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Abstract. The generalized sampling series givedahresber. Deutsch. Math.-Verein., 1988,

90, 1-70 are studied. We introduce some new generalized sampling series which are defined by
certain combinations of thenc functions and find the order of approximation by those series.
Sampling series of this kind are motivated by some summation methods of trigonometric
Fourier series. Our discussion is based on the Rogosinski-type sampling series.
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1. INTRODUCTION

Let N, Z, R, C denote the sets of all naturals, all integers, all real and all
complex numbers, respectively. LE{R) be the space of all uniformly continuous
and bounded function : R—R (or C) endowed with the supremum noim ||¢.

Let LP(R), 1 < p < oo, be the space of all measurable functignsn R for which

the norm y
1 p
1= { o= [1parf .

[flloo := esssup {[f(£)] : t € R}

is finite. Fore > 0 and1 < p < oo let BY be the class of the bounded functions
f € LP(R) that can be extended to an entire functitin) (= € C) of exponential
typeo (['] or [?], 4.3.1), i.e.,

fI<eMfle (z=z+iyC).
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The Fourier transfornf” of f € L(R) is defined for» € R by

A _L e—ivt
F0) = = /R F(t)e="tdt.

In ['] (and references cited there) the generalized sampling series

SO =3 1 (5)sove-k) e w0 @

k=—o0

for f € C(R) are considered. It is shown that the equality
Jim (Sw f)(t) = F(0),

uniformly onR, is essentially equivalent to each of the following two assertions:

o0

(i) > os(z—k)=1, x€][0,1);

k=—o00

(i) s"(2km) =0, k € Z\ {0}; s"(0) = (2m)~ /2

The well-known Whittaker—Kotelnikov—Shannon sampling series is defined by

thesinc function ]
SIN 7T

s(x) = sinc (x) := —

Let us introduce a band-limited kerneldefined via a functiom\ € Cjg y,
A0) =1, A(u) = 0 (Ju| = 1) by the equality

1
s(t) == /)\(u) cos(rrtu) du. 2
0

Many kernels are defined by (2), e.g.,

1. M(u) = 1 defines theinc function,

2. \M(u) = 1 — u defines the Fejér kernel,

3. \u) =1—u",r > 1, defines the typical (or Zygmund) kernel (sép.[

In Section 2 we introduce the sampling series (1) defined by the kernel (2),
whereA(u) = sincu (Ju| < 1). This choice of the function is motivated by
the Lanczos' filter {]. We show that this new sampling operator, 3y, forms
a uniformly bounded linear transformation 6{R) into C'(R). We also find the
order of approximation by the sampling serigg .

In Section 3 we consider the sampling series with a kernel, which is a
combination ofsinc functions. We see that, depending on the numbesiiof
functions in our kernel, the order of approximation can be as high as desired.

The discussion in both sections is related to the Rogosinski-type sampling
series introduced irP] (see also]). Let us recall some auxiliary results.
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It is known (['7]) that the kernels in (2) is band-limited, i.e. s € B}
and Sw f € B, for f € C(R). We need the classical sampling theorer, ([
Theorem 6.3a):

For g € B° witho < 7V we have

o= 3 oy ) sine (e - 1) = (30 @)

k=—0oc0
the series being uniformly convergent on each compact subBet of
If o = 7V, this is not valid (see alsd], Theorem 3.1).

In the following we denote the sampling series (3)S84° g. Some auxiliary
facts from the approximation theory are needed. fFar C(R) andd > 0 the kth
modulus of continuity ({], p. 76) is defined by

wi(f,0) = sup [|AFF()le
Ihl<s

where
k

A @) = (-0 ) o+ ). )

=0
The modulus of continuity has the following propertie€§,(p. 76; [], 3.3):
wr(f,8) < 28w, (f,6) foranyr e N, r < k,
wi(f,78) < jhwi(f, ) forany; € N,
wi(f, A6) < (1 + N)Fwp(f,0) forany) >0,
wi(f,0) < OF|fPle forany f*) € C(R).

(5)

<
<

We need a special Jackson-type inequality (cf], B.7, Problem 23 or?],
Lemma 2).

Proposition 1. Givenf € C(R), there exisy* € BS° andMj, > 0 (k € N) such
that for everyo > 2

. 1
17 = o"lle < M (£,

In [>°] we introduced the Rogosinski-type sampling operdtar; : C(R) —
C(R) in the form (1) by the kernelj(= 0,1, ...)

ri(x) :zi(sinc <x+j+;> + sinc <x—j—;>>. (6)

Let us remark here that the kerne] may defined by (2), where\(u) =
cosm(j + )u.
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2. INTEGRAL ROGOSINSKI-TYPE SAMPLING SERIES

The following generalized sampling series is motivated by the Lanczos’ filter
[4], well known in summation of Fourier series, defined by summability factors
A(u) = sincu (Ju| < 1). The kernels, associated with the Lanczos'’ filter, has by
(2) the form

1 t+1
su(t) = 1/ sin(1 —t)u +sinw(1+t)u du = 1 / sincu du, @
2 ™ 2
0 t—1
which yields

. 1

sp(t) = 5 /sinc (t+ u) du. (8)
1

This kernel may be considered as a continuous version of the Rogosinski kernel
(6) (in casej = 0). Indeed, if the measuréu in (8) is concentrated only in the
points+ 1, we get the Rogosinski kernel (6). Also, using the integral sine

x

Si(z) = / %ntdt,
0
we have for the kernel (7) the representation

sp(t) = —(Si(n(1+1t)) + Si(n(1 —1))). (9)

277(
We denote the corresponding sampling series as

(Lw ) 2 f( ) (Wt k). (10)

Using (8) and (3), we get fay € B° (o < 7W)

(Two)®) = 5 [(5i#°9) (t+ ) du (1)
21

We will find for the sampling operataty : C(R) — C(R) in (10) an exact
value of its operator norfiLyy ||. For this purpose we use a result froHi][ Let
the kernels be given as above. Then'][ Theorem 4.1 or '], Theorem 3) the
linear operatoSy : C'(R) — C(R) has the operator norm

|Sw || = sup Z |s(u—k (12)

u€ER ke —o0
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Theorem 1. The integral Rogosinski-type sampling operator defineoyas a
linear operatorLyy : C(R) — C(R) has the norm

2
|Zw | = =Si(r) = 1.17898....

Proof. If the series in (12) converges uniformly, then its sum defines a continuous
function with period one. Therefore,

o

Ly | = sup sp(u—k)|. (13)
[ Zw | S k;ml (u—Fk)
We write
Y lsp(u—k)l = Ni(u) + No(u) + Y |sp(u—k)l, (14)
k=—o0 |k|=3
where
Ni(u) == |sp(u)| + [sp(u —1)| + |sp(u+ 1)1, (15)
Ng(u) = |SL(U—2)’+|SL(U+2)’. (16)
Using the computer package Mathematica, we got the impression that on the
interval[—3, 3] the functionsVy, N, andu — |sz(u — k)|, for |k| > 3, have their

unigue maximum value at the poiat= 0. For the proof we find from (7) the
derivative

%SL(u—k) = %[Sinc(k—u—1)—sinc(k—u+1)]
_ (—1)ksinmu
ok —w)?—1) 17

which has its unique zero in the inter\{al%, %] at the pointu = 0. To prove our

claim, we consider the functions— |sz(u — k)| (|k| > 3), N2 andN; as follows.

1. Consider first the function — |sr(u—k)| (|k| > 3). We compute the values
of the functionu — sz, (u — k) at the critical point: = 0 and at the end points of
the interval[—1, 11, i.e. we find the values; (+k) ands.(+£5 — k), respectively.
By (8) we have

1 .
sp(xk) = /Sm(ﬁ(uwdu

m(u+ k)
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After changing variables in the last integrdls ¢ = 1,2,4 (u = v — 1 for Iy,
u = —v for Iy, andu = 1 — v for I, respectively), we get

SL(:Ek)

(_1)k+1 12

T o O/Sinﬂv<(v+k)(vl—l-kz—1)+(v—k)(vl—k—1))dv' (18)

Analogously to (18) we get

(=D 1 1
= 0/sm7w((v—k:)(v—k:i1)(v—i—k)(v+k‘$1)>dv' (19)

We have to compare the valugs, (k)| in (18) and|s.(+1 — k)| in (19).
Suppose: > 3. The casek < —3 follows from & > 3 becauses;, is an even
function. To prove the inequality

1
ST, <2 — k>

it suffices to show by (18) and (19) that for< v < % andk > 3 we have

|sL(k)| >

9

1 1
IR o+k—1)  w-R—k=1)
1 1

TRk +D) itk rk_1)

or, equivalently,
p(v) =W+ E)(v+k—1) < (k—2)[(k—-0)*—1] = q(v).

Since fork > 3 the polynomiab is increasing ang is decreasing on the interval
[0, 4], it is sufficient to show that(3) < ¢(3), i.e.

(o) (=)< [0

But the last inequality is valid fok > 2. The inequality|s., (k)| > |sz(—3 — k)|
can be proved analogously.

We proved thats;(—k)| > |sp(+£3 — k)| for all k > 3. Since by (17) the
functionu — s (u — k) has its unique local extremal value pnai, 1] at the point
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u = 0, the inequality|s;,(—k)| > |sr(u — k)| is valid for allu € [-1, 1] and all
k > 3. The casé < —3 reduces to the previous case by the substitutien —k.
Hence, for alllk| > 3

sup |sp(u— k)| = [sp(=Fk)|. (20)
—1/2<u<1/2

2. Next we consider the functiofV, in (16). SincelN; is even, we suppose
0<u< % By (17)

%SL(UZE 2)>0

on (0, %]. Hence, computing by (9) gives
sp(ut2)|,9=-0.028..., sp(u+2)[,_y,=-0004...,

sp(u—2)|,=1/9 =0.029...
Therefore, the functionu — sz (u —2) has its unique zero, sayy, and
sp(u+2) <0on[0,1]. Now, by (16) we write

—sp(u—2) —sp(u+2), uel0,ugl,
sp(u—2)—sp(u+2), u€ lug, 3.

Since N, is decreasing off), ug] (recall thats (u + 2) was increasing off), 3]),

by (9)
Na(u) < No(0) = —2s1(2) = 0.056.. ..

Foru € [ug, 3] we have by (17)

/oy SinTu 1 1
Np(u) = — ((2—@2—1 - (2+u>2_1> > 0.

Hence,

1
sup  Na(u) = Ny <) =0.034...<0.056...= Ny(0),
up<u<l/2 2

and finally by (9),

sip No(u) = Na(0) = —2s1(2) = ~[Si(7) —Si(3m)]. (1)
—1/2<u<1/2 m

3. The functionV; in (15) also is even, therefore lete [0, %]. By (17) we get

d d d
Sl L osru—1 il 1
dusL(u) <0, dusL(u ) >0, dusL(u—i- ) <0
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on (0, 1]. Since by (9)

I .. (3
sL(W]yz1jp = %[Sl<;>+s (2)]20.474...>0,

1
sp(u—1)],_y = %Si (2m) =0.225... >0,

1 5
st Dl = 5 [Sl (;) —Si (g)] =0.029... >0,

we obtainsy (u) > 0, sp(u—1) > 0, s.(u+ 1) > 00n[0, 1]. Hence,
Ni(u) =sp(u) +sp(u—1)+sp(u+1)
and we have by (17) that d, 3]

d (u? + 2) sinu
—N .
W= T a e <
Therefore we may conclude that
sup  Ni(u) = N1(0) = (Sl( )+ Si(27)). (22)

—1/2<u<1/2

We have proved that all summands in (14) attain their maximum values at
u = 0. Hence, by (13) and (14)

o0 o0

ILwl = sup > fselu—K)= > |sc(k)|

—1/2<u<1/2 T oo

= N +N2 Z ’SL
k=[3|

Sincesgn sz, (k) = (—1)**1 by (18), computing by (9) gives

> lsck)| = 22 1)f*s

k=|3|
_ % (—1)FFNSi (w(k + 1)) — Si (w(k — 1))]
k=3
= 71T[S1(37r)—81(27r)]

Therefore, by (22) and (21) we get

2
IZwll = =Si(m) = 1.17898 ...
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Although the exact value of the norjidyy || is not needed for the next theorem
(it is sufficient to know the boundedness only), we have computed the norm hoping
to give more information on the properties of our operator. For instance, in
approximation theory the exactness of various constants is a quite intrinsic problem
(see ['] and references therein).

Theorem 2. If Ly, (W > 4/7) is the sampling operator fof € C(R) defined by
(10),then for somé\l > 0

|Lw f — fllc < Mwsy(f,1/W) (23)
uniformly inW.
Proof. The triangle inequality yields fay € C'(R) the estimate

ILwf = flle < lLwf - Lwgllc + ILwg — fllc- (24)

By Theorem 1,Ly is a bounded linear operator. By Proposition 1 we can find
g€ B;OW/Z for W > 4/x such that for some constafif > 0 there holds

2
|Zwf = Lwglle < 1 Zwlllf = glle < Crws (f, W) . (25)
Since according to the classical sampling theorgi) = (S5ircg)(¢) for this
g€ B;OW/Q, we have by (11) the equality
1 1
u
Lo =5 [ o () +o (1= 7)] v
0
From this we conclude

(Lwg)(t) = f(?)

i) 1) o) s )

+;O/[f<t+w>+f(t—;/>—2f(t)} du

which gives by Proposition 1 and by the definition of the second modulus of
continuity that for somé&’s > 0

ILws—fle < Lo~ Flo+ glla — flle+ 5o (f, )

2 1 1
< — - — .
< (.35 ) g (2 W) (26)
Finally, applying (24), (25), (26) and the properties of the modulus of continuity
(5), we obtain (23). O
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3. A SAMPLING SERIES WITH THE KERNEL CONSISTING OF A
COMBINATION OF TRANSLATED SINC FUNCTIONS

In this section we consider the generalized sampling series (1), where the kernel
s is defined by some combination of translatéae functions. The idea of those
combinations is borrowed from the summation of trigopnometric Fourier series (see
[*2], p. 615 or [3], p. 157). Our new sampling series will be defined by the kernel

Sm(t) = sinct — 2% Z(—l)g <TZ> sinc (t + ¢)
=0
_ 1 i (m) [sinct + (—1)“tsinc (t + £)]. (27)
am L=\ L

Let us modify the differences (4) using the equality

k

Bsa) = So-1 () s+ ) = (-1 ad s o) (28)

=0

Then the kernel (27) takes the form
. L 2~
Sm/(t) = sinc (t) — Q—mA’f‘smc (t). (29)

We shall show that the sampling series defined by the kernel (27), denoted by
Tw,m f, has an order of approximation estimated bystite modulus of continuity

Denote byRyy, ; the sampling operator defined by the kernel (6). It turns out
that the sampling operatdiy, ,,, is related toRyy .

Lemma 1. The sampling seri€&yy ,,, f defined by(27) has the form

m /-1 .
0 = g 32 (1) S on) (147357
=1 =

J

Proof. Since by (6)

~

-1

sinct 4+ (—1)Lsine (t +£) =) (—1)[sinc (t + ) + sinc (t + j + 1)]

Ing

i
T o
—

J

. 1
2> (=1)ro <t+j+ 2) ,

J

Il
o

212



we rewrite the kernel (27) as follows:

/-1

. . 1
oml(l) = m1§:<)§: (e 45+ ).
7=0
The last equation gives by (1) our assertion. O

Lemma 1 motivated us to consider the Rogosinski-type sampling series more
completely. In §:5] we proved for the operator norm &y, ; : C(R) — C(R) the
asymptotic equality

2
| Bl = =10 j +0(1).

Now we are able to compute the exact valug Biy, ;||.
Before proceeding to the theorem, we give an elementary statement.

Lemma 2 ([°], Lemma). The Rogosinski-type kern¢6) has the following
properties

(i) rjiseven andr;(z)| < 1forall z € R;

(i) 7; has the representatiofp; := j + 3,7 =0,1,...)

cosTT  pj

rye) = (-1

T ps—a?

Theorem 3. Forall j =0,1,...

2j
4 1
IRl = 23 g

Proof. Due to (12)

| Bw 5 = sup Z 7 (u = k)|

k—oo

By Lemma 2 the above series converges uniformly, hence its sum defines a
continuous function with period one. Moreover, this function is even. Therefore,

Rw, || = sup ri(u—£k)|. (30)
[ Rw o kz_: rj(u— k)|

Sincer; is even, it follows that

N(Bw,;) : Z [rj(u = k)| = [rj(w)] + D (frj(k + w)] + |r;(k —w)]) . (31)
k=1

k=—o0
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In the following we suppose always that< u < % By (ii) of Lemma 2 we have
(k eN)

2
cos? u p;

Bl = T G R ey + B

> 0.

Thus, the two factors; (k & «) have the same sign and therefore

Irj(k +u)| + [rj(k —u)| = |rj(k +u) +7j(k — u)|

__cosTu 1 n
IR (e R O

If we denote

(33)

hi(k,u) = + ,
b = G T - 2

then by (31), (32), and (33) we have

COSTTU >
N(Bw,j) = Irj(w)l +pj— > 1hi(k,w)l. (34)
k=1

Since by (33)

>0, k>j,
mika{ 2o 120

we get forj € N

ZV%(]C,U)’ = _Zhj(kvu)+ Z hj(kﬂu)
k=1

k=1 k=j+1

= ihj(k,u) - 2zj:hj(k,u) (35)
k=1

k=1

and forj =0

[e.o]

> ok, w)| = ho(k,w).

k=1 k=1

We can represertt;(k, ) as partial fractions in the form

1 1 1 1 1
hj(k,u) = — - + - , (36
sk, ) 2p; <k+u—pj k+u+p; k—u—p;j k—u—i—pj) (36)
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which gives

1 U+ pj u— pj )
hi(kou) = — . . 37
(ks w) 1%<W—wu+mv 2 (u—p)) 37)

Now we get by (35) and (37) for the quantity (34) the equation

J
cos U
N(Bw;) = |rj()] = 20— > hy(k,u)
k=1
COS TU U+ pj U — pj
— . (38
T ;(kz—(ij)? kQ—(U—Pj)2> (39)

In what follows we use the well-known representation of the functienrv by
partial fractions

> v 1 T
k=1

Let us take in (39) = u + p;. Then we havey; = j + 1)

i( utpi  u—p; )
R R

k=1
pj T
= - — —|cotm(u + p;) —cotw(u —p;)| = —
Z 7 5 lcot m(u +pj) m(u—ps)l =~

Dj
2 _p§

According to (36), taking for the second term in (8¢ j — k and/ = j + k,
respectively, we have the representation

J
2pj Z h]’(k‘, U)
k=1

i—1 2j
St e) 5 e )
S \—ur12 " Tru+1/2) " S \Tvus12 7 (—u+1/2
2
p?—u2 ZZO(€+1/2)2—U2'

The last two equations and (ii) of Lemma 2 give for (38) the equality

N(R _ cosTu % 20+ 1 40
(Bw.j) = T Z(€+1/2)2—u2' (40)
/=0
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For the operator norm we have now by (30), (31), and (40)

| B sup coswui 20 +1 (41)
w, il =
T ousie T = ((+1/2)? —u?

valid for j € N. The equality (41) is valid also fgr = 0, in particular, by (41) and
(ii) of Lemma 2 we have

[Rw,oll =2 sup 7o(u). (42)
0<u<1/2

To find the supremum in (41), let us denote

COS TTU
ke(w) = e —

(43)

and compute the derivative

1 () — 2u cos Tu msinmu
elv) = [(0+1/2)2 — w22 (L+1/2)2 —u?’
The inequalitie®) < cos7u < 1 and2u < sin7u show thatk)(u) < 0 for all
u € [0, 3] and? € N. Moreover, foru € (0, 3] we havek)(u) < 0 (¢ € N). Since
k;(0) = 0, we see that for alf = 1,...,2; the functionk, in (43) has its unique
maximum (atu = 0) on the interval0, ]. For¢ = 0 we can provek(u) < 4,
thereforemaxoc,<1/2 ko(u) = 4 = ko(0). Since for allZ we havek,(u) > 0
(u € [0, 3]), the maximum point for (41) is also at= 0. O

The norm of the sampling operat@iy,,,, can be estimated by the norm of
Rogosinski-type sampling operat&sy, .

Theorem 4. The sampling serieqyy, ,,,f defines a family of bounded linear
operators fromC'(R) into itself, satisfying

4
17w, mll < ml| Bw, ol = —m.

Proof. Thesup norm inC(R) is a translation invariant. Therefore by Lemma 1 and
Theorem 3

m -1
1 m
| Tw, m fllc < om—T E <€> E | Rw,ofllc
=1

=0
1 « m
~IRwofle g 3¢y ) = mifwolle
(=1

O

The proof of Theorem 4 is similar to the trigonometric approximation counter-
part (see I?] or ['?]). As we shall see in the next theorem, a sharper bound for the
norm || Ty, .|| is valid.
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Theorem 5. The sampling serieqyy, ,,,f defines a family of bounded linear
operators fromC'(R) into itself, satisfying

4
ITiv,mll <~ (im +3).

Proof. Due to the equation

sinc (t 4+ €) = (—1)4ti£

sinct,

we rewrite the kernel (27) in the form

S

As in the proof of Theorem 1, we can write
ITwmll = sup Z |sm(u—k (45)
The equality (44) yields

- 1 |sinmu| o= (M) 14
2 bute=mi< g S (7) 2 [ @0

Foru € (—1,0) and/ € N we have

sgn

1 (-1, 0<k<l-1,
(k—u)(k—0—u) 1, —keNork >¢.

Hence we write for sufficiently largé/, N € N

N

14
Z ’(k—u)(k—ﬁ—u)

(S ()
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Let M, N — oo. Then we get for the series in (46)

-1 1 V4 1
_2<Zk—u+zk+u> (7)

Asu € (—1,0) and? < m, and taking in (47} = 0 for the first sum and, = —1
for the second sum, we obtain

1 S| < [ da
< — < .
k—u—’—g k+u\2’§_ /:z <242lnm (48)
= 1

Therefore, (47) and (48) give for (46)

Nt 2|sintu| [ 1 1 4
kzgoosm(u k)| < - (u—i—l u> + 7T(lnm+1) (49)
Since by (6)

9 +1 sinmu [ 1 1
rolu+ =)= - — ,
0 2 r \u u+l1

we have by (45) and (49)

4 1
| Tw,mll = SUP Z |sm(u—k)| < =(Inm+1)+4 sup rg <u+2>.

I<u<0 = ™ —1<u<0

In the proof of Theorem 3 we obtained the equality (42) which by Theorem 3 gives

[Tw,mll < —(Inm + 3).

SIES

Corollary 1. For m € N we have

Tl €54 ot o PSTST
Wom Inm + 3, m > 4.
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The most important fact concerning the sampling operdigr,, is that the
order of approximation by the sampling serigs; ,,,/ can be estimated via the
mth modulus of continuity.

Theorem 6. If Ty, ., f is the sampling series defined B9) for f € C(R), then
for somekK,, > 0

Hf - TW,mf”C’ < mem <f7 I;/>

uniformly inW > 2/x.
Proof. Letg € BS° (0 < nW). As Siir¢ g = g by (3) and hence by (29)

(T m9) (6) = (ST 9)(1) — 53 By (ST ) (1),

we may write o = 1/W)

f = Twmf = f =~ Tiwmlf ~ 9+ 9) = f = Twm(f ) ~ 9+ 5 B0y

1 -
=f=9=Twm(f~9)—5m Ap(f - g)+fA f. (50)
By the definition of the modulus of continuity we have

IAT fle < wlf,h) < 27| flle,
and therefore by (50)

I = Tl < @+ [Tucnl) 1 = dle + gom (£155) - 6D

Now let us take in (51) the function = ¢* € B® 2 < 0 = enW < 7W,
0 < e < 1) asin Proposition 1. We have
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Sinc-funktsioonide monede kombinatsioonidega
maaratud valimridadest

Andi Kivinukk ja Gert Tamberg

Kaesolevas t60s uurisime funktsioonide lahendamist lldistatud valimridadega,
mille Gldkasitlus on esitatud artiklis'] ja seal refereeritud allikates. Defineeri-
sime mdned uued valimread sinc-funktsioonide teatud kombinatsioonide abil ja
leidsime nende normide tapsed vaartused voi hinnangud ning lahendamiskiirused.
Uute valimridade sissetoomise motiiviks olid trigopnomeetrilise Fourier’ rea vasta-
vad summeerimismeetodid. Meie kasitlus baseerus oluliselt nn Rogosinski tulpi
valimridadel [-9].
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