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Abstract. Programming a parallel computer is basically embedding the data dependency
pattern of the program into the space-time pattern of the computer. In general this is a
technically demanding task. By considering these patterns as algebraic structures – data
dependency algebras and space-time algebras (a special case of data dependency algebras), we
get a means for doing formal reasoning about the embedding problem, detached from concrete
programs and machines. In this paper we show that it is possible to factorize data dependency
algebras so that the embedding of a program into a parallel computer may be broken down
to embeddings of simpler data dependency algebras into simpler space-time algebras. These
simpler embeddings are then automatically combined to form a full embedding of the parallel
program on the machine.

Key words: data dependency algebras, space-time embeddings, modularity, parallel
programming, category of data dependency algebras.

1. INTRODUCTION

There are many approaches to programming high performance computers
(HPCs). Most HPCs are parallel in one way or another, ranging from loosely
coupled networks of independent computers to specialized vector processors. This
spans from distributed memory machines, where data may have to be transmitted
across some communication network to be accessed by the appropriate processor,
to shared memory machines where all processors may directly access each data
item.

Programming these machines is difficult, and several models exist. The simplest
to reason about is the single program, multiple data model (SPMD) model, as
embodied in HPF [1] or in many functional languages (see [2] for an overview).
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More complicated to program are variations of the multiple program, multiple data
model (MPMD). Such programs are prone to errors such as deadlock in addition
to the normal sequential programming errors. MPMD programming is achieved by
adding communication primitives, such as MPI [3,4], to a sequential language.

The concept of data dependencies is central to the efficient use of parallelism.
The dependency patterns represent constraints defined by the algorithms we want to
run on computers. Any execution of a program must obey its dependency pattern.
This is trivially achieved on sequential machines. On a parallel machine we want
to distribute the program in order to utilize the processing resources as much as
possible. The task can then be seen as embedding the program’s data dependency
onto the hardware’s communication structure so that we utilize the computing
resources as much as possible.

In [5,6] we suggested abstracting these patterns as algebraic structures –
data dependency algebras (DDAs). This makes it possible to investigate the
dependencies of programs independently of any program, e.g., showing that
dependency patterns form a category. Further, the execution resources of a
parallel computer, its processors and communication network, may be described
by a special form of DDAs, called space-time algebras (STAs). The task of
programming parallel machines may then be abstracted to embedding a program’s
DDA into the machine’s STA, a task which can be investigated independently of
actual programs and physical machines. A basic theory for this was presented in [7],
and some practical results were shown in [8].

Although this kind of embedding is central to the parallelization of programs
(see, e.g., [9]), very few approaches have tried to abstract the dependency pattern as
a separate entity. The theoretical model of synchronous concurrent algorithms [10]
seems to be the closest. The functional language Crystal [11] focused very clearly
on data dependencies, but these were not made into explicit language elements.

In this paper we utilize our notion of DDAs to study various ways of
combining simple DDAs to more complex ones. The constructions are shown to
give the category of DDAs the property of havingall limits. Theorems about the
commutativity of limits allow us to factorize complex data dependency and space-
time patterns, find embeddings between appropriate factors, and then automatically
combine these into an embedding of the program onto the target hardware’s space-
time.

The paper is organized as follows. In Section 2 we define some mathematical
preliminaries. In Section 3 we define the basic concepts of DDAs and embeddings.
In Section 4 we show that DDAs and their embeddings form a finitely complete
category. Section 5 gives a factorization theorem for embeddings, before we
conclude.

2. MATHEMATICAL PRELIMINARIES

The symbolIN = {0, 1, ...} denotes the set of natural numbers, and forn ∈ IN,
[n] = {0, 1, 2, ..., n− 1}. Thus[0] = {} = ∅ denotes the empty set.
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A sequence~x with length n over X is an array~x ∈ X [n]. The unique
empty sequence is denotedλ ∈ X [0]. Concatenation of sequences~x and ~y is
given by juxtaposition~x~y. For finite ~x ∈ X [n] and finite~y ∈ X [m] we have
~x~y ∈ X [n]X [m] = X [n+m] such that, fori ∈ [n + m],

(~x~y)[i] =
{

~x[i] if i < n
~y[i− n] otherwise.

The setX∗ =
⋃

n∈IN X [n] is the set of all finite sequences fromX, andX+ =
X∗ \X [0] is the set of all nonempty, finite sequences of elements fromX.

The set of sequences with elements fromX and length up ton is given by
Xbnc =

⋃
i∈[n+1] X

[i], whileXdne = Xbnc\X [0] are the nonempty sequences with
length up ton. Operations on sequences includex :: ~y ∈ X+, which prepends an
elementx ∈ X to a sequence~y ∈ X∗, i.e.,

(x :: ~y)[i] =
{

x if i = 0
~y[i− 1] otherwise

and~y :: x ∈ X+, which appends an elementx ∈ X to a sequence~y ∈ X∗.
A categoryC consists of a collectionObj(C) of entities called objects, a

collectionMor(C) of entities called morphisms, two operations assigning to each
morphismf its domaindom(f), which is an object ofC, and its codomaincod(f),
also an object ofC. Morphismsf andg are composable ifcod(f) = dom(g), and
the composition is a morphism denoted byg ◦ f , with dom(g ◦ f) = dom(f) and
cod(g ◦ f) = cod(g). The composition of morphisms is associative. There is also
an operation assigning to each objectA of C an identity morphismidA : A → A,
which is unitary with respect to the composition.

A functor F between categoriesS and C, written F : S → C, is specified
by an operation assigning to objectsA in S, objectsFA in C and an operation
assigning to morphismsf : A → B in S, morphismsFf : FA → FB in C
such thatF (idA) = idFA, and whenever the composition of morphismsg ◦ f is
defined inS, we haveF (g ◦ f) = Fg ◦ Ff . For every objectX of C there is a
functor CX : S → C such thatCXA = X andCX(f : A → B) = idX , for
all A,B ∈ Obj(S) andf ∈ Mor(S). A diagramof shapeS in a categoryC is a
functorD : S→ C.

Let S and C be categories andF,G : S → C be functors. Then anatural
transformationη from F to G, writtenη : F ⇒ G, is given by an operation which
assigns to each objectA ∈ S a morphismηA : FA → GA in C such that, for any
morphismf : A → B in S, we haveGf ◦ ηA = ηB ◦ Ff .

A coneX for a diagramD : S → C can be seen as a natural transformation
η : CX ⇒ D, whereCX : S→ C is the constant functor for the objectX in C.

A limit for a diagramD : S→ C is a coneX given by a natural transformation
η : CX ⇒ D such that ifY is another cone forD given by a natural transformation
η′ : CY ⇒ D, then there exists a unique morphismk : Y → X, called mediator
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morphism such thatηA ◦ k = η′A, for all A ∈ Obj(S). Given thatS has objects
A0, ..., An−1, we denote a diagramD of shapeS in C by [D0, ..., Dn−1]S, where
the objectsAi are mapped into the objectsDi; the limit of such a diagram will be
denoted byL([D0, ..., Dn−1]S). Some special limits in a category are: aterminal
object isL([]S), a limit for a diagram of the empty categoryS. Theproductof two
objectsD0 andD1 is L([D0, D1]S), whereS is the category of two objects with
only identity morphisms. Theequalizerof a pair of morphismsf, g : D0 → D1 is
L([D0, D1])S, whereS is a category

A0• -- •A1

A category isfinitely completeif for each finite diagram in the category there exists
a limit.

Theorem 2.1 (Finite completeness).A categoryC is finitely complete iff it has
binary products, equalizers, and terminal objects.

Theorem 2.2 (Factorization). Given a categoryC and two limit objectsP ∼=
L([P0, ..., Pn−1]S) respectivelyQ ∼= L([Q0, ..., Qn−1]S) such that there exists a
natural transformationη : [P0, ..., Pn−1]S ⇒ [Q0, ..., Qn−1]S, there exists a unique
morphism fromP into Q making the diagram

P XXXXXXXXXXXz

HHHHHj
P0 . . . Pn−1

Q0

η0

?
. . . Qn−1

ηn−1

?

Q
?�����*

�����������:

commute.

Proposition 2.3 (Distributivity of limits). Given a finitely complete category
C, shapes S and S′ with n respectively n′ nodes, and diagrams
Di = [P0

i, ..., Pn−1
i]S, i ∈ [n′], we have thatL′([..., L(Di), ...]S

′
) ∼=

L([..., L′(D′
j), ...]

S), whereD′
j = [Pj

0, ..., Pj
n′−1]S

′
, for j ∈ [n].

3. DATA DEPENDENCY ALGEBRAS

3.1. DDAs and embeddings

Definition 3.1. A DDA D = D〈P,B, r, s〉 is given by the data of the 4-tuple such
that
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• P is a set of points,
• B is a set of branch indices,
• r is the data request consisting of

– the request-guard relationrg ⊆ P ×B telling which request branches
b ∈ B exist for a pointp ∈ P ,
– the request-target functionrt : rg → P telling which pointrt(p, b) a

request goes to, and
– the request-branchback functionrb : rg → B telling which supply branch

rb(p, b) leads back fromrt(p, b) to p,
and

• s is the data supply consisting of
– the supply-guard relationsg ⊆ P ×B telling which supply branches

b ∈ B exist for a pointp ∈ P ,
– the supply-target functionst : sg → P telling which pointst(p, b) a

request goes to, and
– the supply-branchback functionsb : sg → B telling which request branch

rb(p, b) leads back fromst(p, b) to p,
such that

rg(p, b) ⇒ sg(rt(p, b), rb(p, b)),
rg(p, b) ⇒ st(rt(p, b), rb(p, b)) = p,

rg(p, b) ⇒ sb(rt(p, b), rb(p, b)) = b,

and

sg(p, b) ⇒ rg(st(p, b), sb(p, b)),
sg(p, b) ⇒ rt(st(p, b), sb(p, b)) = p,

sg(p, b) ⇒ rb(st(p, b), sb(p, b)) = b.

Example 3.2. The loop DDA with pointsP is defined byL(P ) = D〈P,B, c, c〉
with B = [1], cg = P ×B, ct(p, b) = b.

The loop DDAL([13]):qkR qkR qkR qkR qkR qkR qkR qkR qkR qkR qkR qkR qkR
Example 3.3. A linear time DDA overP ⊆ IN is T(1, P ) = D〈P, [1], t, u〉 with
tg = {〈p, b〉 ∈ P × [1] | p + 1 ∈ P} as the request-guard,tt(p, b) = p + 1
as the request-target,tb(p, b) = b as the request-branchback,ug = {〈p, b〉 ∈
P × [d] | p − 1 ∈ P} as the supply-guard,ut(p, b) = p − 1 as the supply-target,
andub(p, b) = b as the supply-branchback.

The time DDAT(1, 4):

• -• -• -•
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Example 3.4. A k-dimensional grid with radiusr ∈ IN for ~g = 〈g0, ..., gk−1〉 ∈
IN[k] is G(r,~g) = D〈G, B, f, f〉 with G = [g0]× ...× [gk−1] as the points (gi is the
number of points in dimensioni+1), B = [k]×{−r, ...,−1, 1, ..., r} as the branch
indices,fg(〈p0, ..., pi, ..., pk−1〉, 〈i, j〉) = 0 ≤ pi + j < gi as the request-guard
and supply-guard,ft(〈p0, ..., pi, ..., pk−1〉, 〈i, j〉) = 〈p0, ..., pi + j, ..., pk−1〉 as the
request-target and supply-target,fb(p, 〈i, j〉) = 〈i,−j〉 as the request-branchback
and supply-branchback.

The two-dimensional gridG(1, 〈4, 16〉):

s s s s s s s s s s s s s s s ss s s s s s s s s s s s s s s ss s s s s s s s s s s s s s s ss s s s s s s s s s s s s s s s

Example 3.5. A k-dimensional nearest-neighbour DDA with radiusr ∈ IN and
stepsT ⊆ IN is N(r, ~n, T ) = D〈N,B, p, n〉, where~n = 〈n0, ..., nk−1〉 ∈ IN[k] (ni

is the number of points in dimensioni+1), such thatN = ([n0]× ...× [nk−1])×T,
B = [k]× {−r, ...,−1, 1, ..., r},

pg(〈〈p0, ..., pi, ..., pk−1〉, t〉, 〈i, j〉) = (0 ≤ pi + j < ni) ∧ (t− 1 ∈ T ),
pt(〈〈p0, ..., pi, ..., pk−1〉, t〉, 〈i, j〉) = 〈〈p0, ..., pi + j, ..., pk−1〉, t− 1〉,
pb(〈〈p0, ..., pi, ..., pk−1〉, t〉, 〈i, j〉) = 〈i,−j〉,
ng(〈〈p0, ..., pi, ..., pk−1〉, t〉, 〈i, j〉) = (0 ≤ pi + j < ni) ∧ (t + 1 ∈ T ),
nt(〈〈p0, ..., pi, ..., pk−1〉, t〉, 〈i, j〉) = 〈〈p0, ..., pi + j, ..., pk−1〉, t + 1〉,
nb(〈〈p0, ..., pi, ..., pk−1〉, t〉, 〈i, j〉) = 〈i,−j〉.

The points are indexed by a grid reference〈p1, ..., pk〉 and by row numbert. The
branch index〈i, j〉 tells which dimension,i + 1, the movement is along, and how
far, j, the movement is.

The nearest-neighbour DDAN(1, 〈16〉, [3]):

r r r r r r r r r r r r r r r r? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
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Example 3.6. A hypercube of dimensionm ∈ IN is given by H(m) =
D〈H,B, h, h〉 with H = [2][m] as the points,B = [m] as the branch indices,
hg = H ×B as the request-guard and supply-guard,ht(〈p0, ..., pb, ..., pm−1〉, b) =
〈p0, ..., 1 − pb, ..., pm−1〉 as the request-target and supply-target, andhb(~p, b) = b
as the request-branchback and supply-branchback.

The hypercube connections drawn forH(4):

s
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Proposition 3.7. Given a DDAD = D〈P,B, r, s〉 and a setC ⊆ B such that
for all 〈p, b〉 ∈ rg whenb ∈ C, we haverb(p, b) ∈ C, and for all 〈p, b〉 ∈ sg

whenb ∈ C, we havesb(p, b) ∈ C. ThenCD = D〈P,C, Cr, Cs〉 is a DDA, where
Crg = rg ∩ (P ×C) andCsg = sg ∩ (P ×C), and for all 〈p, b〉 ∈ Crg, Crt(p, b) =
rt(p, b) andCrb(p, b) = rb(p, b), and for all 〈p, b〉 ∈ Csg, Cst(p, b) = st(p, b) and
Csb(p, b) = sb(p, b).

As in the case of graphs where sequences of edges give us paths, we get paths
in a DDA from sequences of branch indices.

Definition 3.8. Given a DDAD〈P,B, r, s〉 and a sequence~c ∈ B∗. Then~c is a
request-path fromp ∈ P if ~c is the empty sequenceλ ∈ B[0], or ~c = b :: ~d such that
rg(p, b) and ~d ∈ B∗ is a request-path fromrt(p, b). Likewise, ~c is a supply-path
fromp ∈ P if ~c is the empty sequenceλ, or ~c = b :: ~d such thatsg(p, b) and~d ∈ B∗

is a supply-path fromst(p, b).

Now the request and supply operators can be extended to encompass paths.

Definition 3.9. Given a DDAD〈P,B, r, s〉. Define a path data requestr and a
path data supplys with rg, sg ⊆ P ×B∗, rt : rg → P , rb : rg → B∗, st : sg → P ,
sb : sg → B∗ by setting

• for the empty sequenceλ ∈ B[0],

〈p, λ〉 ∈ rg, 〈p, λ〉 ∈ sg,

rt(p, λ) = p, st(p, λ) = p,

rb(p, λ) = λ, sb(p, λ) = λ,

• for any nonempty sequence~c = b :: ~d ∈ B+,
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rg(p,~c) = rg(p, b) ∧ rg(rt(p, b), ~d),

rt(p,~c) = rt(rt(p, b), ~d),

rb(p,~c) = rb(rt(p, b), ~d) :: rb(p, b),

sg(p,~c) = sg(p, b) ∧ sg(st(p, b), ~d),

st(p,~c) = st(st(p, b), ~d),

sb(p,~c) = sb(st(p, b), ~d) :: sb(p, b).

Proposition 3.10. Given a DDAD = D〈P,B, r, s〉. For all natural numbers
n ∈ IN, D[n] = D〈P,B[n],(B

[n]) r,(B
[n]) s〉 will be a DDA, where (B[n])rg =

rg ∩ (P ×B[n]) and(B[n])sg = sg ∩ (P ×B[n]).

Corollary 3.11. Given a DDAD = D〈P,B, r, s〉 and n ∈ IN. For • =
[n], dne, bnc,+, ∗ we have thatD• = D〈P,B•,(B

•) r,(B
•) s〉 is a DDA.

For any DDAD, the constructionDb1c adds a loop at every node.

Definition 3.12. Given DDAsD = D〈P,B, r, s〉 andF = D〈Q,C, v, w〉 and a
nonzero numbern ∈ IN, n > 0. For • = [n], dne,+, a •-embeddinge : D → F is
given by a collection of functions

• ep : P → Q mapping the points,
• er : rg → C• mapping request-targets to request-paths, and
• es : sg → C• mapping supply-targets to supply-paths,

such that

rg(p, b) ⇒ (C•)vg(ep(p), er(p, b)),

rg(p, b) ⇒ ep(rt(p, b)) = (C•)vt(ep(p), er(p, b)),

rg(p, b) ⇒ es(rt(p, b), rb(p, b)) = (C•)vb(ep(p), er(p, b)),

sg(p, b) ⇒ (C•)wg(ep(p), es(p, b)),

sg(p, b) ⇒ ep(st(p, b)) = (C•)wt(ep(p), es(p, b)),

sg(p, b) ⇒ er(st(p, b), sb(p, b)) = (C•)wb(ep(p), es(p, b)).

If we have an embeddinge : D → F , we get an embeddingeb1c : Db1c →
F b1c, which is the same ase and maps the added loops inDb1c to the corresponding
added loops inF b1c.

Proposition 3.13. Given DDAsD = D〈P,B, r, s〉 and F = D〈Q,C, v, w〉 and
n ∈ IN. For • = [n + 1], dne, +, an embeddinge : D → F extends elementwise to
an embeddinge : D• → F .

Proof. Definee by ep = ep(p), and, if • = d0e, thener andes are the empty
functions, otherwise
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er(p, b :: ~c) =
{

er(p, b) if ~c = λ,
er(p, b)er(rt(p, b),~c) if ~c 6= λ,

es(p, b :: ~c) =
{

es(p, b) if ~c = λ,
es(p, b)es(rt(p, b),~c) if ~c 6= λ.

It is easy to see thate = 〈ep, er, es〉 is indeed an embedding.

Proposition 3.14. Given embeddingse : D → D′ ande′ : D′ → D′′. Define

(e′ ◦ e)p(p) = e′p(ep(p)),
(e′ ◦ e)r(〈p, b〉) = e′r(〈ep(p), er(〈p, b〉)〉),
(e′ ◦ e)s(〈p, b〉) = e′s(〈ep(p), es(〈p, b〉)〉).

The triple〈(e′◦e)p, (e′◦e)r, (e′◦e)s〉 yields an embedding fromD into D′′ denoted
e′ ◦ e and called the composition ofe′ ande.

Proof. The embeddinge defines paths inD′ for every branch inD. The embedding
e′ maps paths inD′ to paths inD′′, specifically it will map the subset of paths given
by e. Moreover, this subset consists of matching request and supply branches, so
that the requirements on an embedding are satisfied by the compositione′ ◦ e.

Fact 3.15. Composition of embeddings is associative.

Proposition 3.16. For any DDAD = D〈P,B, r, s〉 define, idp : P → P, idr :
rg → B, andids : sg → B by

idp(p) = p,

idr(p, b) = b,

ids(p, b′) = b′

for all p ∈ P, 〈p, b〉 ∈ rg and 〈p, b′〉 ∈ sg. The triple〈idp, idr, ids〉 yields an
embedding denoted byidD and called the identity embedding onD.

Proof. From the definitions above it follows thatidD is indeed an embedding from
D into D. Let f : D → F be an arbitrary embedding withF = D〈Q,C, v, w〉.
We have (f ◦ idD)p(p) = fp(idp(p)) = fp(p) and (f ◦ idD)r(p, b) =
fr(idp(p), idr(p, b)) = fr(p, b), for all p ∈ P and〈p, b〉 ∈ rg. Likewise we get
that(f ◦ idD)s(p, b) = fs(p, b), for all 〈p, b〉 ∈ sg. Thusf ◦ idD = f . Similarly,
for every embeddingg : C → D it can be shown thatidD ◦ g = idD. Hence,idD

satisfies the identity axioms.
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3.2. Space-time algebras

Definition 3.17. A space-time algebra is a data dependency algebra with the
following restrictions:

• the carrier for the nodes of a space-time algebra is (a subset of) the Cartesian
product of the processing elements of a parallel machine and a time counter,
usually the integers,

• the carrier for the directions are channels going out from and leading into
the processors, including a channel for in-memory communication, allowing a
processor to retain data in memory between computations, and

• the r and s functions define allowable communications from one time-step to
the next.

4. CATEGORY OF DATA DEPENDENCY ALGEBRAS

Definition 4.1. The categoryDDA of DDAs and embeddings consists of
• DDAs as objects,
• embeddings as morphisms,
• the composition operation as in Proposition3.14,
• the identity operation as in Proposition3.16.

The categoryDDA defined above is indeed a category since the composition
of any two given embeddingse : D → D′ ande′ : D′ → D′′ is an embedding from
D to D′′, the composition of embeddings is associative, and for any embedding
e : D → D′, the identity embeddings onD andD′ satisfy the identity axiom:
idD′ ◦ e = e ande ◦ idD = e.

In the following we show that the categoryDDA has binary products,
equalizers, and terminal objects.

Proposition 4.2. For any two given objectsE = D〈N,A, t, u〉 and F =
D〈Q,C, v, w〉 of the categoryDDA the objectE × F = D〈P,B, r, s〉 together
with the embeddingsπE : E × F → E andπF : E × F → F is the categorical
product of the DDAsE andF , whereP = N × Q, B = A × C, rg ⊆ P × B,
rt : rg → P , rb : rg → B, sg ⊆ P ×B, st : rg → P , andsb : rg → B such that

rg((n, q), (a, c)) = tg(n, a) ∧ vg(q, c),
rt((n, q), (a, c)) = (tt(n, a), vt(q, c)),
rb((n, q), (a, c)) = (tb(n, a), vb(q, c)),
sg((n, q), (a, c)) = ug(n, a) ∧ wg(q, c),
st((n, q), (a, c)) = (ut(n, a), wt(q, c)),
sb((n, q), (a, c)) = (ub(n, a), wb(q, c)),

and(πE)p : N×Q → N , (πE)r : rq → A, (πE)s : sq → A, (πF )p : N×Q → Q,
(πF )r : rq → C, (πF )s : sq → C such that
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(πE)p(n, q) = n,

(πE)r((n, q), (a, c)) = a,

(πE)s((n, q), (a′, c′)) = a′,

(πF )p(n, q) = q,

(πF )r((n, q), (a, c)) = c,

(πF )s((n, q), (a′, c′)) = c′,

for all 〈n, q〉 ∈ N ×Q, 〈a, c〉 ∈ rg and〈a′, c′〉 ∈ sg.

Proof. It can be easily verified thatE × F is indeed a DDA and thatπE andπF

satisfy the axioms for an embedding. LetC = D〈M,D, x, y〉 be aDDA object
and consider two embeddingse : C → E, respectivelyf : C → F . We define the
following mappingslp : M → P , lr : xg → A∗×C∗, andls : yg → A∗×C∗ such
that

lp(m) = (ep(m), fp(m)),
lr(m, d) = (er(m, d), fr(m, d)),
ls(m, d′) = (es(m, d′), fs(m, d′)),

for all m ∈ M , 〈m, d〉 ∈ xg, and〈m, d′〉 ∈ yg. Sincee andf are embeddings, it
can be easily verified thatl = 〈lp, lr, ls〉 is an embedding fromC into E × F . In
the following we show thatl makes the diagram below commute and it is unique
with respect to that property.

C

	�
�

�
�

�
e

@
@

@
@

@

f

R

E �
πE

E × F

l

? πF - F

We have
(πE ◦ l)p(m) = (πE)p(lp(m)) = (πE)p(ep(m), fp(m)) = ep(m),
(πE ◦ l)r(m, d) = (πE)r(lp(m), lr(m, d)) = er(m, d),
(πE ◦ l)s(m, d′) = (πE)s(lp(m), ls(m, d′)) = es(m, d′),

and
(πF ◦ l)p(m) = (πF )p(lp(m)) = (πF )p(ep(m), fp(m)) = fp(m),
(πF ◦ l)r(m, d) = (πF )r(lp(m), lr(m, d)) = fr(m, d),
(πF ◦ l)s(m, d′) = (πF )s(lp(m), ls(m, d′)) = fs(m, d′),

for all m ∈ M , 〈m, d〉 ∈ xg, and〈m, d′〉 ∈ yg.
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To verify the uniqueness ofl, we assume that there exists an embedding
l′ : C → E × F with

l′p(m) = (ap(m), bp(m)),

l′r(m, d) = (ar(m, d), br(m, d)),
l′s(m, d′) = (as(m, d′), bs(m, d′)),

wherem ∈ M , 〈m, d〉 ∈ xg, 〈m, d′〉 ∈ yg, andap : M → N , bp : M → Q,
ar : xg → A∗, br : xg → C∗, as : yg → A∗, bs : yg → C∗ are mappings such that

(πE ◦ l′)p(m) = ep(m),
(πE ◦ l′)r(m, d) = er(m, d),
(πE ◦ l′)s(m, d′) = es(m, d′),

(πF ◦ l′)p(m) = fp(m),
(πF ◦ l′)r(m, d) = fr(m, d),
(πF ◦ l′)s(m, d′) = fs(m, d′),

for all m ∈ M , 〈m, d〉 ∈ xg, and〈m, d′〉 ∈ yg.
Applying now the definitions ofp1, p2, l′, we obtain that

ap(m) = ep(m),
ar(m, d) = er(m, d),
as(m, d′) = es(m, d′),

bp(m) = fp(m),
br(m, d) = fr(m, d),
bs(m, d′) = fs(m, d′),

for all m ∈ M , 〈m, d〉 ∈ xg, and〈m, d′〉 ∈ yg, thusl = l′.

The space-time algebra of a given DDAA is the product ofA with a time
DDA. Typically we will add selfloops to a hardware communication network when
creating its space-time. This is because loops represent data in memory between
time-steps.

Example 4.3. The hypercube space-time patternH b1c(4)× T(1, (3)):
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Example 4.4. A finite product of linear time DDAs yields a DDA as depicted
below:

r r r r r
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r r r r r . . .

...

Example 4.5.The nearest-neighbour DDA is isomorphic to the reflexive grid DDA
in time, i.e., N(r,~g, P ) ∼= G b1c(r,~g) × T(1, P ). Example 3.5 illustrates the
composite constructionN(1, 〈16〉, [3]) ∼= G b1c(1, 〈16〉)× T(1, [3]).

Proposition 4.6. For any given two DDAsF = D〈P,B, r, s〉, G = D〈M,D, x, y〉
and embeddingsf : F → G, g : F → G of the categoryDDA the embedding
e : E → F is the equalizer of the embeddingsf andg, whereE = D〈N,A, t, u〉
with

• N = {p ∈ P : fp(p) = gp(p)};
• A = {a ∈ B∗ : (∃p ∈ N : (f(p, a) = g(p, a)) ∧ (∀a′, a′′ ∈ B∗ \ {λ} : (a′ ::

a′′ = a) ∧ ¬(f(p, a′) = g(p, a′) ∧ f(p, a′′) = g(p, a′′))))};
• the data requestt consisting of

– tg = {〈p, a〉 ∈ rg : p ∈ N ∧ a ∈ A},
– tt : tg → N s.t. tt(p, a) = rt(p, a) for all 〈p, a〉 ∈ tg,
– tb : tg → A s.t. tb(p, a) = rb(p, a) for all 〈p, a〉 ∈ tg;

• the data supplyu consisting of
– ug = {〈p, a〉 ∈ sg : p ∈ N ∧ a ∈ A},
– ut : ug → N such thatut(p, a) = st(p, a) for all 〈p, a〉 ∈ ug,
– ub : ug → A such thatub(p, a) = sb(p, a) for all 〈p, a〉 ∈ ug,

ande given by the triple〈ep, er, es〉 with

ep(p) = p,

er(p, b) = b,

es(p′, b′) = b′,

for all p ∈ N , 〈p, b〉 ∈ tg, and〈p′, b′〉 ∈ ug.

Proof. A closer examination of the definitions above yields thatE = D〈N,A, t, u〉
is indeed a DDA ande : E → F satisfies the axioms for an embedding. In the
following we show thate is indeed the equalizer of the embeddingsf andg. We
have
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(f ◦ e)p(p) = fp(ep(p)) = fp(p) = gp(p) = gp(ep(p)) = (g ◦ e)p(p),

(f ◦ e)r(p, a) = f r(ep(p), er(p, a)) = f r(p, a) = gr(p, a) = g(ep(p), er(p, a))
= (g ◦ e)r(p, a),

(f ◦ e)s(p, a) = fs(ep(p), es(p, a)) = fs(p, a) = gs(p, a) = g(ep(p), es(p, a))
= (g ◦ e)s(p, a),

for all p ∈ N , 〈p, b〉 ∈ tg and〈p′, b′〉 ∈ ug.
Suppose that there is another embeddinge′ : E′ → F such thatf ◦ e′ = g ◦ e′.

Let E′ = D〈Q,C, v, w〉. We have thate′p(q) ∈ N for all q ∈ Q since
(f ◦ e′)p(q) = (g ◦ e′)p(q) for all q ∈ Q. Let 〈q, c〉 be an arbitrary request-guard
pair from vg. Since(f ◦ e′)r(q, c) = (g ◦ e′)r(q, c), we get thate′r(q, c) ∈ A or
e′r(q, c) = a0 :: a2... :: ak−1 with ai ∈ A \ {λ}, i ∈ [k]. We can reason similarly
for any supply-guard pairwg.

Consider now the diagram

E
e

- F
f

-

g
- G

�
�

�
�

�

e′

�

E′

k

6

wherek : E′ → E is given by the triple〈kp, kr, ks〉 with

kp(q) = e′p(q),

kr(q, c) = e′r(q, c),
ks(q′, c′) = e′s(q

′, c′),

for all q ∈ Q, 〈q, c〉 ∈ vg, and〈q′, c′〉 ∈ wg. Sincee′ : E′ → F is an embedding, it
can be easily verified thatk = 〈kp, kr, ks〉 is an embedding fromE′ into E.

In order to show thate′ = e ◦ k, we have to verify that the following equalities
hold:

e′p(q) = (e ◦ k)p(q), (1)

e′r(q, c) = (e ◦ k)r(q, c), (2)

e′s(q
′, c′) = (e ◦ k)s(q′, c′), (3)

for all q ∈ Q, 〈q, c〉 ∈ vg, and〈q′, c′〉 ∈ wg.
We will prove only (2), since (3) can be proved similarly and (1) follows

directly from applying the definition ofk and considering thatep is an inclusion.
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To prove (2), let〈q, c〉 ∈ vg. There are two cases to consider: ife′r(q, c) ∈ A, we
have(e ◦ k)r(q, c) = er(e′r(q, c)) = e′(q, c); if e′(q, c) = a0 :: a1 :: ... :: ak−1

with ai ∈ A \ {λ}, i ∈ [k], then(e ◦ k)r(q, c) = er(kp(q), a0 :: a1 :: ... :: ak−1) =
er(kp(q), a0) :: er(tt(kp(q), a0), a1 :: ... :: ak−1) = a0 :: er(tt(kp(q), a0),
a1 :: ... :: ak−1) = ... = a0 :: a1 :: ... :: ak−1 = e′(q, c).

Finally, suppose that there existsk′ such thate′ = e◦k′. Applying the definition
of e, we obtain thatk′p = e′p, k′r = e′r, k′s = e′s, thusk = k′.

Example 4.7. Given a DDAF with nodes{A, ..., L} and a time-DDAT(1, 4)
with nodes{T1, ..., T4} and arc indices{1, 2, 3}. Consider embeddingsf, g : F →
T(1, 4)

T1

1A1 1B1 1C1 1D2

T2

1

?

2E2

1 1

?
2F 3

1 12

?
2G3

1 12

?
2H3

1 2

? f
-

g
-

T3

2

?

3I3

2 2

?
4J4

23 3

?
3K4

2 3

?
3L4

2 3

?

T4

3

?

defined as follows:fp(iXj) = Ti respectivelygp(iXj) = Tj , for X = A, ..., L
andi, j = 1, ..., 4. In the same way,fr (resp.gr) maps a request-guard pair from
F into a request-arc or request-path inG, tagged with the left (resp. right) tag of
the source request-arc. Then the equalizer of the diagram above is an embedding
e : E → F with E shown below ande encoded as either the embeddingsf or g
(since they will coincide on the data fromE).

A B C

E

1 1

?

I

2 2

?
J

123 123

?

Notice how the equalizer replaced the path fromB to J with an arc.

Proposition 4.8. The loop DDAL([1]) is a terminal object in the categoryDDA.

Proof. Given an arbitrary DDAD = D〈P,B, r, s〉, we can construct a unique
embeddinge : D → L([1]), by mapping the points fromP into the single point
from the point index set ofL([1]) and by mapping the request-guard (resp. supply-
guard) pairs into the single branch index from the branch index set ofL ([1]).
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4.1. Finite completeness

Proposition 4.9. The categoryDDA is finitely complete.

Proof. Follows from the completeness Theorem 2.1 and Propositions 4.2, 4.6,
and 4.8.

Proposition 4.10. Given a shapeS with n nodes and linear time DDAs
T0, ..., Tn−1, there exists an embedding fromL([T0, ..., Tn−1]S) into a linear time
DDA T.

Proof. Following the steps from the general limit construction, we get that the limit
L([T0, ..., Tn−1]S) is the equalizerE of two embeddings fromF =

∏
I∈U TI into

G =
∏

(I
e→J∈V )

TJ , whereU is the set of nodes fromS, andV is the set of edges
from S. From Example 4.4 we have thatF contains points and diagonal arrows,
and from the definition of the equalizer we can deduce thatE will have a subset of
these points connected with diagonal arcs.E will contain the nodes and arrows on
which the embeddingsf andg are equal, and replace sequences of lost arcs, where
f andg give equal paths, with new arcs. We can embed such a DDA into a linear
time DDA T by embedding each diagonal individually, mapping consecutive nodes
of E into consecutive nodes ofT.

We will call such an embedding a folding.

5. DDA DECOMPOSITIONS AND PARALLELISM

As pointed out in Example 4.5, the nearest-neighbour DDAN(1, 〈16〉, [3]) can
be decomposed into the product of the reflexive gridG b1c(1, 〈16〉) and the time
DDA T(1, [3]). The embedding ofG(1, 〈16〉) into H(4) is typically achieved by
using the Grey code embedding (see [7]). We denote this embedding byg. Then
we have the diagram

N XXXXXXXXXXX

π↓
z

HHHHH
πG

j
G b1c ↓

H b1c

gb1c

?

↓

id↓

?

H b1c× ↓

e

?
�����πH

*

�����������

π↓

:

where the arrows↓ stand for time the DDAT(1, [3]), id↓ is the identity embed-
ding andπG, πH , π↓ are projection embeddings. From Theorem 2.2 we get an
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embeddinge from the nearest-neighbour DDAN(1, 〈16〉, [3]) into the space-time
of the hypercubeH b1c(4), wheree is the mediator from the cone determined byN ,
gb1c ◦ πG andπ↓ to the limit H b1c× ↓.

Now we can look at more complex decomposition diagrams.

Theorem 5.1. Given a shapeS with n nodes and DDAs P and H withP ∼=
L([P0, ..., Pn−1]S) and H ∼= L([H0, ...,Hn−1]S) such that there exists a natural
transformationη : [P0, ..., Pn−1]S ⇒ [H0× ↓, ...,Hn−1× ↓]S, there exists an
embedding from the DDA P into the space-time algebra of H.

Proof. Consider the diagram

P

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

XXXXXXXXXXXz

HHHHHj
P0 . . . Pn−1

H0× ↓
?

. . . Hn−1× ↓
?

R

e1

?�����*

�����������:

H× ↓ �
e3

H × T

e2

?

H
������ HHHHHj

T

��
�
�
�
� A

A
A
A
AU ��

�
�
�
� A

A
A
A
AU

H0 . . . Hn−1 ↓ . . . ↓

where the arrows↓ stand for time DDAs. Since the categoryDDA is finitely
complete (Proposition 4.9), we can construct the limitR = L([H0× ↓, ...,
Hn−1× ↓]S) and then from the hypothesis and Theorem 2.2 we get that there exists
a unique embeddinge1 from P into R. Furthermore, applying the distributivity
property of limits (Proposition 2.3), we obtain an embeddinge2 (isomorphism)
from R into H × T , whereT = L([↓, ..., ↓]S). Let now e3 = 〈IH , F 〉, where
F : T →↓ is a folding (Proposition 4.10), thene3 is an embedding fromH × T
into H× ↓. Finally, e = e3 ◦ e2 ◦ e1 gives us the desired embedding fromP into
the space-time algebra ofH.
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6. CONCLUSIONS

Formalizing data dependencies as an algebraic structure gives rise to an algebra
of data dependency operators and provides a framework for precise descriptions
of the space-time embedding of software. Data dependency algebras, space-time
algebras, and embeddings were in [7] seen as modular components for the parallel
distribution of programs.

In this paper we have further studied the modularity properties of DDAs and
embeddings. We have shown that they form a category which is complete (has all
limits). This gives us many ways of building complex DDAs from simpler ones. It
also allows us to factorize complicated space-time embeddings into simpler ones,
and automatically build the complex embedding from the components.

This idea for parallel programming modularity can be extended to other
properties of the categories of DDAs. We intend to follow this line of investigation
by also studying the colimits of this category and the interaction between all the
various kinds of dependency module components.

ACKNOWLEDGEMENTS

We thank Paul Taylor for providing the diagram package and the The Research
Council of Norway for partial funding of this research.

REFERENCES

1. Perrin, G.-R. and Darte, A. (eds.). The data parallel programming model.LNCS, 1996,
1132.

2. Lisper, B. Data parallelism and functional programming. InThe Data Parallel
Programming Model(Perrin, G.-R. and Darte, A., eds.).LNCS, 1996,1132, 220–251.

3. Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W. and Dongarra, J.MPI–The
Complete Reference. MIT Press, Cambridge, Mass., USA, 1996.

4. Squyres, J. M., Saphir, B. and Lumsdaine, A. The design and evolution of the MPI-
2 C++ interface. InScientific Computing in Object-Oriented Parallel Environments
(Ishikawa, Y., Oldehoeft, R. R., Reynders, J. V. W. and Tholburn, M., eds.).LNCS,
1997,1343, 57–64.

5. Haveraaen, M. Data dependencies and space time algebras in parallel programming.
Technical Report 45, Department of Informatics, University of Bergen, P.O.Box 7800,
N-5020 Bergen, Norway, February 1990, revised 1997.
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Andmesõltuvusalgebrate ja -sisestuste kategooriast
Alexa Anderlik ja Magne Haveraaen

Paralleelarvuti programmeerimine kujutab endast sisuliselt andmesõltuvus-
mustri sisestust arvuti aja–mälu-mustrisse. Üldiselt on see tehniliselt raske üles-
anne. Nimetatud mustrite käsitlemine algebraliste struktuuridena – andme-
sõltuvusalgebrate ning aja–mälu-algebratena (viimased on esimeste erijuht) –
annab konkreetsetest programmidest ja masinatest lahutatud vahendid formaal-
seks arutlemiseks sisestusprobleemi üle. Selles artiklis näitame, et andmesõltuvus-
algebraid on võimalik tegurdada nõnda, et programmi sisestus paralleelarvutisse on
jaotatav lihtsamate andmesõltuvusalgebrate sisestusteks lihtsamatesse aja–mälu-
algebratesse. Need lihtsamad sisestused on seejärel automaatselt kombineeritavad
programmi täielikuks sisestuseks masinasse.
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