But along this asymptotic leafω1 sin ϕ = ω2 cos ϕ, so that this condition reduces
to

Cu(ω1)2 + (Eu − Au)ω1ω2 − Bu(ω2)2 = 0. (2.3)

According to [3,5] a foliated M is said to beplanar if it admits infinitely
many asymptotic foliations. If it admits just two (or one, or none, respectively)
asymptotic foliations, it is said to behyperbolic (or parabolic, or elliptic,
respectively).

From (2.3) it is seen that the planar foliatedM is characterized byAu − Eu =
Bu = Cu = 0, i.e. by the fact that (2.2) reduces to

ω1
u = Auω1, ω2

u = Auω2. (2.4)

ThenA =
∑

u Aueu determines a vector field on such anM . The relations
(2.4) can be written asωa

u = Auωa, wherea, b, ... run over{1, 2}. By exterior
differentiation, using the structure equations (2.1), from here

(dAu − Avω
v
u + AuAvω

v) ∧ ωa − Ωa
u = 0, (2.5)

Ωi
j = 1

2Ri
j,klω

k ∧ ωl being the curvature 2-forms of the RiemannianM . Due
to Cartan’s lemma, from this exterior equation it follows that dAu − Avω

v
u is a

linear combination of allωi. Since the latter turn to zero at an arbitrary fixed
point x ∈ M , dAu = Avω

v
u at x. Moreover, deu = evω

v
u at x. Hence

dA =
∑

u(Avω
v
ueu + Auevω

v
u) = 0 at x, due to the orthonormality. This shows

thatA is invariant atx, indeed. Actually the vector fieldA consists of vector fields
on the locally Euclidean leaves of codimension two.

3. THE FIRST POSSIBILITY OF SEMIPARALLEL IMMERSED
MANIFOLDS OF CONULLITY TWO

In Introduction it is noted, using the results of [11−14], that there are two
possibilities of a semiparallel immersed manifold of conullity two.

Let us start now with the first possibility where the considered submanifold
Mm is the second order envelope ofM2 × S1(c1) × ... × S1(cq) × Em0 in En,
m = 2 + q + m0, n > m, hereM2 being a parallel surface. The orthonormal
frame bundle can be adapted to such a submanifoldMm, following [17], so that at
an arbitrary pointx ∈ Mm the basic vectorsei1 are tangent toM2, ef are tangent
to S1(cf−1), andei0 belong toEm0 ; herei1, j1, ... run over{1, 2}, f, g, ... run over
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{3, ..., q+2}, andi0, j0, ... over{q+3, ..., m}. Moreover, letem+1, normal toMm,
be directed to the centre of the sphereSn1−1 in whichM2 lies fully and minimally,
let the nexteα1

be normal toMm and tangent to thisSn1−1 (hereα1, β1, ... run
over {m + 2, ..., m + n1}), and leten∗+f be directed to the centre of the circle
S1(cf−1) (heren∗ = m + n1 − 2); if there are more frame vectors normal toMm

atx, they will be denoted byeξ.
Then Mm is determined inEn by the following Pfaff system as one of its

integral submanifolds (see [17]):

ωm+1 = ωα1 = ωn∗+f = ωξ = 0,

ωm+1
i1

− kωi1 = ωα1

i1
− hα1

i1j1
ωj1 = ωn∗+f

i1
= ωξ

i1
= 0, (3.1)

ωm+1
f = ωα1

f = ωn∗+g
f − δg

fkfωf = ωξ
f = 0, (3.2)

ωm+1
i0

= ωα1

i0
= ωn∗+f

i0
= ωξ

i0
= 0. (3.3)

By exterior differentiation the equationsωm+1
i0

= 0 in (3.3) andωm+1
f = 0 in

(3.2) give, respectively,
∑

j1
ωj1

i0
∧kωj1 = 0 and

∑

j1
ωj1

f ∧kωj1 +kfωf ∧ωm+1
n∗+f =

0, thus due to Cartan’s lemma

ωi0
j1

= λi0
j1l1

ωl1 , ωf
i1

= λf
i1j1

ωj1 + µf
i1

ωf , (3.4)

k−1kfωn∗+f
m+1 = µf

i1
ωi1 + νfωf .

In the same manner the equationsωα1

i0
= 0 in (3.3) andωα1

f = 0 in (3.2) give

ωj1
i0
∧ hα1

j1k1
ωk1 = 0 andωi1

f ∧ hα1

i1j1
ωj1 + kfωf ∧ ωα1

n∗+f = 0, thus

∑

j1

(hα1

j1k1
λi0

j1l1
− hα1

j1l1
λi0

j1k1
) = 0,

∑

i1

(hα1

i1k1
λf

i1j1
− hα1

i1j1
λf

i1k1
) = 0, (3.5)

ωα1

n∗+f + k−1
f

∑

i1

µf
i1

hα1

i1k1
ωk1 = λα1

fgω
g; (3.6)

here the coefficients with two subindices are symmetric with respect to these
subindices.

The equationsωn∗+f
i1

= 0 in (3.1) lead to

ωf
i1
∧ kfωf + kωi1 ∧ ωn∗+f

m+1 + hα1

i1j1
ωj1 ∧ ωn∗+f

α1
= 0.

After substitutions from (3.4) and (3.6) this implies

∑

l1

{

∑

α1

hα1

i1[j1
hα1

k1]l1
+ k2δi1[j1δk1]l1

}

µf
l1

= 0,
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where[...] means the alternation. Here the expressions between braces{ and } are
the components of the Levi–Civita curvature tensor ofM2. SinceM2 is supposed
to be not locally Euclidean,µf

l1
= 0, and so due to (3.4) and (3.5)

ωu
i1 = λu

i1j1ω
j1 ,

∑

i1

(hα1

i1k1
λu

i1j1 − hα1

i1j1
λu

i1k1
) = 0, (3.7)

where the indexu runs over the scopes of bothf andi0.
As is noted in Introduction, a parallel, not locally Euclidean surfaceM2 in a

Euclidean spaceEn is either a sphereS2(c), or a Veronese surfaceV 2(k). These
two cases will further be considered separately.

3.1. Case of the sphere S2(c)

Here in (3.1)hα1

i1j1
= 0, and so the scope ofα1 is empty,n1 = 3, n∗ = m+1 =

3 + q + m0.
The equationsωm+1

i1
− kωi1 = 0 in (3.1) give after exterior differentiation and

using Cartan’s lemma that

δi1j1d ln k −
∑

u

λu
i1j1ω

u = Λi1j1k1
ωk1 ,

whereΛi1j1k1
is symmetric with respect to all three indices. Fori1 6= j1 this

implies that onlyλu
11 andλu

22 can be nonzero, but fori1 = j1 = 1 andi1 = j1 = 2
it implies thatλu

11 = λu
22 = λu. Hence the first relations in (3.7) reduce to

ωu
1 = λuω1, ωu

2 = λuω2, (3.8)

which in comparison with (2.4) show that the consideredMm of conullity two is
of planar type and nowAu = −λu.

This result can be formulated as

Theorem 1. A semiparallel submanifoldMm in En, which is the second order
envelope of product-submanifoldsS2(c) × S1(c2) × ... × S1(c1+q) × Em0 , is
intrinsically of conullity two of planar type.

Note that the relation above leads to

d ln k =
∑

u

λuωu, (3.9)

because now allΛi1j1k1
turn to zero.
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3.2. Case of the Veronese orbit V 2(k)

Due to [7] here the matriceshα1 = ‖hα1

i1j1
‖ are as follows:

hm+2 =

(

k
√

3 0

0 k
√

3

)

, hm+3 =

(

k 0
0 −k

)

, hm+4 =

(

0 k
k 0

)

, hξ = 0.

The second relation in (3.7) can be considered as the condition that the product
of two symmetric matriceshα1 and λu = ‖λu

i1j1
‖ is a symmetric matrix. For

α1 = m + 2 this condition is satisfied trivially. Since

hm+3 · λu =

(

kλu
11 kλu

12

−kλu
21 −kλu

22

)

, hm+4 · λu =

(

kλu
21 kλu

22

kλu
11 kλu

12

)

,

the same condition forα1 = m + 3 andα1 = m + 4 implies λu
21 = −λu

12 and
λu

11 = λu
22. This, together with the symmetricity conditionλu

21 = λu
12, leads to

λu
12 = λu

21 = 0, so that

ωu
1 = λuω1, ωu

2 = λuω2, (3.10)

whereλu is the common value ofλu
11 andλu

22. The comparison with (2.4) shows
that the consideredMm is intrinsically of conullity two of planar type and now
Au = −λu.

This result can be formulated as

Theorem 2. A semiparallel submanifoldMm in En, which is the second order
envelope of product-submanifoldsV 2(k) × S1(c2) × ... × S1(c1+q) × Em0 , is
intrinsically of conullity two of planar type.

4. GEOMETRICAL DESCRIPTIONS

The geometry of submanifoldsMm in En, considered in Theorems 1 and 2, is
described by the property that they are intrinsically of conullity two of planartype.
A further description is possible due to the fact that for both of these cases there
hold similar formulae (3.8) and (3.10). They allow us to introduce at an arbitrary
point x ∈ Mm the vectorl = euλu, which is due toλu = −Au opposite to the
vectorA, introduced above at the end of Section 2. So a vector fieldl is determined
on every locally Euclidean leaf of codimension two inMm.

For submanifoldsMm of Theorems 1 and 2 the fieldl has a special quality.
Recall that for every submanifold inEn the formulaΩj

i = ωα
i ∧ ωj

α holds (see [7],
formula (2.6)). ForMm considered here thusΩa

u = ωm+1
u ∧ωa

m+1+ωn∗+g
u ∧ωa

n∗+g,
wherea is in the role ofi1 in Eqs. (3.1)–(3.3), andu is eitherf or i0. Due to the
same equationsωm+1

u = 0 andωa
n∗+g = −ωn∗+g

a = 0, hence hereΩa
u = 0. Since

a runs over{1, 2}, from (2.5) it follows that now
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dλu = −
∑

v

λv(ωu
v − λuωv). (4.1)

This leads to

dl = deuλu + eudλu

= (ωa
uea + ωv

uev + ωn∗+f
u en∗+f )λu + eu

[

−
∑

v

λv(ωu
v − λuωv)

]

= l
∑

v

λvωv + θ,

whereθ is a vector valued 1-form, normal to the locally Euclidean leaf, but this
shows that the integral lines of the vector fieldl are the geodesic lines of this leaf.
Since the leaf is locally Euclidean, the geodesic lines can be taken for the coordinate
lines of some system of Descartes’ coordinatesx3, ..., xm with orthogonal net on
this leaf. Theneu = ∂

∂xu
andωu = dxu, ωv

u = 0.
These considerations have been used already in [9] for the case of spheres

S2(c), when the second order envelopeMm has flat normal connection. Now they
are extended also to the case of Veronese orbitsV 2(k). But there is an essential
difference, which concerns the 2-dimensional submanifolds (surfaces) intersecting
orthogonally the locally Euclidean leaves. These surfaces are the second order
envelopes of the spheres or Veronese orbits, respectively.

Since the spheres are totally umbilical, these envelopes, as the orthogonal
surfaces, are here the spheres themselves. In [9] it is shown that the radius of
this orthogonal sphere along the geodesic line tangent tol is a linear function of the
arc length of this geodesic. Indeed, these orthogonal surfaces are tangent toea and
for them

dea = ebω
b
a + euωu

a + em+1ω
m+1
a = ebω

b
a + (l + kem+1)ω

a. (4.2)

Thus these surfaces are the spheres with the radiusr = (l2 + k2)−1/2. From (4.1)
and (3.9) it follows that dr = ruωu, whereru = −rλu and thus dru = rvω

v
u.

If we consider this in the Descartes’ coordinates above, then due toωv
u = 0 here

ru = cu = const, and due toωu = dxu thusr = cuxu + c.
Hence hereMm is intrinsically a Riemannian product of an elliptic cone and a

locally Euclidean manifold.
The situation is different in the case of Veronese orbits. In [18] it is established

that in the Euclidean space of dimension> 5 the second order envelope of Veronese
orbitsV 2(k) needs not be such an orbit itself (or its open part), but in dimension
≥ 7 this envelope can be an arbitrary surface of positive Gaussian curvature.

In [19] the subcase is investigated, when a semiparallelMm in En is the second
order envelope ofV 2(k) × Em0 , i.e. there are no circular factors in the product of
Theorem 2; herem = m0+2, of course. The formulae (3.9) have been obtained for
this subcase already in [19] (see the formulae (3.4) there), but their interpretation as
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showing the planarity is not given yet in [19], because this concept was introduced
much later. Also the vector fieldl works in [19], and the absence of circular factors
makes the situation simpler. It is shown that ifl 6= 0, thenMm0+2 is a product-
submanifoldM3×Em0−1, whereM3 is the second order envelope ofV 2(k)×E1,
which is a cone with a point-vertex and 1-dimensional generators, whose directrix
on the sphereSn−m0 around the vertex is the second order envelope of Veronese
surfacesV 2(k) in Sn−m0 (see [19], Theorem 2 form = 2).

5. ANOTHER POSSIBILITY

Another possibility of a semiparallel isometric immersion of the manifold
Mm of conullity two into En is noted in Introduction and is the case where
there is only one standard embedding of a symmetricR-space, which is a Segre
submanifoldS(1,2)(k). The latter is a 3-dimensional complete parallel submanifold
in a sphereS5(k2) ⊂ E6, generated by 2-dimensional great spheresS2(k) of
S5(k2), intersected orthogonally by great circles ofS5(k2), and is immersed into
E6 symmetric spaceO(6, R)/O(2, R) × O(3, R) (see, e.g., [7], Sec. 21).

So letMm be the second order envelope of product-submanifoldsS(1,2)(k) ×
S1(c1) × ...S1(cq) × Em0 with variablek andc1, ..., cq, m = 3 + q + m0. The
orthonormal frame bundle will be adapted to thisMm so that at an arbitrary point
x ∈ Mm the vectorsea, wherea, b, ... run over{1, 2}, are tangent to the generator
sphereS2(k) ande3 is tangent to the generator circleS1(k) of S(1,2)(k), going
throughx. Moreover, letef , wheref, g, ... run over{4, ..., 3 + q}, be tangent to
the circleS1(cf−3) andei0 , wherei0, j0, ... run over{3 + q + 1, ..., 3 + q + m0},
belong toEm0 . Among the normal toMm basic vectors of the orthonormal frame
at x, let em+1 be directed to the centre of the sphereS5(k2) containingS(1,2)(k),
andem+1+a be normal toS(1,2)(k) and tangent toS5(k2) (recall, herea ∈ {1, 2}).
Finally, letem+f be directed to the centre of the circleS1(cf−3) atx, andeξ be the
remaining normal toMm basic vectors inEn.

ThenMm is determined by the following Pfaff system, as one of its integral
submanifolds:

ωm+1 = ωm+1+a = ωm+f = ωξ = 0,

ωm+1
a = kωa, ωm+1

3 = kω3, ωm+1+a
b = δa

b kω3, ωm+1+a
3 = kωa, (5.1)

ωm+f
a = ωm+f

3 = ωξ
a = ωξ

3 = 0, (5.2)

ωm+1
f = ωm+1+a

f = ωm+f
f − γfωf = ωξ

f = 0, (5.3)

ωm+1
i0

= ωm+1+a
i0

= ωm+f
i0

= ωξ
i0

= 0. (5.4)

Note that Eqs. (5.1) here turn to Eqs. (21.5) withc = 0 in [7] for a Segre orbit
S(1,2)(k) if we takem = 3 and use the renumeration1 → 2, 2 → 3, 3 → 1.
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The first equations in (5.1) give by exterior differentiation

−d ln k ∧ ωa + ωm+1+a
m+1 ∧ ω3 + ωa

f ∧ ωf + ωa
i0 ∧ ωi0 = 0,

−d ln k ∧ ω3 +
∑

a

ωm+1+a
m+1 ∧ ωa + ω3

f ∧ ωf + ωi0 ∧ ωi0 = 0,

and from here by Cartan’s lemma

−d ln k = κω3 + Afωf + Ai0ω
i0 , (5.5)

ωm+1+a
m+1 = κωa + Ba

fωf + Ba
i0ω

i0 , (5.6)

ωa
f = Afωa + Ba

fω3 + Ca
fgω

g + Ca
fi0ω

i0 , (5.7)

ωa
i0 = Ai0ω

a + Ba
i0ω

3 + Ca
fi0ω

f + Ca
i0j0ω

j0 , (5.8)

ω3
f =

∑

a

Ba
fωa + Afω3 + Dfgω

g + Efi0ω
i0 , (5.9)

ω3
i0 =

∑

a

Ba
i0ω

a + Ai0ω
3 + Efi0ω

f + Fi0j0ω
j0 ; (5.10)

here is symmetry with respect to subscriptsfg andi0j0.
The remaining equations of (5.1) give by exterior differentiation

(δa
b ω3

c + δa
c ω3

b − δb
cω

m+1+a
m+1 ) ∧ ωc + [−δa

b d ln k + (ωa
b − ωm+1+a

m+1+b )] ∧ ω3

+ δa
b (ω3

f ∧ ωf + ω3
i0 ∧ ωi0) = 0,

[−δa
b d ln k+(ωa

b −ωm+1+a
m+1+b )]∧ωb+(2ωa

3−ωm+1+a
m+1 )∧ω3+ωa

f∧ωf +ωa
i0∧ωi0 = 0.

Here, in the first exterior equation, the first terms reduce bya = b = 1, a = b = 2,
respectively, to

(2ω3
1 − ωm+2

m+1) ∧ ω1 + ω3
2 ∧ ω2, ω3

1 ∧ ω1 + (2ω3
2 − ωm+3

m+1) ∧ ω2.

Thus these equations, together with (5.5)–(5.10), give

ω3
a = P(a)ω

a + Ba
fωf + Ba

i0ω
i0 .

Now the same equations bya = b lead toBa
f = Ba

i0
= 0, P(a) = −κ, and

ω2
1 = ωm+3

m+2, so that

ωa
3 = κωa, (5.11)

ωa
f = Afωa + Ca

fgω
g + Ca

fi0ω
i0 , ωa

i0 = Ai0ω
a + Ca

fi0ω
f + Ca

i0j0ω
j0 . (5.12)
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The equationsωm+f
a = 0, ωm+f

3 = 0 in (5.2) give

k−1ωf
a ∧ γfωf + ωa ∧ ωm+f

m+1 + ω3 ∧ ωm+f
m+1+a = 0,

k−1ωf
3 ∧ γfωf + ω3 ∧ ωm+f

m+1 + ωa ∧ ωm+f
m+1+a = 0,

and from hereCa
fg = Ca

fi0
= Dfd = Efi0 = 0, ωm+f

m+1 − k−1Afγfωf = 0,

ωm+f
m+1+a = 0.

The equationsωm+1
i0

= 0 in (5.4) lead to
∑

a ωa
i0
∧ ωa + ωa

i0
∧ ω3 = 0, and

thusCa
i0j0

= Fi0j0 = 0. Hence (5.12), (5.9), (5.10) reduce to

ωa
f = Afωa, ωa

i0 = Ai0ω
a, ω3

f = Afω3, ω3
i0 = Ai0ω

3. (5.13)

The distribution, which is determined by the systemωa = 0 (recall,a runs over
{1, 2}), is a foliation, because due to (5.11) and (5.13)

dωa = ωb ∧ ωa
b + ω3 ∧ κωa + ωf ∧ Afωa + ωi0 ∧ Ai0ω

a.

The leaves of this foliation are generated by the second order envelopesof the
products of circular generators ofS(1,2)(k) and ofS1(c2)× ...×S1(c1+q)×Em0 .

For them the indicesu, v, ... can be introduced, which run over the scope
containing 3 and the scopes off and i0. These leaves are intrinsically locally
Euclidean, becauseea, em+1, em+1+a, em+f , eξ are normal to them and due to
(5.1)–(5.4)

Ωv
u = ωa

u∧ωv
a+ωm+1

u ∧ωv
m+1+ωm+1+a

u ∧ωv
m+1+a+ωm+f

u ∧ωv
m+f +ωξ

u∧ωv
ξ = 0.

Hence the consideredMm in En is intrinsically of conullity two. Since (5.11) and
the first equations in (5.13) can be joined intoωa

u = Auωa if we denoteκ = A3, it
is of planar type, as shows comparison with (2.4).

The result can be formulated as follows.

Theorem 3. A semiparallel submanifoldMm in En, which is the second order
envelope of product-submanifoldsS(1,2)(k) × S1(c1) × ... × S1(cq) × Em0 , is
intrinsically of conullity two of planar type.

To characterize the geometry of such anMm, the analysis of the first part of
Section 4 can be repeated. The only difference is that now the scope of the indexu
contains also the value 3, so that amongΩa

u in (2.5) there is alsoΩa
3, which is zero

too, because due to (5.1) and (5.2)

Ωa
3 = ωm+1

3 ∧ ωa
m+1 + ωm+1+a

3 ∧ ωa
m+1+a +

∑

f

ωm+f
3 ∧ ωa

m+f

= kω3 ∧ (−kωa) + kωa ∧ (−kω3) = 0.
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Denoting, as above,Au = −λu, from (2.5) the same dλu = −∑

v λv(ωu
v −

λuωv) can be deduced, only now the scope ofu, v contains one more value 3. For
the vectorl = euλu there now holds

dl = −λueaω
a + δu3k

(

em+1ω
3 +

∑

a

em+1+aω
a
)

+ δufγfem+fωf + l
∑

v

λvωv,

where all terms, except the last one, are normal to the locally Euclidean leaf. Thus
the integral lines of the vector fieldl on this leaf are geodesics of this leaf. The
Descartes’ coordinatesx3, ..., xm can be taken on this leaf as before in Section 4,
so that these geodesics are some coordinate lines. Thenωu = dxu, ωv

u = 0.
The surfaces, orthogonal to these leaves, are tangent toea and for them (4.2)

hold, as before. Thus these surfaces are two-dimensional spheres whose radius is a
linear function of the coordinate along the geodesics. Hence the submanifold Mm

is intrinsically a Riemannian product of an elliptic cone and a locally Euclidean
manifold.

The second order envelopes of the Segre orbits are investigated in [20,21]. It
is shown, in particular, that such an envelope ofS(1,2)(k) with variablek is a
“logarithmic spiral tube”, generated by a family of concentric two-dimensional
spheres whose orthogonal trajectories are the congruent logarithmic spirals with
the common pole in the centre of the family spheres.

The spheres above, whose radius is of linear dependence on the coordinate
along the geodesics, are the generating spheres of these “logarithmic spiral tubes”.

6. CONCLUSIONS

In connection with the conjecture, formulated in Introduction, the following
question arises: is this conjecture verified completely by Theorems 1–3 above?

The answer concerning the first possibility is positive because the spheres and
Veronese surfaces are the only irreducible two-dimensional parallel submanifolds,
which are the main symmetric orbits.

For the other possibility the answer is also positive if one restricts oneself to the
case of(m0 + q + 3)-dimensional submanifolds. The three-dimensional parallel
submanifolds in a Euclidean space are classified in [22,23] (see also [7], Secs. 20
and 21). Among them the only ones carrying a foliation whose leaves have flat∇
are Segre orbitsS(1,2)(k); see Theorem 3.

The case of dimension> m0 + q + 3 remains open. The list of symmetric
R-spaces is given in [24] (see also [25]), but it is not yet clear which of them have
the needed now property.

Nevertheless, it is very plausible that the submanifolds of Theorems 1–3 are the
only semiparallel submanifolds inEn, which are intrinsically of conullity two.
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Semiparalleelset isomeetrilist sisestust lubavad
Riemanni muutkonnad konullisusega kaks

Ülo Lumiste

Riemanni muutkond konullisusega kaks võib olla kas planaarne, hüperboolne,
paraboolne või elliptiline. Mitme erijuhu puhul on varem näidatud, et semi-
paralleelset isomeetrilist sisestust eukleidilisse ruumi lubavad ainult planaarset
tüüpi sellised muutkonnad. Nüüd on see tõestatud üsna üldiste muutkondade jaoks
konullisusega kaks. On oletatud, et see võib kehtida ka kõigi viimast tüüpi muut-
kondade puhul.
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