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Abstract. An experimental procedure to distinguish between the two possible mechanisms 
(dispersive and diffusive) of pressure broadening of spectral holes in nonisobaric experiments is 
proposed. The method makes use of nonlinear saturation properties of the hole burning process. 
The proposed four-step procedure consists of burning a hole, applying hydrostatic pressure to the 
system, additional burning at the hole minimum at this second pressure, and then applying more 
pressure. By model calculations it is demonstrated that, under certain conditions, the dispersive 
mechanism yields a double-minimum hole, while the diffusive mechanism does not. Experimental 
observability of such an effect is discussed. 
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1. INTRODUCTION

Pressure tuning of spectral holes [1–6] has been used in a number of works 
[1–13] in order to study local interactions and elastic properties of solids. When 
burning a hole into the inhomogeneously broadened band of probe molecules 
and then applying pressure, one observes both a hole shift and broadening. The 
pressure shift of the holes is explained by a change of the average interaction 
between the guest (probe) and the host molecules with compression of the 
sample. At the same time, the mechanisms of hole broadening are not always 
quite as clear. The fact that the broadening occurs signals that the subensemble 
of impurities selected by burning a hole is in a sense still not fully homogeneous. 

In glasses the observed large broadening was ascribed to “heteropolar” inter-
actions between host and guest molecules, i.e. to the interactions taking into 
account both long-range attractive and short-range repulsive terms [9]. This breaks 
the scaling between the matrix shift (shift from the vacuum frequency) and the 
pressure shift and yields, as a result, pressure broadening of spectral holes. 
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In crystals, where the long-range interactions with defects are the main sources 
of inhomogeneity, pressure broadening can be described [10] as arising from the 
diaelastic effect [14]. The diaelastic effect is an analogue of the diamagnetic effect, 
where an additional magnetic moment is induced in a molecule by an external 
magnetic field. Similarly, the inhomogeneous strain field created by point defects 
in a crystal is modified by applied external pressure. As shown in [10], a pressure-
induced broadening of spectral holes in such a system takes place if the ensemble 
of defects is intrinsically inhomogeneous (e.g., includes point defects of different 
volume defects). 

Whatever the exact physical mechanism, in all these cases the pressure 
broadening can formally be described by a statistical distribution of pressure 
coefficients over the impurities for every fixed transition energy within the 
inhomogeneously broadened band. Since it is the dispersion of the pressure 
coefficients that governs the hole broadening, we call such a mechanism of 
pressure broadening the dispersive mechanism. 

Recently, a new mechanism of hole broadening with pressure [13] has been 
proposed to account for hole broadening in Shpol′skii systems [7,13]. In these systems 
there is a disproportion between an unexpectedly large pressure broadening of the 
holes and only a minor broadening of the inhomogeneous band as a whole. The 
proposed mechanism involves spatially (or otherwise) bistable (possibly multistable) 
vacancies within the host lattice that change their positions and are created or 
destroyed reversibly with pressure changes. This modifies the transition energies of 
impurity molecules and thus shifts the corresponding homogeneous lines. Within the 
frame of this mechanism it is not appropriate to speak of pressure coefficients of 
individual homogeneous lines. Instead, each of them undergoes quite a random 
(biased, maybe) spectral motion as the pressure changes. In other words, we are 
dealing with pressure-induced (reversible!) spectral diffusion. We therefore call this 
the diffusive mechanism of hole broadening. 

In general, it may not be easy to establish which of the two mechanisms 
(diffusive or dispersive) is operative in a particular case: one observes some hole 
shift and broadening all the same. As follows from [13], one can also not rely on 
the irreversibility argument and consider pressure cycling experiments [6] in 
order to solve the problem: to a major extent the broadening in n-alkanes is 
reversible. In this paper, in Section II, we propose an experimental technique that 
can, in principle, solve the problem. In Section III we analyse the results of the 
corresponding numerical calculations and discuss some questions concerning the 
experimental observability of the effects. 

 
 

2. MODEL 

2.1. General 
 
The inhomogeneous pressure effects, such as broadening of spectral holes in 

a pressure tuning experiment, are obviously brought about by the pressure-
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induced spectral dynamics of the homogeneous lines of single probe molecules. 
Such a dynamics is generally to be considered a random process. However, the 
exact nature of this process is not revealed in a simple pressure tuning 
experiment that only allows a comparison of initial and final states of the 
process. An idea to obtain more information could be to label an intermediate 
state, e.g. by additional burning. With this in mind, we propose the following 
four-step experimental procedure (depicted graphically in Fig. 1): 

(1) a spectral hole is burnt with an irradiation dose Q  at a frequency 0v  
within the inhomogeneously broadened band; 

(2) an extra pressure p∆  is applied to the system; 
(3) the sample is irradiated again with the same dose Q  at the spectral 

position ,00 vv ∆+  where 0v∆  is the shift of the hole minimum; 
(4) the applied pressure is increased up to .2 p∆  
With this technique, as will be shown in the following, the dispersive 

mechanism should produce a characteristic double-minimum holeshape while 
with the diffusive mechanism the hole should retain a single minimum. 

Let us view the situation analytically. The process of pressure tuning can be 
described by the joint distribution of the probe transition frequencies at the base 

)( 0p  and final )( 1p  pressures (the “pressure kernel”) [15]. We denote these 
frequencies by 0ω  and ,1ω  respectively, and the distribution by 

;,( 00
)2( pωρ  ), 11 p∆∆ω  where ,011 ωωω −=∆  .011 ppp −=∆  In essence, this 

distribution is the second-order density function (as denoted by the superscript 
index 2) characterizing the process of pressure-induced spectral dynamics of 
single-molecule homogeneous lines. The corresponding first-order density 
function )(),( 0

)1(
ih00

)1(
ωρωρ ≡p  represents the inhomogeneous distribution 

function at the base pressure. 
The modification of the inhomogeneous distribution function )( 0

)1(
ih ωρ  upon 

burning a hole is, under a number of reasonable assumptions, described by 
multiplying it by an “exposure” function [16]  

 

)).((exp),,( 00hb ωνκνω −−= QQf                           (1) 
 

 
 

Fig. 1. The schematic of the proposed four-step process. Steps are denoted by numbers: 1 and 3 
correspond to burning, 2 and 4 to applying the pressure. The pressure scale is relative to the base 
pressure, the timescale is arbitrary as long as we treat holes as time-independent once burnt. 
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Here )(ωκ  is the (zero-peaked) homogeneous lineshape and Q  is the 
irradiation dose of monochromatic burning light of frequency :0v  

 

,0 ησtIQ =                                                (2) 
 

where 0I  is the burning intensity, t  the irradiation time, η  the quantum yield of 
the burning process, and σ  the peak absorption cross section. Likewise, the joint 
distribution ;,( 00

)2( pωρ  ), 11 p∆∆ω  is multiplied by ),,( 0hb Qf i νω  during the 
hole burning with 0=i  or 1=i  for burning at initial or final pressure, 
respectively. So, given an initial distribution ,)2(

0ρ  its evolution through the 
above-mentioned steps 1–3 is generally expressed as: 
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)2(

0001hb00hb100
)2(

3 ppQfQfpp ∆∆∆+=∆∆ ωωρννωνωωωρ  
(5) 

 

To obtain actual hole shapes, the second-order density function needs to be 
integrated over the initial frequency 0ω  and convoluted with the homogeneous 
spectrum ).(ωκ  

A proper description of step 4 generally requires the use of the third-order 
density function involving a second pressure change 2p∆  with the corresponding 
frequency change parameter 122 ωωω −=∆  2(ω  now denotes the final 
frequency). From such a distribution ;,( 00

)3( pωρ  ),;, 2211 pp ∆∆∆∆ ωω  the 
second-order distribution for step 4 is obtainable by 
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     (6) 

 

It can be rather difficult to calculate the third-order density function from 
theoretical model situations. However, here the dispersive and diffusive 
mechanisms turn out to be the limiting cases in terms of pressure shifting 
autocorrelation of the homogeneous lines and hence the required order of the 
density function can be decreased. 

In what follows we view both mechanisms separately. 
 

2.2. The  dispersive  mechanism 
 
This mechanism corresponds to strong autocorrelation in the pressure-

induced dynamics of the individual homogeneous lines. Since the frequency shift 
of the holes is always found to be linear with pressure and the same applies to 
the homogeneous spectra in the single-molecule pressure tuning experiments [17,18], 
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we may assume that each homogeneous line has a distinct pressure coefficient 
(frequency shift per unit pressure change) that is maintained throughout the 
process. In terms of the third-order density function this means that the 
parameters of the first pressure shift completely determine the parameters of the 
second shift and )3(

ρ  simplifies: 
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(7) 
 

With (6) the pressure kernel for step 4 of our four-step procedure now becomes: 
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An important property for dispersive ,)2(
ρ  following from  (7), is that 
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for any .c  This also means that 
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i.e. )2(
ρ  is expressible as the joint distribution of the initial frequency and the 

pressure coefficient .11 p∆∆ω  
Since the actual frequency range where hole burning and pressure broadening 

take place is mostly narrow as compared to the width of the whole 
inhomogeneous band, we can, for hole burning issues, approximately assume 
that the shape of the joint distribution does not depend on the initial frequency, 
i.e. )2(

ρ  can be expressed in the factorized form: 
 

),,()(),;,( 11
)1(

0
)1(

ih1100
)2( ppp ∆∆′=∆∆ ωρωρωωρ                    (11) 

 

where )1(
ρ ′  accounts for the pressure-induced variations of frequencies. According 

to models [9,10], this is, rigorously speaking, not exact. Both hole shift and broadening 
can depend on the position within the inhomogeneously broadened band (the “colour 
effect” [5]). However, notable changes of these parameters only appear for frequency 
differences comparable with the width of the band. 

The dispersive mechanism is considered to prevail largely in well-ordered 
systems such as crystals and to be applicable in some disordered systems, like 
glasses, too. Accepting the factorization (11), the part of the kernel accounting 
for the pressure-induced variations of frequencies in glassy and polymeric 
matrices is predicted to be approximately a Gaussian with a width linear in 

p∆  [9]: 
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In crystalline systems, as described earlier, we may view the diaelastic effect 
caused by the point defects as the source of spectral inhomogeneity. As shown in 
[10,11], the pressure kernel shape in the centre of the inhomogeneous band in that 
case is approximately given by an inverse fourth-order polynomial with even 
members. This shape is exactly obtained in one special case, namely when there 
are two subsets of defects with different elastic parameters; however, a different 
parameter distribution among the defects is shown not to alter the situation in the 
centre of the inhomogeneous band significantly.  In the symmetrical case (the 
two defect subsets are equal) one obtains a squared Lorentzian: 
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For the purposes of further calculations, both of the above distribution functions 
are normalized to unity and given in a representation that explicitly contains the 
full width at half maximum (FWHM) .pp∆Γ  

 
2.3. The diffusive mechanism 

 
As another limit, we may assume that the spectral movements of any given 

homogeneous line at the first and second pressure changes are completely 
uncorrelated. It is easy to see that this implies the total factorization of the third-
order density function into three first-order ones whereas the components 
corresponding to the changes coincide: 
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  (14) 
 

From here we get for the pressure kernel for step 4: 
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This situation describes the stochastic Markov process which requires that the 
second-order density function satisfy the Chapman–Kolmogorov equation. In our 
context it can be written as: 

 

),,(),(),( 2
)1(
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)1( pppp ∆′⊗∆′=∆+∆′ ωρωρωρ                   (16) 

 

where ⊗  means convolution by the frequency parameter .ω  This requirement arises 
from the process additivity considerations and is formally obtained from the third-
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order density function which, when integrated over ,1ω  should yield the second-
order density for the total pressure change .21 pp ∆+∆  Known functions that can 
obey (16) are, for instance, the Gaussian and Lorentzian curves. 

It is still largely a matter of discussion whether we can assume here a truly 
Markovian process and, if so, then whether we can count on its pressure 
reversibility. It is to be noted that for the temperature-driven (time-dependent) 
spectral diffusion, the Markovian limit is considered applicable in most models 
(see, e.g., [19]). On the other hand, these models often depend on an ensemble of 
two-level systems (or other type of perturbers) performing probabilistic 
configurational fluctuations which, if pressure-driven, would hardly be 
reversible. To account for the reversibility, one has to assume a deterministic 
pressure dependence of the perturbers’ parameters. An example of such a 
parameter could be the position of a spatially bistable defect [13]. In this case, at 
least for relatively small pressures, the resulting process could be well close to 
Markovian, i.e. while the spectral trajectory of a homogeneous line is 
memoryless in the sense of its dependence on the previous values, the ensemble 
of the perturbers still holds the memory of the process course. 

In real systems where the diffusive mechanism is present there are often 
probably dispersive components acting at the same time. This can be concluded 
from the single-molecule pressure tuning experiments in a Shpol′skii matrix 
hexadecane [17], where single-molecule spectra have all been found to shift 
linearly with pressure. In such matrices the diffusive mechanism has been 
suggested to be operative [13]. Note that this cannot be considered as any serious 
evidence against the diffusive mechanism as such, because of the low pressure 
level used (below 1 bar) and the small number of molecules considered. 
However, such a dispersive component can certainly establish some correlation 
in the spectral motion of the homogeneous lines. We still believe that our results 
remain qualitatively correct with respect to the prevailing pressure mechanism. 

 
2.4. Calculations 

 
In order to perform the calculations, a number of additional assumptions are 

required. By the same argument as used to justify the factorization (11), i.e. the 
relative narrowness of the frequency range under consideration as compared to 
the width of the whole inhomogeneous band, we may take in our calculations 

 

const.)()1(
ih =ωρ                                               (17) 

 

We will further assume that the homogeneous lineshape )(ωκ  is a Lorentzian 
of width (FWHM) hΓ  and the burning position is at the origin, .00 =v  

Next we have to specify the function ).,()1( p∆∆′ ωρ  We choose it to be a 
single-maximum symmetric function of ,ω∆  which is preferably peaked at zero. 
This enables us to discard the hole shift and set .00 =∆v  

Previously we pointed out two possible kernel shapes for the dispersive 
mechanism, (12) and (13). We stress, however, that the results are not 
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qualitatively sensitive to the particular shape of distribution. It would therefore 
be illustrative here to use the same function for both mechanisms. This function 
should then satisfy both the conditions (10) and (16). Following these 
considerations, we use a Lorentzian with a width :pp∆Γ  
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In what follows, let us use dimensionless quantities for ,,, ωvQ  and p∆  by 
the following scaling 
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We also take into account that the widths of the Lorentzians add up on 
convolution, and normalize the spectra to unity at .0=Q  We can then write 
down the hole spectra for all four steps as follows (see (3)–(5), (8), (15)): 
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3. RESULTS  AND  DISCUSSION 
 
We first stress again the fact that all the spectra at steps 1–3 are identical for 

both mechanisms. This illustrates the above statement that from simple pressure-
tuning hole spectra one cannot decide which mechanism is operative. 

For step 4, however, the hole shapes for the both cases do not coincide. 
Moreover, for a certain parameter region (24) exhibits a double-minimum shape 
for the dispersive model. In Fig. 2 the situation is depicted for 5=Q  and 

.20=∆p  
Qualitatively, this double-minimum shape (Fig. 2d) can be explained as 

follows. The molecules that fill up the primary hole during the first application  
of  pressure  are  those  of  medium  “speed”  whose initial position is far enough 
 
 

 
 
Fig. 2. The calculated hole shapes for the four-step procedure for ∆p = 20 and Q = 5. The spectrum 
after the first burning (a), after the subsequent application of pressure (b), after the second 
burning (c), and after the second application of pressure for dispersive and diffusive mechanisms 
((d) and (e), respectively) are depicted. For steps 1–3 the hole shapes for both types of pressure 
broadening mechanisms coincide. The frequency is in units of Γh, the intensity of the spectrum is 
normalized to its initial value. Note the different span of the intensity scale in (a), (c) and 
(b), (d), (e). 
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from the burning position so as not to get burnt out during the first exposition, 
however, close enough to reach the hole at the pressure change of .p∆  Those are 
the molecules that suffer most from the second burning. After the second 
increase of pressure they fill in some area near the burning position. For some 
parameter values it may now occur that the hole in this area gets deeper than at 
the burning position due to the shortage of molecules expected to fill this region. 
Contrasted to the diffusive mechanism (Fig. 2e) this reflects the pressure 
coefficient memory of each particular molecule. Note that this result also 
demonstrates capabilities of spectral hole burning as a specific type of nonlinear 
spectroscopy. No double-minimum structure is observable in the linear 
expansion of (24) by ,Q  it only arises if the higher-order terms are taken into 
account. 

A note should be made on determining the actual parameter values from 
experiment. Expanding (20) in series by Q  and considering only the linear term, 
we get for the low dose values 

 

,21)0(1 QI −≈                                              (25) 
 

i.e., the dimensionless dose is directly related to the relative hole depth. To scale v  
back to the dimensional physical value one needs to know the homogeneous 
linewidth .hΓ  This can be determined from the low-dose holewidths, extrapolating 
them to the zero-dose limit .2 hΓ  In order to scale p∆  back to the real pressure one 
needs to know hΓ  and .pΓ  The latter is obtainable from the pressure broadening of 
spectral holes burnt in the linear regime (shallow holes). In other words, saying that 

20=∆p  means using the pressure change which under linear conditions would 
broaden the hole by 10 widths, i.e. 11 times (keeping in mind that the low-dose 
holewidth is twice the homogeneous linewidth). Note that such a simple addition rule 
of hole and pressure kernel widths on convolution is not always exact (assuming a 
Lorentzian hole shape, it is exact only for the Lorentzian kernel), but it works fairly 
well e.g. for the dispersive kernels (12) and (13), especially when the hole and kernel 
widths are substantially different. 

To analyse the magnitude of the hole-splitting effect, let us view the depth of 
the minimums with respect to the central maximum, i.e. the quantity 

),()0( min
dsp
4

dsp
4 vII −  where minv±  are the frequencies corresponding to the 

minima of the split hole. We will use here the pressure kernel shapes (12) and 
(13) in order to relate the results to specific systems. 

It appears that for every given p∆  there exists a dose Q  for which this depth 
difference is maximal. However, for p∆  less than about 7 the effect does not exist 
or is so small that it becomes hardly traceable. On the other hand, the maximal 
obtainable depth increases with ,p∆  though sublinearly. Simultaneously, the dose 
needed for the optimal depth increases rapidly with .p∆  The position of the 
optimal minimums (spectral distance from the burning frequency) also shows a 
tendency of increasing with .p∆  The situation is depicted in Fig. 3. A reasonable 
choice would be ,3025K=∆p  in which case the maximum depth of the side 
holes )()0( min

dsp
4

dsp
4 vII −  would be of about 100

1  from the maximum hole depth. 
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Fig. 3. The maximum relative depth of the side minima (Fig. 2d) (a), the optimized dimensionless 
dose Q to reach this value (b), and the minimum position (c) depending on the dimensionless 
pressure ∆p. Numbers indicate the used pressure kernel type: 1, the Gaussian kernel (12); 2, the 
diaelastic kernel (13). 
 
 

Keeping this in mind, let us consider the prospects for observation of the 
discussed effects in real systems. A very convenient way to create tunable 
pressures is to use helium gas as a pressure transmitting medium [5,7]. On the other 
hand, this confines the maximal obtainable pressure to about 140 bar at 4.2 K, 
because of the helium solidification. This means, with (21), that a ratio 

3.0≈ΓΓ hP  bar–1 is needed to reach a 1%-effect in a crystalline system (we need 
to raise the pressure up to ).2 p∆  For chlorin-doped bensophenone in the 
crystalline phase [8], this ratio is 0.045–0.24 bar–1, depending on the site. This 
limits the maximum observable effect to 0.8%. This is quite a small value, yet 
within the reach of careful experiments. A recent study [12] on crystalline durene 
doped with dimethyl-s-tetrazine yields a similar value of ,hP ΓΓ  0.15–0.24 bar–1, 
depending on the position within the inhomogeneous band. To enhance 
inhomogeneity, a small amount (about 2 mol%) of hexachlorobenzene was added 
to some of the samples, which raised the value to a somewhat higher degree,  
0.25–0.36 bar–1. This shows that samples with higher defect concentration, 
expected to exhibit higher absolute values of pressure broadening [10], are favoured 
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for observing the hole-splitting effect. As to the observation of the diffusive 
mechanism, the above-discussed Shpol′skii systems [7,13] seem to provide a good 
opportunity, since values of hP ΓΓ  as high as 1.1 bar–1 for chlorin-doped n-
octane [7] and more than 10 bar–1 in dimethyl-s-tetrazine doped n-hexane [13] 
should favour an observation of the hole splitting or, vice versa, to prove its 
absence and thus verify the proposed diffusive mechanism. 

Glasses constitute quite an intriguing class of materials for the proposed 
experiments. In glasses the values of hΓ  at 4.2 K are much higher than the 
corresponding values in crystals with the excited state lifetimes of dopants about or 
more than 1 ns. High absolute values of pressure broadening, however, yield ratios 

hP ΓΓ  not much different from the molecular crystals, e.g., 0.2 bar–1 for chlorin-
doped benzophenone in the glassy phase [8]. On the other hand, as can be read 
from Fig. 3, the dimensionless pressure needed to obtain the same depth of the side 
minima is lower for the Gaussian kernel (only about 2015K=∆p  for 1%). 

The question whether or not the pressure broadening in glasses can be fully 
attributed to dispersive-type mechanisms [9], is not clear. Within the context of 
this problem we refer to a recent paper by Alexander [20] on elastic properties of 
amorphous solids. The author argues that internal buckling in such materials is 
an inherent ingredient of their structural stability. If so, essential nonlinearities 
(discontinuities) in the pressure dependence of the molecular probe frequencies 
may be expected, i.e. the diffusive mechanism may be operative. Experiments 
like the one described in this paper could cast some light on this problem, too. 
Potentialities of single-molecule pressure tuning [17,18] to face the same question 
should also be mentioned. Universal nonphotochemical hole burning processes 
in glasses [21], however, may obscure this approach. 

Following the proposed lines of thinking, it may well be possible to devise 
experimental techniques yielding more prominent effects. It has already attracted 
our attention that a simple modification of the scheme, namely burning at base 
and high pressures and then returning to the intermediate pressure, could 
considerably enhance the maximum reachable relative depth of the side minima. 
Calculations regarding this effect are on the way. 
 

 
4. CONCLUDING  REMARKS 

 
We have demonstrated capabilities of spectral hole burning as a specific type 

of nonlinear high-resolution spectroscopy to distinguish between two different 
mechanisms of pressure-induced broadening of spectral holes. The experiments 
proposed could give further insight into the local elastic-plastic properties of 
crystalline and glassy solids. Though our main interest was to address the 
problem of pressure broadening of spectral holes, a similar approach may be, 
with appropriate modifications, applicable to other broadening mechanisms as 
well, e.g., broadening caused by electrical or magnetic fields in single crystals 
with orientationally ordered dopants or even by temperature. 
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Eksperimenditehnika  spektraalsälkude  rõhulise  
laienemise  mehhanismide  uurimiseks 

 
Kristjan Leiger ja Jaak Kikas 

 
Artiklis on välja pakutud põhimõtteline eksperimentaalne protseduur, erista-

maks mittehomogeenselt laienenud lisandispektritesse põletatud sälkude rõhulise 
laienemise mehhanisme. Protseduur põhineb küllastuslikul sälkamisspektroskoo-
pial ja tema idee on märgistada mitteisobaarilises rõhktüürimiseksperimendis 
vahepealne rõhuline seisund lisapõletamisega. Kui üksikutel homogeensetel 
joontel on spektraalses liikumises rõhu suhtes tugev korrelatsioon (nt fikseeritud 
rõhukoefitsient, nn dispersiivne mehhanism), siis peaks protseduuri tulemusel 
sobivate süsteemi- ja eksperimendiparameetrite korral olema jälgitav sälgu lõhe-
nemine. Nõrga korrelatsiooni piirjuhul (nn difusiivne mehhanism) sellist nähtust 
ei esine. On esitatud ka parameetrite optimeerimise tulemusi ja arutletud efekti 
vaadeldavuse üle reaalsetes süsteemides. 

 


