
Proc. Estonian Acad. Sci. Phys. Math., 2003,52,4, 356–377

Labelled BNF: a high-level formalism for
defining well-behaved programming languages

Markus Forsberg and Aarne Ranta

Department of Computing Science, Chalmers University of Technology and the University of
Gothenburg, SE-412 96 Gothenburg, Sweden; {markus,aarne}@cs.chalmers.se

Received 5 February 2003, in revised form 6 June 2003

Abstract. The grammar formalismLabelled BNF(LBNF) and the compiler construction
tool BNF Converterare introduced. Given a grammar written in LBNF, the BNF Converter
produces a complete compiler front end (up to, but excluding, type checking), i.e. a lexer, a
parser, and an abstract syntax definition. Moreover, it produces a pretty-printer and a language
specification in LATEX, as well as a template file for the compiler back end.

A language specification in LBNF is completely declarative and therefore portable. It
reduces dramatically the effort of implementing a language. The price to pay is that the
language must be “well-behaved”, i.e. that its lexical structure must be describable by a regular
expression and its syntax by a context-free grammar.

Key words: compiler construction, parser generator, grammar, Labelled BNF, abstract syntax,
pretty-printer, document automation.

1. INTRODUCTION

This paper defends an old idea: a programming language is defined by a BNF
grammar [1]. This idea is usually not followed for two reasons. One reason
is that a language may require more powerful methods (consider, for example,
languages with layout rules). The other reason is that, when parsing, one wants to
do other things already (such as type checking, etc.). Hence the idea of extending
pure BNF with semantic actions, written in a general-purpose programming
language. However, such actions destroy declarativity and portability. To describe
the language, it becomes necessary to write a separate document, since the BNF no
longer defines the language. Also the problem of synchronization arises: how to
guarantee that the different modules – the lexer, the parser, and the document, etc.
– describe the same language and that they fit together?

356

https://doi.org/10.3176/phys.math.2003.4.02

https://doi.org/10.3176/phys.math.2003.4.02

The idea in Labelled BNF (LBNF) is to use BNF, with construction of syntax
trees as the only semantic action. This gives a unique source for all language-
related modules, and it also solves the problem of synchronization. Thereby it
dramatically reduces the effort of implementing a new language. Generating syntax
trees instead of using more complex semantic actions is a natural phase ofmulti-
phase compilation, which is recommended by most modern-day textbooks about
compiler construction (e.g. Appel [2]). The BNF grammars are an ingredient of
all modern compilers. When designing LBNF, we tried to keep it so simple and
intuitive that it can be learnt in a few minutes by anyone who knows ordinary BNF.

Of course, there are some drawbacks with our approach. Not all languages can
be completely defined, although surprisingly many can (see Section 5.1). Another
drawback is that the modules generated are not quite as good as handwritten. But
this is a general problem when generating code instead of handwriting it: a problem
shared by all compilers, including the standard parser and lexer generation tools.

To use LBNF descriptions as implementations, we have built theBNF
Converter[3]. Given an input LBNF grammar, the BNF Converter produces a lexer,
a parser, and an abstract syntax definition. Moreover, it produces a pretty-printer
and a language specification in LATEX. Since all this is generated from asingle
source, we can be sure that the documentation corresponds to the actual language,
and that the lexer, parser, and abstract syntax fit seamlessly together.

The BNF Converter is written in the functional programming language
Haskell [4], and its target languages are presently Haskell, the associated compiler
tools Happy [5] and Alex [6], and LATEX. Happy is a parser generator tool, similar
to YACC [7], which from a BNF-like description builds an LALR(1) parser. Alex
is a lexer generator tool, similar to Lex [8], which converts a regular expression into
a finite-state automaton. Over the years, Haskell and these tools have proven to be
excellent devices for compiler construction, to a large extent because of Haskell’s
algebraic data types and a convenient method of syntax-directed translation via
pattern matching; yet they do not quite remove the need for repetitive and low-
level coding. The BNF Converter can be seen as a high-level front end to these
tools. However, due to its declarative nature, LBNF does not crucially depend
on the target language, and it is therefore possible to redirect the BNF Converter
as a front end to another set of compiler tools. This has in fact recently been
done for Java, CUP [9], and JLex [10]1. The only essential difference between
Haskell/Happy/Alex and Java/CUP/JLex or C/YACC/Lex is the target language
included in the parser and lexer description.

2. THE LBNF GRAMMAR FORMALISM

As the first example of LBNF, consider a triple of rules defining addition
expressions with “1”:

1 Work by Michael Pellauer at Chalmers.

357

EPlus. Exp ::= Exp "+" Num ;
ENum. Exp ::= Num ;
NOne. Num ::= "1" ;

Apart from thelabels, EPlus , ENum, andNOne, the rules are ordinary BNF rules,
with terminal symbols enclosed in double quotes and nonterminals written without
quotes. The labels serve asconstructorsfor syntax trees.

From an LBNF grammar, the BNF Converter extracts anabstract syntaxand
a concrete syntax. The abstract syntax is implemented, in Haskell, as a system of
datatype definitions

data Exp = EPlus Exp Exp | ENum Num
data Num = NOne

(For other languages, including C and Java, an equivalent representation can be
given in the same way as in the Zephyr abstract syntax specification tool [11]). The
concrete syntax is implemented by the lexer, parser and pretty-printer algorithms,
which are defined in other generated program modules.

2.1. LBNF in a nutshell

Briefly, an LBNF grammar is a BNF grammar where every rule is given a
label. The label is used for constructing a syntax tree whose subtrees are given by
the nonterminals of the rule, in the same order.

More formally, an LBNF grammar consists of a collection of rules, which
have the following form (expressed by a regular expression; the Appendix gives
a complete BNF definition of the notation):

Ident "." Ident "::=" (Ident | String)* ";" ;

The first identifier is therule label, followed by thevalue category. On the right-
hand side of the production arrow (::=) is the list of production items. An item is
either a quoted string (terminal) or a category symbol (nonterminal). A rule whose
value category isC is also called aproductionfor C.

Identifiers, that is, rule names and category symbols, can be chosenad libitum,
with the restrictions imposed by the target language. To satisfy Haskell, and C and
Java as well, the following rule is imposed

An identifier is a nonempty sequence of letters, starting with a capital
letter.

Labelled BNF is clearly sufficient for defining any context-free language.
However, the abstract syntax that it generates may often become too detailed.
Without destroying the declarative nature and the simplicity of LBNF, we have
added to it fourad hoc conventions, which are described in the following
subsection.

358

2.2. LBNF conventions

2.2.1. Predefined basic types

The first convention is predefined basic types. Basic types, such as integer and
character, can of course be defined in a labelled BNF, for example:

Char_a. Char ::= "a" ;
Char_b. Char ::= "b" ;

This is, however, cumbersome and inefficient. Instead, we have decided to extend
our formalism with predefined basic types and represent their grammar as a part
of lexical structure. These types are the following, as defined by LBNF regular
expressions (see Section 3.3 for the regular expression syntax):

Integer of integers, defineddigit+

Double of floating point numbers, defined
digit+ ’.’ digit+ (’e’ ’-’? digit+)?

Char of characters (in single quotes), defined
’\’’ ((char - ["’\\"]) | (’\\’ ["’\\nt"])) ’\’’

String of strings (in double quotes), defined
’"’ ((char - ["\"\\"]) | (’\\’ ["\"\\nt"]))* ’"’

Ident of identifiers, defined
letter (letter | digit | ’_’ | ’\’’)*

In the abstract syntax, these types are represented as corresponding types. In
Haskell, we also need to define a new type for Ident:

newtype Ident = Ident String

For example, the LBNF rules

EVar. Exp ::= Ident ;
EInt. Exp ::= Integer ;
EStr. Exp ::= String ;

generate the abstract syntax

data Exp = EVar Ident | EInt Integer | EStr String

where Integer and String have their standard Haskell meanings. The
lexer only produces the high-precision variants of integers and floats; authors of
applications can truncate these numbers later if they want to have low precision
instead.

Predefined categories may not have explicit productions in the grammar, since
this would violate their predefined meanings.

359

2.2.2. Semantic dummies

Sometimes the concrete syntax of a language includes rules that make no
semantic difference. An example is a BNF rule making the parser accept extra
semicolons after statements:

Stm ::= Stm ";" ;

As this rule is semantically dummy, we do not want to represent it by a constructor
in the abstract syntax. Instead, we introduce the following convention:

A rule label can be an underscore_, which does not add anything to
the syntax tree.

Thus we can write the following rule in LBNF:

_ . Stm ::= Stm ";" ;

Underscores are of course only meaningful as replacements of one-argument
constructors where the value type is the same as the argument type. Semantic
dummies leave no trace in the pretty-printer. Thus, for instance, the pretty-printer
“normalizes away” extra semicolons.

2.2.3. Precedence levels

A common idiom in (ordinary) BNF is to use indexed variants of categories to
express precedence levels:

Exp3 ::= Integer ;
Exp2 ::= Exp2 "*" Exp3 ;
Exp ::= Exp "+" Exp2 ;
Exp ::= Exp2 ;
Exp2 ::= Exp3 ;
Exp3 ::= "(" Exp ")" ;

The precedence level regulates the order of parsing, including associativity.
Parentheses lift an expression of any level to the highest level.

A straightforward labelling of the above rules creates a grammar that does
have the desired recognition behaviour, as the abstract syntax is cluttered with type
distinctions (betweenExp, Exp2 , andExp3) and constructors (from the last three
rules) with no semantic content. The BNF Converter solution is to distinguish
among category symbols those that are just indexed variants of each other:

A category symbol can end with an integer index (i.e. a sequence of
digits), and is then treated as a type synonym of the corresponding
nonindexed symbol.

ThusExp2 andExp3 are indexed variants ofExp.

360

Transitions between indexed variants are semantically dummy, and we do not
want to represent them by constructors in the abstract syntax. To do this, we extend
the use of underscores to indexed variants. The example grammar above can now
be labelled as follows:

EInt. Exp3 ::= Integer ;
ETimes. Exp2 ::= Exp2 "*" Exp3 ;
EPlus. Exp ::= Exp "+" Exp2 ;
_. Exp ::= Exp2 ;
_. Exp2 ::= Exp3 ;
_. Exp3 ::= "(" Exp ")" ;

Thus the datatype of expressions becomes simply

data Exp = EInt Integer | ETimes Exp Exp
| EPlus Exp Exp

and the syntax tree for2*(3+1) is

ETimes (EInt 2) (EPlus (EInt 3) (EInt 1))

Indexed categoriescan be used for other purposes than precedence, since the
only thing we can formally check is the type skeleton (see Section 2.3). The parser
does not need to know that the indices mean precedence, but only that indexed
variants have values of the same type. The pretty-printer, however, assumes that
indexed categories are used for precedence, and may produce strange results if they
are used in some other way.

2.2.4. Polymorphic lists

It is easy to define monomorphic list types in LBNF:

NilDef. ListDef ::= ;
ConsDef. ListDef ::= Def ";" ListDef ;

However, compiler writers in languages like Haskell may want to use predefined
polymorphic lists, because of the language support for these constructs. Labelled
BNF permits the use of Haskell’s list constructors as labels, and list brackets in
category names:

[]. [Def] ::= ;
(:). [Def] ::= Def ";" [Def] ;

As the general rule, we have

[C] , the category of lists of typeC,

[] and(:) , the Nil and Cons rule labels,

(:[]) , the rule label for one-element lists.

361

The third rule label is used to place an at-least-one restriction, but also to permit
special treatment of one-element lists in the concrete syntax.

In the LATEX document (for stylistic reasons) and in the Happy file (for syntactic
reasons), the category name[X] is replaced byListX . In order for this not to
cause clashes,ListX may not be at the same time used explicitly in the grammar.

The list category constructor can be iterated:[[X]] , [[[X]]] , etc. behave
in the expected way.

The list notation can also be seen as a variant of the Kleene star and plus, and
hence as an ingredient from Extended BNF.

2.3. The type-correctness of LBNF rules

It is customary in parser generators to delegate the checking of certain errors
to the target language. For instance, a Happy source file that Happy processes
without complaints can still produce a Haskell file that is rejected by Haskell. In
the same way, the BNF converter delegates some checking to Happy and Haskell
(for instance, the parser conflict check). However, since it is always the easiest
for the programmer to understand error messages related to the source, the BNF
Converter performs some checks, which are mostly connected with the sanity of
the abstract syntax.

The type checker uses a notion of thecategory skeletonof a rule, which is a
pair

(C,A . . . B),

whereC is the unindexed left-hand-side nonterminal andA . . . B is the sequence
of unindexed right-hand-side nonterminals of the rule. In other words, the
category skeleton of a rule expresses the abstract-syntax type of the semantic action
associated to that rule.

We also need the notions of aregular categoryand aregular rule label. Briefly,
regular labels and categories are the user-defined ones. More formally, a regular
category is none of[C] , Integer , Double , Char , String , andIdent . A
regular rule label is none of_, [] , (:) , and(:[]) .

The type checking rules are now the following:

A rule labelled by_ must have a category skeleton of form(C,C).

A rule labelled by[] must have a category skeleton of form([C],).

A rule labelled by (:) must have a category skeleton of form
([C], C[C]).

A rule labelled by(:[]) must have a category skeleton of form
([C], C).

Only regular categories may have productions with regular rule labels.

Every regular category occurring in the grammar must have at least
one production with a regular rule label.

362

All rules with the same regular rule label must have the same category
skeleton.

The second-last rule corresponds to the absence of empty data types in Haskell. The
last rule could be strengthened so as to require that all regular rule labels be unique:
this is needed to guarantee error-free pretty-printing. Violating this strengthened
rule currently generates only a warning, not a type error.

3. LBNF PRAGMAS

Even well-behaved languages have features that cannot be expressed naturally
in their BNF grammars. To take care of them, while preserving the single-source
nature of the BNF Converter, we extend the notation with what we callpragmas.
All these pragmas are completely declarative, and the pragmas are also reflected in
the documentation.

3.1. Comment pragmas

The first pragma tells what kinds ofcommentsthe language has. Normally
we do not want comments to appear in the abstract syntax, but treat them in
the lexical analysis. The comment pragma instructs the lexer generator (and the
document generator!) to treat certain pieces of text as comments and thus to ignore
them (except for their contribution to the position information used in parser error
messages).

The simplest solution to the comment problem would be to use some default
comments that are hard-coded into the system, e.g. Haskell’s comments. But this
definition can hardly be stated as a condition for a language to be well-behaved,
and we could not even define C or Java or ML then. So we have added a comment
pragma, whose regular-expression syntax is

"comment" String String? ";"

The first string tells how a comment begins. The second, optional string marks the
end of a comment: if it is not given, then the comment expects a newline to end.
For instance, to describe the Haskell comment convention, we write the following
lines in our LBNF source file:

comment "--" ;
comment "{-" "-}" ;

Since comments are treated in the lexical analyser, they must be recognized by a
finite state automaton. This excludes the use of nested comments unless defined
in the grammar itself. Discarding nested comments is one aspect of what we call
well-behaved languages.

The length of comment end markers is restricted to two characters, due to the
complexities in the lexer caused by longer end markers.

363

3.2. Internal pragmas

Sometimes we want to include in the abstract syntax structures that are not part
of the concrete syntax, and hence not parsable. They can be, for instance, syntax
trees that are produced by a type-annotating type checker. Even though they are
not parsable, we may want to pretty-print them, for instance, in the type checker’s
error messages. To define such an internal constructor, we use a pragma

"internal" Rule ";"

whereRule is a normal LBNF rule. For instance,

internal EVarT. Exp ::= "(" Ident ":" Type ")";

introduces a type-annotated variant of a variable expression.

3.3. Token pragmas

The predefined lexical types are sufficient in most cases, but sometimes we
would like to have more control over the lexer. This is provided bytoken pragmas.
They use regular expressions to define new token types.

If we, for example, want to make a finer distinction for identifiers, a distinction
between lower- and upper-case letters, we can introduce two new token types,
UIdent andLIdent , as follows.

token UIdent (upper (letter | digit | ’_’)*) ;
token LIdent (lower (letter | digit | ’_’)*) ;

The regular expression syntax of LBNF is specified in the Appendix. The
abbreviations with strings in brackets need a word of explanation:

["abc7%"] denotes the union of the characters
’a’ ’b’ ’c’ ’7’ ’%’

{"abc7%"} denotes the sequence of the characters
’a’ ’b’ ’c’ ’7’ ’%’

The atomic expressionsupper , lower , letter , and digit denote the
character classes suggested by their names (letters are isolatin1). The expression
char matches any character in the 8-bit ASCII range, and the “epsilon” expression
eps matches the empty string.2

2 If we want to describe full Java, we must extend the character set to Unicode. This is
currently not supported by Alex, however.

364

3.4. Entry point pragmas

The BNF Converter generates, by default, a parser for every category in the
grammar. This is unnecessarily rich in most cases, and makes the parser larger than
needed. If the size of the parser becomes critical, theentry points pragmaenables
the user to define which of the parsers are actually exported:

entrypoints (Ident ",")* Ident ;

For instance, the following pragma definesStm and Exp to be the only entry
points:

entrypoints Stm, Exp ;

4. BNF CONVERTER CODE GENERATION

4.1. The files

Given an LBNF source fileFoo.cf , the BNF Converter generates the
following files:

• AbsFoo.hs : The abstract syntax (Haskell source file)

• LexFoo.x : The lexer (Alex source file)

• ParFoo.y : The parser (Happy source file)

• PrintFoo.hs : The pretty-printer (Haskell source file)

• SkelFoo.hs : The case Skeleton (Haskell source file)

• TestFoo.hs : A test bench file for the parser and pretty-printer (Haskell
source file)

• DocFoo.tex : The language document (LATEXsource file)

• makefile : A makefile for the lexer, the parser, and the document

In addition to these files, the user needs the Alex runtime fileAlex.hs and
the error monad definition fileErrM.hs , both included in the BNF Converter
distribution.

4.2. Example: JavaletteLight.cf

The following LBNF grammar defines a small C-like language, Javalette
Light.3

3 It is a fragment of the language Javalette used at compiler construction courses at Chalmers
University.

365

Fun. Prog ::= Typ Ident "(" ")" "{" [Stm] "}" ;
SDecl. Stm ::= Typ Ident ";" ;
SAss. Stm ::= Ident "=" Exp ";" ;
SIncr. Stm ::= Ident "++" ";" ;
SWhile. Stm ::= "while" "(" Exp ")" "{" [Stm] "}" ;
ELt. Exp0 ::= Exp1 "<" Exp1 ;
EPlus. Exp1 ::= Exp1 "+" Exp2 ;
ETimes. Exp2 ::= Exp2 "*" Exp3 ;
EVar. Exp3 ::= Ident ;
EInt. Exp3 ::= Integer ;
EDouble. Exp3 ::= Double ;
TInt. Typ ::= "int" ;
TDouble. Typ ::= "double" ;
[]. [Stm] ::= ;
(:). [Stm] ::= Stm [Stm] ;

-- coercions
_. Stm ::= Stm ";" ;
_. Exp ::= Exp0 ;
_. Exp0 ::= Exp1 ;
_. Exp1 ::= Exp2 ;
_. Exp2 ::= Exp3 ;
_. Exp3 ::= "(" Exp ")" ;

-- pragmas
internal ExpT. Exp ::= Typ Exp ;
comment "/*" "*/" ;
comment "//" ;
entrypoints Prog, Stm, Exp ;

4.2.1. The abstract syntaxAbsJavaletteLight.hs

The abstract syntax of Javalette generated by the BNF Converter is essentially
what a Haskell programmer would write by hand:

data Prog =
Fun Typ Ident [Stm]

deriving (Eq,Show)

data Stm =
SDecl Typ Ident

| SAss Ident Exp
| SIncr Ident
| SWhile Exp [Stm]

deriving (Eq,Show)

data Exp =
ELt Exp Exp

| EPlus Exp Exp
| ETimes Exp Exp
| EVar Ident
| EInt Integer

366

| EDouble Double
| ExpT Typ Exp

deriving (Eq,Show)

data Typ =
TInt

| TDouble
deriving (Eq,Show)

4.2.2. The lexerLexJavaletteLight.x

The lexer file (in Alex) consists mostly of standard rules for literals and
identifiers, but has rules added for reserved words and symbols (i.e. terminals
occurring in the grammar) and for comments. Here is a fragment with the
definitions characteristic of Javalette.

{ %s = ^(| ^) | ^{ | ^} | ^; | ^= | ^+ ^+ | ^< | ^+ | ^*}

"tokens_lx"/"tokens_acts":-
<> ::= ^/^/ [.]* ^n
<> ::= ^/ ^* ([^u # ^*] | ^* [^u # ^/])* (^*)+ ^/

<> ::= ^w+
<pTSpec> ::= %s %{ pTSpec p = PT p . TS %}
<ident> ::= ^l ^i* %{ ident p = PT p . eitherResIdent TV %}
<int> ::= ^d+ %{ int p = PT p . TI %}
<double> ::= ^d+ ^. ^d+ (e (^-)? ^d+)?

%{ double p = PT p . TD %}

eitherResIdent :: (String -> Tok) -> String -> Tok
eitherResIdent tv s = if isResWord s then (TS s) else (tv s)

where isResWord s = elem s ["double","int","while"]

The lexer file moreover defines the token typeTok used by the lexer and the parser.

4.2.3. The parserParJavaletteLight.y

The parser file (in Happy) has a large number of token definitions (which we
find it extremely valuable to generate automatically), followed by parsing rules
corresponding closely to the source BNF rules. Here is a fragment containing
examples of both parts:

%token
’(’ { PT _ (TS "(") }
’)’ { PT _ (TS ")") }
’double’ { PT _ (TS "double") }
’int’ { PT _ (TS "int") }
’while’ { PT _ (TS "while") }

L_integ { PT _ (TI $$) }
L_doubl { PT _ (TD $$) }

367

%%

Integer : L_integ { (read $1) :: Integer }
Double : L_doubl { (read $1) :: Double }

Stm :: { Stm }
Stm : Typ Ident ’;’ { SDecl $1 $2 }

| Ident ’=’ Exp ’;’ { SAss $1 $3 }
| Ident ’++’ ’;’ { SIncr $1 }
| ’while’ ’(’ Exp ’)’ ’{’ ListStm ’}’ { SWhile $3 (reverse

$6) }
| Stm ’;’ { $1 }

Exp0 :: { Exp }
Exp0 : Exp1 ’<’ Exp1 { ELt $1 $3 }

| Exp1 { $1 }

The exported parsers have types of the following form, for any abstract syntax
typeT,

[Tok] -> Err T

returning either a value of typeT or an error message, using a simple error monad.
The input is a token list received from the lexer.

4.2.4. The pretty-printerPrintJavaletteLight.hs

The pretty-printer consists of a Haskell classPrint with instances for all
generated datatypes, taking precedence into account. The class methodprt
generates a list of strings for a syntax tree of any type.

instance Print Exp where
prt i e = case e of

ELt exp0 exp -> prPrec i 0 (concat [prt 1 exp0 , ["<"] ,
prt 1 exp])
EPlus exp0 exp -> prPrec i 1 (concat [prt 1 exp0 , ["+"] ,
prt 2 exp])
ETimes exp0 exp -> prPrec i 2 (concat [prt 2 exp0 , ["*"] ,
prt 3 exp])

The list is then put in layout (identation, newlines) by arenderingfunction, which
is generated independently of the grammar, but written with easy modification in
mind.

4.2.5. The case skeletonSkelJavaletteLight.hs

The case skeleton can be used as a basis when defining the compiler back end,
e.g. type checker and code generator. The same skeleton is actually also used in
the pretty-printer. The case branches in the skeleton are initialized to show error
messages saying that the case is undefined.

368

transExp :: Exp -> Result
transExp x = case x of

ELt exp0 exp -> failure x
EPlus exp0 exp -> failure x
ETimes exp0 exp -> failure x

4.2.6. The language documentDocJavaletteLight.tex

We show the main parts of the generated JavaletteLight document in a typeset
form. The grammar symbols in the document are produced by LATEX macros, with
easy modification in mind.

The lexical structure of JavaletteLight
Identifiers
Identifiers〈Ident〉 are unquoted strings beginning with a letter, followed by any combination
of letters, digits, and the characters_ ’ , reserved words excluded.

Literals
Integer literals〈Int〉 are nonempty sequences of digits.
Double-precision float literals〈Double〉 have the structure indicated by the regular expression
〈digit〉 + ‘.’ 〈digit〉 + (‘e’‘-’ ?〈digit〉+)?, i.e. two sequences of digits separated by a decimal
point, optionally followed by an unsigned or negative exponent.

Reserved words and symbols
The set of reserved words is the set of terminals appearing in the grammar. Those reserved
words that consist of nonletter characters are called symbols, and they are treated in a different
way from those that are similar to identifiers. The lexer follows rules familiar from languages
like Haskell, C, and Java, including the longest match and spacing conventions.
The reserved words used in JavaletteLight are the following:

double int while

The symbols used in JavaletteLight are the following:

() {
} ; =
++ < +
*

Comments
Single-line comments begin with//.
Multiple-line comments are enclosed with/* and*/ .

The syntactic structure of JavaletteLight
Nonterminals are enclosed between〈 and 〉. The symbols ::= (production),| (union) andε
(empty rule) belong to the BNF notation. All other symbols are terminals.

〈Prog〉 ::= 〈Typ〉 〈Ident〉 () { 〈ListStm〉 }

369

〈Stm〉 ::= 〈Typ〉 〈Ident〉 ;
| 〈Ident〉 = 〈Exp〉 ;
| 〈Ident〉 ++ ;
| while (〈Exp〉) { 〈ListStm〉 }
| 〈Stm〉 ;

〈Exp0〉 ::= 〈Exp1〉 < 〈Exp1〉
| 〈Exp1〉

〈Exp1〉 ::= 〈Exp1〉 + 〈Exp2〉
| 〈Exp2〉

〈Exp2〉 ::= 〈Exp2〉 * 〈Exp3〉
| 〈Exp3〉

〈Exp3〉 ::= 〈Ident〉
| 〈Integer〉
| 〈Double〉
| (〈Exp〉)

〈ListStm〉 ::= ε
| 〈Stm〉 〈ListStm〉

〈Exp〉 ::= 〈Exp0〉

〈Typ〉 ::= int
| double

4.2.7. Themakefile

The makefile is used to run Alex on the lexer, Happy on the parser, and LATEX
on the document, by simply typingmake. Themake clean command removes
the generated files.

4.2.8. The test bench fileTestJavaletteLight.hs

The test bench file can be loaded in the Haskell interpreter hugs to run the parser
and the pretty-printer on terminal or file input. The test functions display a syntax
tree (or an error message) and the pretty-printer result from the same tree.

4.3. An optimization: left-recursive lists

The BNF representation of lists is right-recursive, following Haskell’s list
constructor. Right-recursive lists, however, are an inefficient way of parsing lists in
an LALR parser. The smart programmer would implement a pair of rules such as
JavaletteLight’s

[]. [Stm] ::= ;
(:). [Stm] ::= Stm [Stm] ;

not in the direct way,

ListStm : {- empty -} { [] }
| Stm ListStm { (:) $1 $3 }

370

but under a left-recursive transformation:

ListStm : {- empty -} { [] }
| ListStm Stm { flip (:) $1 $2 }

Then the smart programmer would also be careful to reverse the list when it is used:

Prog : Typ Ident ’(’ ’)’ ’{’ ListStm ’}’ { Fun $1 $2
(reverse $6) }

As reported in the Happy manual, this transformation is vital to avoiding running
out of stack space with long lists. Thus we have implemented the transformation in
the BNF Converter for pairs of rules of the form

[]. [C] : : = ;
(:) . [C] : : = C x [C] ;

whereC is any category andx is any sequence of terminals (possibly empty).
There is another important parsing technique, recursive descent, which cannot

live with left recursion at all, but loops infinitely with left-recursive grammars
(cf., e.g., [2]). The question sometimes arises if, when designing a grammar, one
should take into account what method will be used for parsing it. The view we
are advocating is that the designer of the grammar should in the first place think
of the abstract syntax, and let the parser generator perform automatic grammar
transformations that are needed by the parsing method.

5. DISCUSSION

5.1. Results

Labelled BNF and the BNF Converter [3] were introduced as a teaching tool at
the fourth-year compiler course at Chalmers in spring 2003. The goal was, on one
hand, to advocate the use of declarative and portable language definitions, and on
the other hand, to leave more time for back-end construction in a compiler course.
The students of the course had as a project to build a compiler in small groups,
and grading was based on how much (faultless) functionality the compiler had,
e.g. how many language features and how many back ends. The first results were
encouraging: a majority (12/20) of the groups that finished their compiler used the
BNF Converter. They all were able to produce faultless front ends and, in average,
more advanced back ends than the participants of the previous year’s edition of the
course. In fact, the lexer+parser part of the compiler was estimated only to be 25%
of the work at the lowest grade, and 10% at the highest grade – far from the old
times when the parser was more than 50% of a student compiler.

One worry about using the LBNF in teaching was that students would not
really learn parsing, but just to write grammars. We found that this concern was not

371

relevant when comparing LBNF with a parser tool like Happy and YACC: students
writing their parsers in YACC are as isolated from the internals of LR parsing as
those writing in LBNF. In fact, as learning the formalism takes less time in the
case of LBNF, the teacher can allocate more time for explaining how the LR parser
works. The lexer was a bigger concern, though: since all of the token types needed
for the project were predefined types in LBNF, the students did not need to write a
single regular expression to finish their compiler! An obvious solution to this is to
add some more exotic token types to the project specification.

The main conclusion drawn from the teaching experiment was that the tool
should be ported to C and Java, so that the students who do not use Haskell would
have the same facilities as those who do.

Students in a compiler class usually implement toy languages. What about
real-world languages? As an experiment, a complete LBNF definition of ANSI C,
with [12] as reference, has been written.4 The length of the LBNF source file is
approximately the same as the length of the specification. Here is a word count
comparison between the source file and what is generated:

$ wc C.cf
288 1248 10203 C.cf

$ wc ?*C.* makefile
287 707 5635 AbsC.hs
518 1795 23062 DocC.tex

72 501 2600 LexC.x
477 2675 13761 ParC.y
423 3270 18114 PrintC.hs
336 1345 9178 SkelC.hs

22 103 677 TestC.hs
7 22 320 makefile

2142 10418 73347 total

Another real-world example is the object-oriented specification language
OCL [13].5 And of course, the BNF Converter has been implemented by using
modules generated from an LBNF grammar of LBNF (see the Appendix).

5.2. Well-behaved languages

A language that can be defined in LBNF is one whose syntax is context-free.6

Its lexical structure can be described by a regular expression. Modern languages,

4 Work by Ulf Persson at Chalmers.
5 Work by Kristofer Johannisson at Chalmers.
6 Due to the parser tool used by the BNF converter, it moreover has to be LALR(1)-parsable,

but this is a limitation not concerning LBNF as such.

372

like Java and C, are close to this ideal; Haskell, with its layout syntax and infix
declarations, is a little farther. To rescue the maximum of existing Haskell or
some other language would be a matter of detailed handwork rather than general
principles, and we have opted for keeping the LBNF formalism simple, sacrificing
completeness.

We do not need to sacrificesemantic completeness, however: languages
usually have a well-behaved subset that is enough for expressing everything that
is expressible in the language. When designing new languages – and even when
using old ones – we find it a virtue to avoid exotic features. Such features are often
included in the name of user-friendliness, but fornewusers, they are more often an
obstacle than a help, since they violate the users’ expectations gained from other
languages.

5.3. Related work

The BNF Converter belongs largely to the YACC [7] tradition of compiler
compilers, since it compiles a higher-level notation into the YACC-like notation
of Happy, and since the parser is the most demanding part of a language front-
end implementation. Another system on this level up from YACC is Cactus [14],
which uses an EBNF-like notation to generate a Happy parser, an Alex lexer, and a
datatype definition for abstract syntax. Cactus, unlike the BNF Converter, aims for
completeness, and it is indeed possible to define Haskell 98 (without layout rules)
in it [15]. The price to pay is that the notation is less simple than LBNF. Moreover,
because of Cactus’s higher level of generality, it is no longer possible to extract a
pretty-printer from a grammar. Nor does Cactus generate documentation.

For abstract syntax alone, the Zephyr definition language [11] defines a portable
format and translations into program code in SML, Haskell, C, C++, Java, and
SGML. Zephyr also generates functions for displaying syntax trees in these
languages, but it does not support the definition of concrete syntax.

A survey of compiler tools on the web and in the literature tells that their
authors almost invariably opt for expressivity rather than declarativity. The situation
is different with grammar tools used in linguistic: there the declarativity and
reversibility(i.e. usability for both parsing and generation) of grammar formalisms
is highly valued. A major example of this philosophy are Definite Clause Grammars
(DCG) [16]. In practice, DCGs are implemented as an embedded language in
Prolog, and thereby some features of full Prolog are sometimes smuggled into
grammars to improve expressivity; but this is usually considered harmful since it
destroys declarativity and reversibility.

5.4. Future work

In addition to the obvious task of writing LBNF back ends to other languages
than Haskell, there are many imaginable ways to extend the formalism itself. One

373

direction is to connect LBNF with the Grammatical Framework (GF) [17], which
is a rich grammar formalism originally designed to describe natural languages.
Labelled BNF was originally a spin-off of the GF, customizing a subset of the GF
to combine with standard compiler tools. The connection between LBNF and the
GF is close, with the difference that the GF makes an explicit distinction between
abstract and concrete syntax. Consider an LBNF rule describing multiplication:

Mult. Exp2 ::= Exp2 "*" Exp3 ;

This rule is in the GF divided into two judgements: an abstract syntax function
definition, and a concrete syntax linearization rule,

fun Mult : Exp -> Exp -> Exp ;
lin Mult e1 e2 =

{s = parIf P2 e1 ++ "*" ++ parIf P3 e2 ; p = P2} ;

Precedence is treated as a parameter that regulates the uses of parentheses. In the
GF, the user can define new parameter types, and thus the precedencesP2 and
P3, as well as the functionparIf , are defined in the source code instead of being
built into the system, as in LBNF. The GF, moreover, includes higher-order abstract
syntax and dependent types, and a GF grammar can therefore define the type system
of a language.

6. CONCLUSIONS

We see Labelled BNF as a natural step to a yet higher level in the development
that led machine programmers to create assemblers, assembler programmers to
create Fortran and C, and C programmers to create YACC and Lex. A high-level
notation always hides details that can be considered well-understood and therefore
uninteresting; this lets the users of the new notation to concentrate on new things.
At the same time, it creates quality by eliminating certain errors. Inevitably, it
also precludes some smart decisions that a human would make if handwriting the
generated code.

It would be too big a claim to say that LBNF can replace tools like YACC
and Happy. It can only replace them if the language to be implemented is
simple enough. Even though this is not always the case with legacy programming
languages, there is a visible trend towards simple and standardized, “well-behaved”
languages, and LBNF has proved useful in reducing the effort in implementing such
languages.

APPENDIX

LBNF SPECIFICATION

This document was automatically generated by theBNF Converter. It was
generated together with the lexer, the parser, and the abstract syntax module, which

374

guarantees that the document matches with the implementation of the language
(provided no hand-hacking has taken place).

The lexical structure of LBNF

Identifiers

Identifiers〈Ident〉 are unquoted strings beginning with a letter, followed by any combination
of letters, digits, and the characters_ ’ , reserved words excluded.

Literals
String literals〈String〉 have the form" x" , wherex is any sequence of characters.

Character literals〈Char〉 have the form’c’ , wherec is any single character.

Reserved words and symbols
The set of reserved words is the set of terminals appearing in the grammar. The reserved
words consisting of nonletter characters are called symbols, and are treated in a different way
from those that are similar to identifiers. The lexer follows rules familiar from languages like
Haskell, C, and Java, including the longest match and spacing conventions.

The reserved words used in LBNF are the following:

char comment digit
entrypoints eps internal
letter lower token
upper

The symbols used in LBNF are the following:

; . ::=
[] _
(:)
| − *
+ ? {
} ,

Comments

Single-line comments begin with−−.
Multiple-line comments are enclosed with{ − and− } .

The syntactic structure of LBNF
Nonterminals are enclosed between〈 and 〉. The symbols ::= (production),| (union) andε
(empty rule) belong to the BNF notation. All other symbols are terminals.

〈Grammar〉 ::= 〈ListDef〉

〈ListDef〉 ::= ε
| 〈Def〉 ; 〈ListDef〉

〈ListItem〉 ::= ε
| 〈Item〉 〈ListItem〉

375

〈Def〉 ::= 〈Label〉 . 〈Cat〉 ::= 〈ListItem〉
| comment〈String〉
| comment〈String〉 〈String〉
| internal 〈Label〉 . 〈Cat〉 ::= 〈ListItem〉
| token 〈Ident〉 〈Reg〉
| entrypoints 〈ListIdent〉

〈Item〉 ::= 〈String〉
| 〈Cat〉

〈Cat〉 ::= [〈Cat〉]
| 〈Ident〉

〈Label〉 ::= 〈Ident〉
| _
| []
| (:)
| (: [])

〈Reg2〉 ::= 〈Reg2〉 〈Reg3〉
| 〈Reg3〉

〈Reg1〉 ::= 〈Reg1〉 | 〈Reg2〉
| 〈Reg2〉 − 〈Reg2〉
| 〈Reg2〉

〈Reg3〉 ::= 〈Reg3〉 *
| 〈Reg3〉 +
| 〈Reg3〉 ?
| eps
| 〈Char〉
| [〈String〉]
| { 〈String〉 }
| digit
| letter
| upper
| lower
| char
| (〈Reg〉)

〈Reg〉 ::= 〈Reg1〉

〈ListIdent〉 ::= 〈Ident〉
| 〈Ident〉 , 〈ListIdent〉

REFERENCES

1. Naur, P. Revised report on the algorithmic language Algol 60.Comm. ACM, 1963,6, 1–17.
2. Appel, A.Modern Compiler Implementation in ML. Cambridge University Press, 1998.
3. Forsberg, M. and Ranta, A. Bnf converter site. Program and documentation. http://

www.cs.chalmers.se/markus/BNFC/, 2002.
4. Peyton Jones, S. (ed.).Haskell 98 Language and Libraries: the Revised Report. Cambridge

University Press, 2003. (Also inJ. Funct. Program., 2003,13, 1–255).
5. Marlow, S. Happy, the parser generator for Haskell, 2001. http://www.haskell.org/happy/.
6. Dornan, C. Alex: a Lex for Haskell Programmers, 1997. http://www.syntaxpolice.org/

∼ijones/alex/.

376

7. Johnson, S. C. YACC – yet another compiler compiler. Technical Report CSTR-32, AT &
T Bell Laboratories, Murray Hill, NJ, 1975.

8. Lesk, M. E. Lex – a lexical analyzer generator. Technical Report 39, Bell Laboratories,
Murray Hill, NJ, 1975.

9. Hudson, S. E. CUP parser generator for Java, 1999. http://www.cs.princeton.edu/
∼appel/modern/java/CUP/.

10. Berk, E. and Ananian, C. JLex: a lexical analyzer generator for Java, 2000. http://
www.cs.princeton.edu/∼appel/modern/java/JLex/.

11. Wang, D. C., Appel, A. W., Korn, J. L. and Serra, C. S. The Zephyr abstract syntax
description language. InProc. of the USENIX Conference on Domain-Specific
Languages, DSL’97 (Santa Barbara, Calif., USA, 15–17 October 1997). USENIX
Association, Berkeley, Calif., 1997, 213–228.

12. Kernighan, B. and Ritchie, D.The C Programming Language, 2nd edition. Prentice-Hall,
Englewood Cliffs, NJ, USA, 1988.

13. Warmer, J. and Kleppe, A.The Object Constraint Language: Precise Modelling with
UML. Addison-Wesley, 1999.

14. Martinsson, N. Cactus (concrete- to abstract-syntax conversion tool with userfriendly
syntax). Master’s Thesis in Computer Science, Chalmers University of Technology,
2001. http://www.mdstud.chalmers.se/∼md6nm/cactus/.

15. Hallgren, T. The Haskell 98 grammar in Cactus, 2001. http://www.cs.chalmers.se/
∼hallgren/ CactusExample/.

16. Pereira, F. and Warren, D. Definite clause grammars for language analysis – a survey of the
formalism and a comparison with augmented transition networks.Artif. Intell., 1980,
13, 231–278.

17. Ranta, A. Grammatical framework: a type-theoretical grammar formalism.J. Funct.
Program.(forthcoming).

Labelled BNF – kõrgtaseme formalism hästi käituvate
programmikeelte defineerimiseks

Markus Forsberg ja Aarne Ranta

Artikkel toob sisse grammatikaformalismi Labelled BNF (LBNF, märgendatud
Backuse–Nauri kuju) ning kompilaatori ehitamise tööriista BNF Converter
(Backuse–Nauri kujule teisendaja). Etteantud LBNFis kirjutatud grammatika jaoks
genereerib BNF Converter täieliku kompilaatorifront end’i (kuni tüübikontrollini,
kuid see välja arvatud), s.o lekseri, parseri ja abstraktse süntaksi definitsiooni.
Samuti genereerib ta vormindaja, keele spetsifikatsiooni LATEXis ning mallfaili
kompilaatoriback end’i jaoks.

Keelespetsifikatsioon LBNFis on täiesti deklaratiivne ja seetõttu porditav. See
teeb keele realiseerimise märkimisväärselt lihtsamaks, kuid keel peab olema “hästi
käituv”, s.t tema leksikaalne struktuur peab olema kirjeldatav regulaaravaldisega
ning süntaks kontekstivaba grammatikaga.

377

