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Abstract. The problem of lowering the orders of input forward shifts in generalized state-
space systems by generalized state transformations is studied using the language of differential
forms. Necessary and sufficient conditions are given for the local existence of such
transformations. These conditions are formulated in terms of the integrability of certain
subspaces of one-forms classified according to their relative degree. The sufficiency part of the
proof gives a constructive procedure (up to finding the integrating factors and integration of the
set of one-forms) for finding these generalized state transformations. In a particular case, these
conditions show when it is possible to transform a generalized state-space representation into
the classical state equations. A set of functions developed in Mathematica 4.0 is described,
allowing us to test if the generalized state equation is transformable into the classical state-
space form, and also to find the transformation for simple examples. The application of the
developed functions is demonstrated on four examples obtained via identification.
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1. INTRODUCTION

It has become clear that in several control problems it is necessary to consider
more general dynamics containing in addition to the input also a finite number of
its time shifts. One well-known example is the inverse system which, in general,
contains the shifts of its inputs. A theoretical study of discrete-time control systems

This paper is an extended version of two conference papers. The preliminary results of
Sections2 and 3 are in [1] and the material of Sections 4 and 5 is partly given in [2].
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depending explicitly on input shifts and basing on difference algebra was started by
Fliess [3−5]. According to Fliess [5], the generalized state equation of a discrete-
time nonlinear control system is of the form

x(t+ 1) = f(x(t), u(t), . . . , u(t+ α)). (1)

Although the general description has been justified by theoretical studies, the
classical state representation is still dominant in the control literature, since it
permits application of the numerous existing control techniques. Therefore, it is
natural to consider the problem of whether there exists a generalized state trans-
formation depending also on the input and a finite number of its forward time shifts

x̃(t) = ψ(x(t), u(t), . . . , u(t+ α− 1)), (2)

which brings (1) into the classical state-space form.
The main goal of this paper is to give necessary and sufficient conditions for

the existence of such a transformation. We consider the situations in which this
system theoretic property is generic, that is, it holds on open and dense subsets of a
suitable domain of definition. Furthermore, we give a constructive procedure (up to
finding the integrating factors and integration of the set of one-forms) to find such a
transformation. Finally, if these conditions are not satisfied, we show that in many
cases it is possible to lower the input shifts in the generalized state-space equations.
We also present the corresponding conditions and transformations. Actually, we
study our main problem as a subproblem of a more general problem: when is it
possible to lower, via a transformation (2), the time shifts of inputs in (1)?

Our study was inspired by [6] which completely solved the problem in the
differential geometric frame for continuous-time systems. It was mentioned that
the discrete-time version of the problem was still open. Unlike [6], we have chosen
to present our results within the linear algebraic framework. In [7] the linear
algebraic approach, extended by Grizzle [8] to discrete-time systems, has been
modified to end up with an inversive difference fieldK∗. TheK∗-vector spaceE ,
spanned by the formal differentials of the elements ofK∗ as well as certain nested
sequences of subspaces ofE , play the major role in investigating the problem of
removing or lowering input shifts in generalized state-space equations. Moreover,
our conditions are not completely parallel to those of [6]. The differences will be
discussed in Section 3 after presenting our main results. Note that the problem of
lowering the input derivatives in the system description was first studied in [9].

Finally, let us mention that the related problem of the realization of the higher-
order input-output difference equation in the state-space form has been studied in
[10]. Given an input-output model

y(t+ n) = ϕ(y(t), . . . , y(t+ n− 1), u(t), . . . , u(t+ s)), (3)

it is always possible to transform it into a generalized state equation. Specifically,
this representation is obtained from (3) by takingx(t) as the following state vector,
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involving past outputsxT (t) = (y(t), . . . , y(t + n − 1)). However, the problem
studied in this paper is more general in three aspects. First, the generalized state
equation, written down on the basis of the input-output equation, has a very specific
form for the firstn−1 state components:xi(t+1) = xi+1(t) for i = 1, . . . , n−1.
This paper is not restricted to this special case. Second, in [10] only the case of
a single-input system is considered. Third, in [8] only the problem of removing
all the input shifts is studied, and not the more general problem of lowering the
input shifts as in this paper. Besides, [10] is focused on obtaining the accessible
realization, which requires that the input-output model is in the irreducible form.
We do not restrict ourselves to obtaining an accessible realization.

The procedures described in the paper involve many symbolic computations not
easily done by hand calculation. Although various useful toolboxes and software
packages for nonlinear control systems have been developed using computer
algebra systems such as Maple and Mathematica, these symbolic computation
systems have not been practically used for the analysis and synthesis of nonlinear
discrete-time systems except in [2,11−14]. Our purpose is to contribute to the
development of such tools.

A set of functions in the computer algebra system Mathematica 4.0 is described
that allow one to decide whether the given nonlinear discrete-time generalized state
equation is transformable into the classical state-space form, and if not, whether it
is possible to lower the input shifts in (1). Moreover, for simple examples these
functions also allow one to find the required transformations. The application of the
developed functions is demonstrated on four examples obtained via identification.

The paper is organized as follows. In Section 2 we recall the basics of
the (linear) algebraic theory for nonlinear discrete-time control systems. The
main results are given in Section 3. The Mathematica functions are described in
Section 4. Section 5 presents some examples on which the Mathematica functions
are demonstrated. Some concluding remarks are given in Section 6.

2. LINEAR ALGEBRAIC FRAMEWORK

Consider the systemΣ described by (1), wherex ∈ X ⊂ IRn is the state
variable,u ∈ IRm is the input variable, andf = (f1, . . . , fn) is a real analytic
vector function defined onX × IR(α+1)m. Of course, it is not necessary that (1)
contains for all input components forward time shifts up to the same order;α is just
the maximal order of time shifts in these equations.

We will associate with the systemΣ its extended state-space systemsΣe with
inputv(t) = u(t+α+1), statez(t) = [x1(t), . . . , xn(t), u1(t), . . . , u1(t+α), . . . ,
um(t), . . . , um(t+ α)]T and the state transition mapfe(z(t), v(t)) defined as

zk(t+ 1) = fk(z(t)),
zn+(j−1)(α+1)+i(t+ 1) = zn+(j−1)(α+1)+i+1(t),

zn+j(α+1)(t+ 1) = vj(t)
(4)
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for k = 1, . . . , n; j = 1, . . . ,m; i = 1, . . . , α. Note that the extended system (4)
has more state variables than the extended system given in [6], in which to theith
input component correspondαi + 1 extended state components, whereαi is the
highest derivative of theith input in the generalized state equations. The system (4)
will play a key role in the subsequent analysis and in the procedures for removing
or lowering the orders of the input shifts.

We follow the notation of [7]. LetK denote the field of meromorphic functions
in a finite number of the variables{z(0), v(t), t ≥ 0}. The forward-shift operator
δ : K → K is defined byδζ(z(t), v(t)) = ζ(fe(z(t), v(t)), v(t + 1)). For δ to be
one-to-one, the extended system (4) has to be submersive, which will be guaranteed
by

rank (∂fe/∂(z, v)) = n+ (α+ 1)m. (5)

Under (5) the pair(K, δ) is a difference field and up to an isomorphism, there exists
a unique difference field(K∗, δ∗) called theinversive closureof (K, δ) such that
K ⊂ K∗, δ∗ : K∗ → K∗ is an automorphism and the restriction ofδ∗ toK equals
δ. By abuse of notation, hereinafter we assume that(K∗, δ∗) is given and use the
same symbol to denote(K, δ) and its inversive closure. Sometimes the abridged
notationsϕ+(·) = δϕ(·) andϕ−(·) = δ−1ϕ(·) are used.

Over the fieldK one can define a difference vector spaceE := spanK{dϕ |
ϕ ∈ K}. The operatorδ induces a forward-shift operator∆ : E → E by∑

i

aidϕi 7→
∑

i

(δai)d(δϕi), ai, ϕi ∈ K.

The relative degreer of a one-formω ∈ E is defined to be the least integer such
that∆rω 6∈ spanK{Dz}. If such an integer does not exist, we setr = ∞.

A sequence of subspaces{Hk} of E is defined by

H1 = spanK{dz(0)},

Hk+1 = {ω ∈ Hk | ∆ω ∈ Hk}, k ≥ 1,
(6)

and proved to be invariant under the state-space diffeomorphism. Obviously,Hk

contains the one-forms whose relative degree is equal to or higher thank. It is clear
that the sequence (6) is decreasing. Denote byk∗ the least integer such that

H1 ⊃ · · · ⊃ Hk∗ ⊃ Hk∗+1 = Hk∗+2 = · · · =: H∞. (7)

Hereafter we make use of some standard properties of the set of one-forms [15].

Theorem 2.1(Frobenius). [15] LetI = {ω1, . . . ωs} be a set of one-forms. Suppose
that fork = 1, . . . , s the condition

dωk ∧ ω1 ∧ . . . ∧ ωs = 0

is satisfied, where∧ is the exterior or wedge product of differential forms and
d is the exterior derivative of a one-form; then there exists locally a system of
coordinates{ξ1, . . . , ξs} such thatI is generated by{dξ1, . . . ,dξs}. In this case
the setI is said to be completely integrable.
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3. MAIN RESULTS

The main goal of this section is to obtain the generic necessary and sufficient
conditions for the system (1) to be transformable via the generalized state
transformation (2) into the classical state-space form

x̃(t+ 1) = f̃(x̃(t), u(t)). (8)

We will study our main problem as a subproblem of a more general problem:
when is it possible to transformΣ, via a generalized state transformation (2), into
the system

x̃(t+ 1) = g(x̃(t), u(t), . . . , u(t+ β)), (9)

whereβ < α?
Observe that (2) can be interpreted as a (local) transformation of the

extended statez, having the special structurẽz1 = Ψ(z), z̃2 = z2, wherez1 =
(z1, . . . , zn) = x andz2 = (zn+1, . . . , zn+m(α+1)). Preserving thez2-coordinates
simply means that we do not changeu(t) and its time shiftsu(t+1), . . . , u(t+α).

Theorem 3.1. A generalized state transformationψ of the form(2), transforming
the nonlinear system described by(1) into (9), exists generically iff for1 ≤ k ≤
α− β + 2 the subspacesHk defined by(6) are completely integrable.

Proof.

Sufficiency.Construct the subspacesH1, . . . , Hα−β+2. Assume all these sub-
spaces are completely integrable. Let{dξ1(z), . . . ,dξn(z),du(0), . . . ,du(β− 1)}
be a basis forHα−β+2. We show that the subspaceHα−β+1 can be written in the
following form:

Hα−β+1 = Hα−β+2 ⊕ spanK{du(β)}. (10)

First, notice thatdξ1, . . . ,dξn are one-forms whose relative degree is equal
to or greater thanα− β + 2. The subspaceHα−β+1 is the space of one-
forms whose relative degree is equal to or greater thanα− β + 1. By the
structure ofΣe, the relative degree of one-formdu(β) is equal toα− β + 1,
thereforedu(β) ∈ Hα−β+1. For (10) to hold,du(β) should be independent of
dξ1, . . . ,dξn,du(0), . . . , du(β − 1). This is the case, since otherwisedu(β) =
α1dξ1 + · · ·+αndξn + γ0du(0)+ · · ·+ γβ−1du(β− 1) would be a one-form with
relative degree equal to or greater thanα− β + 2, which gives a contradiction.

Now introduce a coordinate transformation in the extended state spaceZ such
that z̃i = ξi(z), i = 1, . . . , n, and the other coordinates are preserved.

It is known that the subspacesHk are invariant under the (extended) state
diffeomorphism. Since∆Hα−β+2 ⊂ Hα−β+1 by the definition, i.e. ∆dξi =
a1dξ1 + · · ·+ andξn + c0du(0) + · · ·+ cβdu(β), the extended system in the new
coordinates has the form
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z̃k(t+ 1) = gk(z̃1(t), u(t), . . . , u(t+ β)),

ui(t+ j) = ui(t+ j)
for somegk, andk = 1, . . . , n; i = 1, . . . ,m; j = 1, . . . , α+ 1.

Necessity. Assume that the system (1) can be transformed via (2) into the
form (9). Analogically toΣe, we associate with the system (9) its extended state-
space system̃Σe with input v(t) = u(t + α + 1), statez̃(t) = [x̃1(t), . . . , x̃n(t),
u(t), . . . , u(t+ α)]T and a state transition mapge(z̃(t), v(t)) defined as

z̃k(t+ 1) = gk(z̃1(t), u(t), . . . , u(t+ β)),

z̃n+(j−1)(α+1)+i(t+ 1) = z̃n+(j−1)(α+1)+i+1(t),

z̃n+(α+1)j(t+ 1) = vj(t)

for k = 1, . . . , n; j = 1, . . . ,m; i = 1, . . . , α.
Compute for1 ≤ k ≤ α − β + 2 the subspacesHk for the extended system

Σ̃e. By the structure of the state transition mapge(z̃(t), v(t)) no component ofg
depends onu(t+β+1), . . . , u(t+α) and thus we obtain forj = 1, 2, . . . , α−β+2,

Hj = spanK{dz̃1(0), . . . ,dz̃n(0),du(0), . . . ,du(α− j + 1)}.
These subspaces are clearly completely integrable. Therefore the condition of
Theorem 3.1 holds. Moreover, this condition is invariant under the extended state
diffeomorphism and thus it is necessary for the solvability of the problem.

Note that Theorem 3.1 implies that a generic generalized state-space
equation (1) cannot be transformed by a generalized state transformation to a
generalized state-space equation which contains a lower order of time shifts of
input than the original system.

We obtain our main result as a corollary of Theorem 3.1.

Corollary 3.2. A generalized state transformationψ of the form(2), transforming
the nonlinear system described by(1) into the classical state-space form(8) without
input shifts exists iff for1 ≤ k ≤ α + 2 the subspacesHk defined by(6) are
completely integrable.

The next corollary of Theorem 3.1 concerns the case when we are able to lower
the input shift in (1) just by one. We obtain it by noticing thatH1 andH2 for Σ are
always completely integrable.

Corollary 3.3. There exists a generalized state transformationψ of the form(2),
lowering the highest order of the input shift in(1) by one, iff H3 is completely
integrable.

Theorem 3.1, when applied to linear systems, rediscovers the following result,
since all the subspacesHk in the linear case are trivially completely integrable.

Corollary 3.4 [5] (See also [16]). Consider a linear system of the form

x(t+ 1) = Fx(t) +G1u(t) + . . .+Gα+1u(t+ α).
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There exists always a linear generalized change of state coordinates of the form

x̃(t) = Px(t) +R1u(t) + . . .+Rαu(t+ α− 1)

with P invertible, transforming the linear system into a classical state-space
representation

x̃(t+ 1) = F̃ x̃(t) + G̃u(t). (11)

Theorem 3.1 and Corollary 3.2 of our paper are not completely parallel to
Theorem 1 resp. Corollary 1 in [6]. The conditions in the continuous-time case,
formulated in terms of commutativity of certain vector fields, are more detailed as
they allow us to check whether it is possible to lower the orderαi of the ith input
derivative toβi, whereβi < αi, whereas our conditions deal only with lowering the
highest order of the input shift, i.e. loweringα = max{α1, . . . , αm}. Therefore,
our conditions exhibit transparent similarity to the conditions of realizability of the
higher-order input-output difference equations [10].

The linear algebraic approach allows, in principle, obtaining the conditions
completely parallel to those in [6]. For this purpose, one has to define another
sequence of subspaces{Hβ

k} of E by

Hβ
1 = H1,

Hβ
k+1 = spanK{ω ∈ H

β
k | ∆ω ∈ H

β
k

+spanK{duj(0), . . . ,duj(βj − 1), j = 1, . . . ,m}}, k ≥ 1.

(12)

It is easy to show that these subspaces are invariant under the special form of the
extended state transformation (2) which preserves theu-components together with
their time shifts. The analogue of Theorem 3.1 of [6] is given below.

Theorem 3.5. It is possible to lower the input shifts in(1) up toβi, i = 1, . . . ,m,
via a generalized state transformationψ of the form(2), iff for 1 ≤ k ≤ M + 2,
M = max{α− β1, . . . , α− βm}, the subspacesHβ

k are completely integrable.

We prefer the conditions of Theorem 3.1 because of their transparent similarity
to the conditions of realizability of the higher-order input-output difference
equations.

In order to make the computer algebra implementation more tractable, we
use, as in [11], instead of the sequences of subspaces{Hk} a related sequence
of decreasing subspaces{Ik}, defined by

I1 = spanK{dx(0)},
Ik+1 = Ik ∩∆Ik, k ≥ 1.

(13)

Lemma 3.6[13]. Ik = ∆k−1Hk.
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Lemma 3.7[13]. Ik is completely integrable iffHk is completely integrable.

So, we may give alternative formulations for Theorem 3.1 and Corollaries 3.2
and 3.3, respectively.

Theorem 3.8. A generalized state transformationψ of the form(2), transforming
the nonlinear system described by(1) into (9), exists generically iff for1 ≤ k ≤
α− β + 2 the subspacesIk defined by(13)are completely integrable.

Corollary 3.9. There exists a generalized state transformationψ of the form(2),
transforming the nonlinear system described by(1) into the classical state-space
form (8) without the input shifts, iff for 1 ≤ k ≤ α+ 2 the subspacesIk defined by
(13)are completely integrable.

Corollary 3.10. There exists a generalized state transformationψ of the form(2),
lowering the highest order of the input shift in(1) by one, iff I3 is completely
integrable.

The main difference between the sets of subspaces{Hk} and {Ik} is that
{Ik} does not require the construction of the backward-shift operator, which in
turn relies on the use of the implicit function theorem and is therefore extremely
difficult to implement in a computer algebra framework. The new subspaces require
only standard linear algebraic techniques and can therefore be straightforwardly
implemented in Mathematica. The drawback of the sequence of new subspaces
{Ik} is that they cannot be used to construct the generalized state transformation,
which brings the generalized state equations into the classical form, or if this is
impossible, lowers the input shifts in the generalized equations. Moreover, the
elements of the subspacesHk are in most cases, though not always, substantially
simpler expressions than those of subspacesIk. For this reason, we use in the
functionsClassicTransform andLower , described in the next section, the
sequence of subspaces{Hk}.

4. SYMBOLIC IMPLEMENTATION USING MATHEMATICA

A set of functions developed in the computer algebra system Mathematica 4.0 is
described, allowing one to test whether the given generalized state equation is trans-
formable into the classical state-space form, and also to find the transformation for
simple examples. If the system turns out to be nontransformable into the classical
state-space form, one can check, using the functions developed by us, if (and how
much) it is possible to lower the order of the input shift in the generalized state
equations, as well as to find the transformation. For a computer-aided application
of the above task the following calculations are required:

– finding the backward shift;
– calculating the sequences of subspaces{Hk} and{Ik};
– checking the complete integrability of the set of one-forms;
– integration of the subspace of the completely integrating one-forms;
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– transforming the state equations into the classical form, or if this is not
possible, into the form with a lower order of the input shift than that of the original
equation.

These Mathematica functions make extensive use of the algebraic framework
presented in Section 2 and rely partly on some modified procedures and algorithms
discussed in Sections 2 and 3. We had to write a program to compute the
exterior (wedge) product of one-forms since this is not handled within the standard
Mathematica version.

The forward shift is defined by the equations of the system. In order to calculate
the sequence{Hk}, we need to calculate first the backward shiftδ−1. The latter
can be found as described below. We find as in [7]

spanK{dω(t)} ∼ spanK{dx(t)}
spanK{dx(t)} ∩ spanK{dx(t+ 1)}

.

So, spanK{dx(t)} ⊂ spanK{dx(t + 1)} + spanK{dω(t)}. Then there exists a
functionψ(x(t + 1), w(t)) such thatx(t) = ψ(x(t + 1), w(t)). On the basis ofψ
we can find the backward shift

δ−1x(0) = ψ(x(0), w(−1)).

In general, the functionψ can be defined in several possible ways which will yield
different bases for subspacesHk.

The functionBackwardShiftOperator finds all possible functionsψ that
define the backward shift operator. In the functionBackwardShift which
calculates the backward shift of the subspace, one has several options: one can
specify the functionψ one wants to use, or one can calculate the backward shifted
subspace for all functionsψ. If not specified, the function choosesψ which will
yield the simplest basis vectors forH2. Simplicity is defined by the value of the
Mathematica functionLeafCount .

The sequence of subspacesHk can alternatively be defined by

Hk+1 = ∆−(Hk ∩∆Hk),

where
∆Hk = spanK{ω+ | ω ∈ Hk},

∆−(Hk ∩∆Hk) = spanK{ω− | ω ∈ Hk ∩∆Hk}.

This alternative definition is implemented in the Mathematica functionSe-
quenceH . Though the intersectionS1 ∩ S2 of two subspacesS1 and S2 is
uniquely defined, there is an infinite number of possible bases for intersection. In
SequenceH we have used de Morgan’s law

S1 ∩ S2 = S̄1 ∪ S̄2
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to find the basis. This way we obtain simpler expressions for the basis vectors than
by finding the basis via solving the system of linear equations as suggested in [7].

The most essential functions implemented in Mathematica are:
1. SequenceI – computes the sequence of the subspaces{Ik}.
2. SequenceH – computes the sequence of the subspaces{Hk}.
3. ClassicTransformability – determines whether the generalized

state equations can be transformed into the classical state-space form.
4. ClassicTransform – finds the generalized state transformation that

transforms the system into the classical state-space form and constructs the state
equations.

5. Lower – finds the generalized state transformation that lowers the input
shifts in the equations.

Unfortunately, the functionsClassicTransform , Lower , and Back-
wardShift are currently applicable only to simple examples and not to the
general case. The reason is that Mathematica is unable to integrate the one-forms
or, equivalently, to solve the sets of complicated partial differential equations which
define the generalized state transformations. The other problematic part is finding
the backward shift operator, since this requires the solution of a system of nonlinear
algebraic equations.

In order to overcome these difficulties, we have related the state coordinates
directly to the structure of the generalized state equations for certain subclasses
of (1), encountered often in applications. This makes the implementation in
Mathematica extremely straightforward and simple even for high-order systems.
The subclasses of generalized state equations, each of which is guaranteed to have
a classical state-space description, are given in [17,18] and are also implemented
in our Mathematica package. As demonstrated by the examples below, these
subclasses allow us to solve some cases for the first time or to provide simpler
solutions.

5. EXAMPLES

Example 1.The Mathematica 4.0 session below corresponds to the analysis of the
model of a column-type grain drying process obtained via identification [19]. In
Mathematica it is better to treat state equations as a functionf :

In[1] := f = {x2[t], x3[t], 1.6389x3[t]− 0.4397x2[t]− 0.1803x1[t]
−0.0082x3[t]u[t + 2]− 0.0042x2[t]u[t + 1]−0.0074x1[t]u[t]
+0.0021u[t] + 0.0019u[t + 2]− 0.0041u[t + 1]}

Xt = {x1[t], x2[t], x3[t]}
genst = DStateSpace[f, Xt, u[t], t]

In order to present the system in the traditional form one can use the function
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EquationForm[genst]

which gives

x1[t + 1] = x2[t]
x2[t + 1] = x3[t]
x3[t + 1] = 1.6389x3[t]− 0.4397x2[t]− 0.1803x1[t]

−0.0082x3[t]u[t + 2]− 0.0042x2[t]u[t + 1]− 0.0074x1[t]u[t]
+0.0021u[t] + 0.0019u[t + 2]− 0.0041u[t + 1]

We first use the functionClassicTransformability which checks whe-
ther the system is transformable into the classical state-space form or not. The
output being true means that the system can be transformed into the Kalmanian
form:

In[2] := ClassicTransformability[genst]

Out[2] = True

Once we know that the system is transformable into the classical state-space
form, we may try to find the state coordinates which place the system into the
Kalmanian form. For this purpose we can use the functionClassicTransform

In[3] := EquationForm[ClassicTransform[genst, {ξ1[t], ξ2[t], ξ3[t]}]]

ξ1[t + 1] = u[t](0.0019− 0.0082ξ1[t]) + 1.ξ2[t]
ξ2[t + 1] = u[t](−0.00098609− 0.017639ξ1[t]) + 1.ξ3[t]
ξ3[t + 1] = u[t](−0.000351533− 0.032703ξ1[t])− 0.1803ξ1[t]

−0.4397ξ2[t] + 1.6389ξ3[t]

ξ1[t] = x1[t]
ξ2[t] = u[t](−0.0019 + 0.0082x1[t]) + 1.x2[t]
ξ3[t] = u[t](0.00098609 + 0.017639x1[t])

+ u[t + 1](−0.0019 + 0.0082x2[t]) + 1.x3[t]

The next example illustrates that some nonlinear systems cannot be transformed
into the classical state-space form.

Example 2.Consider the two-input model of a 27-tray binary distillation column
operating in a high-purity regime, obtained via identification [20].

Mathematica input is in the form:
In[4] := f = {x2[t], x3[t], 0.0012 + 0.98x3[t]

−0.18u1[t + 2] + 1.1x1[t]u2[t + 2]− 1.8u1[t + 2]{0.018
+0.92[0.018 + 0.92x4[t]− 0.22u1[t]
+30.4x24[t]u2[t]− 1.7u22[t]]− 0.22u1[t + 1]
−1.7u22[t + 1] + 30.4u2[t + 1][0.018 + 0.92x24[t]− 0.22u1[t]
+30.4x24[t]u2[t]− 1.7u22[t]]

2}0.0018 + 0.92x4[t]
−0.22u1[t] + 30.4x24[t]u2[t]− 1.7u22[t]}
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Xt = {x1[t], x2[t], x3[t], x4[t]}
Ut = {u1[t], u2[t]}
genst = DStateSpace[f, Xt, Ut, t]
EquationForm[genst]

x1[t + 1] = x2[t]
x2[t + 1] = x3[t]
x3[t + 1] = 0.0012 + 0.98x3[t]− 0.18u1[t + 2] + 1.1x1[t]u2[t + 2]

−1.8u1[t + 2]{0.018 + 0.92(0.018 + 0.92x4[t]− 0.22u1[t]
+30.4x24[t]u2[t]− 1.7u22[t])− 0.22u1[t + 1]− 1.7u22[t + 1]
+30.4u2[t + 1](0.018 + 0.92x24[t]− 0.22u1[t] + 30.4x24[t]u2[t]
−1.7u22[t])2}

x4[t + 1] = 0.0018 + 0.92x4[t]− 0.22u1[t] + 30.4x24[t]u2[t]− 1.7u22[t]

Using the functionClassicTransformability

In[5] := ClassicTransformability[genst]

Out[5] = False

we find that this system cannot be transformed into the classical state-space form.

The next model presents an example of the system that cannot be transformed
into the classical state-space form, but for which the order of the input shift in
equations can be lowered by one.

Example 3. Consider the model of an exothermic continuous stirred tank
reactor [21]

In[13] := f = {x2[t], x3[t], 0.0431u[t + 2]
−0.0036u[t + 1] + 1.2159x3[t]− 0.5456x2[t] + 0.088x1[t]
−0.0234u[t + 2]2 + 0.0247u[t + 1]2 − 1.0535x3[t]2

−0.0723u[t + 2]u[t + 1]− 0.5094u[t + 2]x3[t]
+0.3935u[t]x2[t] + 0.093u[t + 1]3 − 0.1273u[t + 2]u[t + 1]2

−1.5736u[t + 2]x3[t + 2]2}

Xt = {x1[t], x2[t], x3[t]}
genst = DStateSpace[f, Xt, u[t], t]

In[14] := ClassicTransformability[genst, PrintInfo→ True]

The subspace H4 is not completely integrable

Out[14] = False
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Since the subspaceH4 is not completely integrable, we cannot transform the
system into the classical state-space form. Still, we may try to lower the input shift
in the generalized state equations. For thatH3 has to be integrable

In[15] := Integrability[H[3]]

Out[15] = True

which turns out to be true. To find the generalized state transformation that
transforms the system into another system with a lower input shift we have to
integrate the subspaceH3. The functionLower completes all the above steps
plus finding the new generalized state equations:

EquationForm[{low, repl} = Lower[genst, {ξ1[t], ξ2[t], ξ3[t]}]]

ξ1[t + 1] = 1.ξ2[t]
ξ2[t + 1] = −0.0234u[t + 1]2 + u[t + 1](−0.0723u[t]− 0.1273u[t]2

−1.5736(−0.0696316 + ξ2[t])(0.393348 + ξ2[t])) + 1.ξ3[t]
ξ3[t + 1] = −0.000576854u[t + 1]4 + 0.088ξ1[t]− 0.5456ξ2[t]

+0.3935u[t]ξ2[t] + u[t + 1]3(−0.00356466u[t]
−0.00627637u[t]2 − 0.0775845(−0.957196
+ξ2[t])(1.28091 + ξ2[t])) + u[t + 1]2(−0.00570905
−0.0193924u[t]3 − 0.0170723u[t]4 + 0.0462595ξ2[t]
−0.13047ξ2[t]2 − 1.68895ξ2[t]3 − 2.60869ξ2[t]4

−0.422073u[t]2(−0.0394875 + ξ2[t])(0.363204 + ξ2[t])
−0.239716u[t](−0.0696316 + ξ2[t])(0.393348 + ξ2[t])
+0.0493038ξ3[t]) + 1.2159ξ3[t]− 1.0535ξ3[t]2

+u[t + 1](0.0488053 + u[t](−0.0879096 + 0.152336ξ3[t])
+u[t]2(−0.154784 + 0.268221ξ3[t])− 0.0908117ξ3[t]
+ξ2[t](−0.619379 + 1.07331ξ3[t]) + ξ2[t]2(−1.91334
+3.31558ξ3[t]))

ξ1[t] = x1[t]
ξ2[t] = x2[t]
ξ3[t] = u[t + 1](−0.0431 + 0.0723u[t] + 0.1273u[t]2

+0.0234u[t + 1] + 0.5094x2[t] + 1.5736x2[t]2) + 1.x3[t]

Example 4. Consider a liquid level system which consists of interconnected
tanks [22]

In[15] := f = {x2[t], x2[t], 0.43x3[t]
+0.681x2[t]− 0.149x1[t] + 0.396u[t + 2] + 0.014u[t + 1]
−0.071u[t]− 0.351x3[t]u[t + 2]− 0.03x22[t]
−0.135x1[t]u[t + 1]− 0.0027x32[t]− 0.108x22[t]u[t + 1]
−0.099u3[t + 1]}
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ClassicTransformability[genst]

True

EquationForm[ClassicTransform[genst, {ξ1[t], ξ2[t],
ξ3[t]}]]

ξ1[t + 1] = 0.396u[t]− 0.351u[t]ξ1[t] + 1.ξ2[t]
ξ2[t + 1] = 0.18428u[t]− 0.099u[t]3 − 0.28593u[t]ξ1[t]

−0.108u[t]ξ1[t]2 + 1.ξ3[t]
ξ3[t + 1] = 0.277916u[t]− 0.00470448u[t]2 − 0.0442467u[t]3

−0.149ξ1[t]− 0.361981u[t]ξ1[t] + 0.00833976u[t]2ξ1[t]
+0.00445844u[t]3ξ1[t]− 0.04644u[t]ξ1[t]2

−0.00369603u[t]2ξ1[t]2 − 0.0039518u[t]3ξ3[t]2

+0.00116758u[t]3ξ1[t]3 + 0.681ξ2[t]
−0.02376u[t]ξ2[t]− 0.0127021u[t]2ξ2[t]
+0.02106u[t]ξ1[t]ξ2[t]
+0.0225174u[t]2ξ1[t]ξ2[t]− 0.00997928u[t]2ξ1[t]2ξ2[t]
−0.03ξ2[t]2 − 0.032076u[t]ξ2[t]2

+0.028431u[t]ξ1[t]ξ2[t]2 − 0.027ξ2[t]3 + 0.43ξ3[t]

ξ1[t] = x1[t]
ξ2[t] = −0.396u[t] + 0.351u[t]x1[t] + 1.x2[t]
ξ3[t] = −0.18428u[t] + 0.099u[t]3 − 0.396u[t + 1]

+0.28593u[t]x1[t] + 0.108u[t]x1[t]2 + 0.351u[t + 1]x2[t]
+1.x3[t]

If we apply the simple model method in the Mathematica function
ClassicTransform , the alternative classical state-space form can be found:

EquationForm[ClassicTransform[genst, {ξ1[t], ξ2[t],
ξ3[t]}]]

ClassicTransform :: method : ClassicTransform uses
simple model method

ξ1[t + 1] = ξ2[t] + 0.43ξ1[t] + 0.396u[t]− 0.351ξ1[t]u[t]
ξ2[t + 1] = ξ3[t] + 0.681ξ1[t] + 0.014u[t]− 0.03ξ21 [t]

−0.135x1[t]u[t]− 0.027ξ31 [t]− 0.108ξ21 [t]u[t]
−0.099u3[t]

ξ3[t + 1] = −0.149ξ1[t]− 0.071u[t]

It turns out to be much simpler than the one above or the realization obtained in
[13] after simplifying the basis ofH4 manually.
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Our procedure, which finds the state variables that transform the system into
the classical state-space form, is applicable only for relatively simple examples and
not for the general case. Here, simplicity is not defined so much by the simplicity
of the generalized state equations, but by the simplicity of the structure of the
subspaceHα−β+2 which defines the differential equations to be solved, since the
transformations are defined by the solutions of those equations. Unfortunately,
Mathematica is unable to solve the complicated partial differential equations which
define the new state variables.

However, we have written the custom-made functions in such a way that the
user can interact with these functions at several levels if necessary and store inter-
mediate results for further use. So, after simplifying the basis ofHs+2 manually,
IntegrateOneForms is sometimes able to find the required transformation
[13].

6. CONCLUSIONS

The problem of lowering the orders of input forward shifts in discrete-time
nonlinear generalized state-space systems by generalized state transformations
was studied using the language of differential forms. Necessary and sufficient
conditions were derived for the local existence of such transformations and
formulated in terms of the integrability of certain subspaces of one-forms classified
according to their relative degree. In the sufficiency part of the proof a constructive
procedure was given up to finding the integrating factors and integration of one-
forms. For a particular case, these conditions show when a generalized state-space
representation can be transformed into the classical state equations.

A set of functions developed in Mathematica 4.0 was described, allowing one to
test if the discrete-time nonlinear system described by generalized state equations is
transformable into the classical state-space form, and to find such transformations
for simple examples. Four examples obtained via identification were given to
demonstrate the application of the developed functions.
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Sisendite nihetest vabanemine või nende järkude
alandamine diskreetse ajaga üldistatud olekuvõrrandites

Mathematica abil
Ülle Kotta ja Maris Tõnso

Diferentsiaalvormide aparatuuri termineid kasutades on uuritud juhttoime
nihke järgu alandamist üldistatud olekuvõrrandites ning leitud tarvilikud ja piisavad
tingimused üldistatud olekuteisenduste lokaalseks eksisteerimiseks. Tingimused
on formuleeritud süsteemiga seotud alamruumide integreeruvuse kaudu, kusjuures
alamruumide elementideks on üksvormid, mis on klassifitseeritud nende suhtelise
järgu põhjal. Tõestuses sisaldub ka (osaliselt, kuni diferentsiaalvormide integree-
rimiseni) konstruktiivne protseduur olekuteisenduste leidmiseks. Erijuhul näitavad
pakutud tingimused, millal on üldistatud olekuvõrrandeid võimalik esitada klassi-
kalisel olekukujul. On välja töötatud mitmed sümbolarvutuse paketi Mathematica
4.0 funktsioonid, mis lubavad kontrollida, kas üldistatud olekuvõrrandid on tei-
sendatavad klassikalisele olekukujule, ja lihtsate näidete korral leida ka vastavad
olekuteisendused. Funktsioonide rakendamist on demonstreeritud nelja identifit-
seeritud mudeli puhul.
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